
1

Compilation of Planning to SAT

Yiqiao Wang

2

Motivation

� Propositional SAT: Given a Boolean formula
- e.g., (P ∨ Q) ∧ (¬Q ∨ R ∨ S) ∧ (¬R ∨ ¬ P),

does there exist a model?
- i.e., an assignment of truth values to the propositions

that makes the formula true?

� Lots of research on algorithms for solving it
● This was the very first problem shown to be NP-complete

� IDEA:
● Translate classical planning problems into satisfiability problems,

and solving them using highly optimized SATsolvers

3

Outline
� Architecture of SAT-based planning
� SAT-based planning approach
� Encoding planning problems as SAT problems
� Making encodings more efficient
� Extracting a plan
� Satisfiability algorithms

● Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
● Stochastic SAT Solvers: GSAT

� Discussion

4

Compiler Simplifier
Init State
Goal
Actions

Solver Decoder

Increment time bound if
Unsatisfiable

Symbol Table

CNF CNF Satisfying
Assignment

Plan

Architecture of
SAT-based planning system

5

Architecture of
SAT-based planning system Cont.

� Compiler
● take a planning problem as input, guess a plan length, and generate a

propositional logic formula, which if satisfied, implies the existence of a
solution plan

� Symbol table
● record the correspondence between propositional variables and the planning

instance
� Simplifier

● use fast techniques such as unit clause propagation and pure literal elimination
to shrink the CNF formula

� Solver
● use systematic or stochastic methods to find a satisfying assignment. If the

formula is unsatisfiable, then the compiler generates a new encoding reflecting
a longer plan length

� Decoder
● translate the result of solver into a solution plan.

6

Outline
� Architecture of SAT-based planning
� SAT-based planning approach
� Encoding planning problems as SAT problems
� Making encodings more efficient
� Extracting a plan
� Satisfiability algorithms

● Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
● Stochastic SAT Solvers: GSAT

� Discussion

7

Planning Problem Definition
� Define what a planning problem is

● Initial State
Describes the facts that hold and do not hold in initial state

● Goal State
Describes the facts that much hold in goal state

● Transition function γ: S x A -> S
- S: Sets of states
- A: Set of actions
- γ is encoded in terms of actions’ preconditions and effects, and exclusion

axioms
� Bounded planning problem (P,n):

● P is a planning problem; n is a positive integer
● Find a solution for P of length <= n

- <a0, a1, …, an–1> is a solution for (P,n),
- Plan length not known in advance => the approach needs to repeat for

different tentative lengths

8

SAT-based Planning Approach

� Do iterative deepening:
● for n = 0, 1, 2, …,

- encode (P,n) as a satisfiability problem Φ
- if Φ is satisfiable, then

• From the set of truth values that satisfies Φ, a solution
plan can be constructed, so return it and exit

9

Fluents
� If π = <a0, a1, …, an–1> is a solution for (P,n), then it

generates the following states:
s0, s1 = γ(s0,a0), s2 = γ(s1,a1), …, sn = γ(sn–1, an–1)

� Fluents: propositions that describe what’s true in each si
● at(r1,loc1,i) is a fluent that’s true iff at(r1,loc1) is in si

● We’ll use li to denote the fluent for literal l in state si
- e.g., if l = at(r1,loc1)

then li = at(r1,loc1,i)

● ai is a fluent saying that a is the i’th step of π
- e.g., if a = move(r1,loc2,loc1)

then ai = move(r1,loc2,loc1,i)

10

Outline
� Architecture of SAT-based planning
� SAT-based planning approach
� Encoding planning problems as SAT problems
� Making encodings more efficient
� Extracting a plan
� Satisfiability algorithms

● Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
● Stochastic SAT Solvers: GSAT

� Discussion

11

What is in ΦΦΦΦ?
� Formula describing the initial state:

