The FF Planning System

Jorge A. Baier
Department of Computer Science
University of Toronto
Toronto, Ontario, Canada

CSC2542 – Topics in Knowledge Representation and Reasoning

The Fast Forward (FF) Planning System

- Was proposed by Hoffmann & Nebel (2001).
- Was the winner of the 2000 planning competition.
- Its novel elements are the following:
 - Heuristic based on relaxed plans.
 - Enforced Hill Climbing Used as the Search Strategy.
 - Its core ideas have had substantial impact.

The Relaxed Plan Heuristic: Basic Definitions

Definition (STRIPS planning problem)
Let $P = (\text{Init}, \text{Ops}, \text{Goal})$ be a STRIPS planning problem where:
- Init is the initial state.
- Goal is the goal condition.
- Each $o \in \text{Ops}$ of the form $o = (\text{prec}(o), \text{add}(o), \text{del}(o))$

Definition (Delete-Relaxation)
The delete relaxation of P, denoted P^+, is a instance just like P but in which operators in Ops have an empty delete list.

Definition (Relaxed Plan)
A relaxed plan for P is any plan for P^+.

Computing a Relaxed Plan

For a planning state s:
$h_{FF}(s) = \text{“number of actions in a relaxed plan from } s\text{”}$

The relaxed plan computed by FF:
- Is obtained using a version of Graphplan on P^+.
- Is not a shortest relaxed plan (since this is already NP-hard).

Computing a Relaxed Plan: Algorithm

Extraction algorithm (Hoffmann & Nebel, 2001)

1: function EXTRACTPLAN(plan graph $P_0P_1\cdots P_n$, goal G)
2: for $i = n \ldots 1$ do
3: $G_i \leftarrow$ goals reached at level i
4: end for
5: for $i = n \ldots 1$ do
6: for all $g \in G_i$ not marked TRUE at time i do
7: Find min-cost $a \in A_{i-1}$ such that $g \in add(A_{i-1})$
8: $RP_{i-1} \leftarrow RP_{i-1} \cup \{a\}$
9: end for
10: for all $f \in prec(a)$ do
11: $G_{\text{layer}}(f) = G_{\text{layer}}(f) \cup \{f\}$
12: end for
13: for all $f \in add(a)$ do
14: mark f as TRUE at times $i-1$ and i.
15: end for
16: end for
17: return RP
18: end function

Highlights of the relaxed plan extraction algorithm:
- Plan is extracted by regressing the goals (i.e. backwards)
- Iterates from the highest to the lowest level.
- Earliest achievers are always preferred.
“Min-Cost” Actions

The “min-cost” action referred to in line 7 is the one that minimizes the following function:

\[\text{Cost}(a) = \sum_{p \in \text{Prec}(a)} \text{level}(p). \]

where \(\text{level}(p) \) is the first layer at which \(p \) appears, and \(\text{Prec}(a) \) are the preconditions of \(a \).

Helpful Actions

Helpful actions are essential for FF’s performance. Helpful actions are those that appear at the first level of the relaxed plan.

Definition (Helpful action)

An action \(a \) of a relaxed plan from \(s \) is helpful iff it is a member of \(\text{RP}_0 \).

Note that helpful actions are a subset of the actions executable in \(s \).

Enforced Hill Climbing

Enforced Hill Climbing (EHC) (Hoffmann & Nebel, 2001)

1: function EHC(initial state \(I \), goal \(G \))
2: plan ← EMPTY
3: \(s \leftarrow I \)
4: while \(h(s) \neq 0 \) do
5: from \(s \), search for \(s' \) such that \(h(s') < h(s) \).
6: if no such state is found then
7: return fail ⊲ discard and continue the iteration
8: end if
9: if \(h(s') < h(s) \) then
10: \(s' \leftarrow t \)
11: break ⊲ better state found, exit loop
12: end if
13: \(\text{push}(\text{queue}, \{ \text{helpful successors of } s \}) \)
14: \(\text{closed} \leftarrow \text{closed} \cup \{ t \} \)
15: end while

FF’s search strategy

EHC is an incomplete search algorithm and thus prone to failure. If EHC fails, FF falls back into best-first search (A search), in which the evaluation function for a state is:

\[f(s) = h_{FF}(s) \]

Note that this search is complete but greedy since the length of the plan is not considered.

Now let’s see how FF works in practice!

References I