/\{l0 | l ∈ s0} ∧ /\{¬ l0 | l ∈ L – s0 }

� Formula describing the goal state:
/\{ln | l ∈ g+} ∧ /\{¬ ln | l ∈ g–}

� Formulas describing the preconditions and effects of actions:
For every action a in A, formulas describing what changes a would make if it

were the i’th step of the plan:
● ai ⇒ /\{pi | p ∈ Precond(a)} ∧ /\ {ei+1 | e ∈ Effects(a)}

� Formulas describing Complete exclusion:
● For all actions a and b, formulas saying they cannot occur at the same time

¬ ai ∨ ¬ bi
● this guarantees there can be only one action at a time

� Formulas providing a solution to the Frame Problem

12

Example
� Planning domain:

● one robot r1
● two adjacent locations l1, l2
● one action (move the robot)

� Encode (P,n) where n = 1

● Initial state: {at(r1,l1)}
Encoding: at(r1,l1,0) ∧ ¬ at(r1,l2,0)

● Goal: {at(r1,l2)}
Encoding: at(r1,l2,1) ∧ ¬ at(r1,l1,1)

13

Example (continued)
� Action: move(r,l1,l2)

precond: at(r,l1)
effects: at(r,l2), ¬at(r,l1)

Encoding:
move(r1,l1,l2,0) ⇒ at(r1,l1,0) ∧ at(r1,l2,1) ∧ ¬ at(r1,l1,1)
move(r1,l2,l1,0) ⇒ at(r1,l2,0) ∧ at(r1,l1,1) ∧ ¬ at(r1,l2,1)

� Complete-exclusion axiom:
¬move(r1,l1,l2,0) ∨ ¬ move(r1,l2,l1,0)

� Explanatory frame axioms:
¬at(r1,l1,0) ∧ at(r1,l1,1) ⇒ move(r1,l2,l1,0)
¬at(r1,l2,0) ∧ at(r1,l2,1) ⇒ move(r1,l1,l2,0)
at(r1,l1,0) ∧ ¬ at(r1,l1,1) ⇒ move(r1,l1,l2,0)
at(r1,l2,0) ∧ ¬ at(r1,l2,1) ⇒ move(r1,l2,l1,0)

14

What are these “Explanatory Frame Axioms” and the
“Complete Exclusion Axioms”?

15

The Frame Problem
The Frame Problem:

Describing what does not change between steps i and i+1

Two Common Solutions:
1. Classical Frame Axioms
2. Explanatory frame axioms

16

1. Classical Frame Axioms
� Classical frame axioms (McCarthy & Hayes 1969)

● State which fluents are unaffected by a given action
● For each action a, for each fluent not in effects(a), and for each

step i, we have: fi ∧ ai => fi+1

● Problem: if no action occurs at step i nothing can be inferred
about propositions at level i+1

● Sol: at-least-one axiom: at least one action occurs
● If more than one action occurs at a step, either one can be

selected.

17

2. Explanatory frame axioms
� Explanatory frame axioms (Haas 1987)

● Enumerate the set of actions that could have occurred in order to
account for a state change.

● Says that if f changes between si and si+1, then the action at step i
must be responsible:

(¬¬¬¬ fi ∧∧∧∧ fi+1 ⇒⇒⇒⇒ V{ai | f ∈∈∈∈ effects+(a)}) ∧∧∧∧ (fi ∧∧∧∧ ¬¬¬¬ fi+1 ⇒⇒⇒⇒ V{ai | l ∈∈∈∈ effects–(a)})

● Example:
¬at(r1,l1,0) ∧ at(r1,l1,1) ⇒ move(r1,l2,l1,0)
¬at(r1,l2,0) ∧ at(r1,l2,1) ⇒ move(r1,l1,l2,0)
at(r1,l1,0) ∧ ¬ at(r1,l1,1) ⇒ move(r1,l1,l2,0)
at(r1,l2,0) ∧ ¬ at(r1,l2,1) ⇒ move(r1,l2,l1,0)

18

Explanatory frame axioms (cont)
� Allows parallelism

● Two actions can be executed in parallel if
- Their preconditions are satisfied at time t
- Their effects do not conflict

● Gives shorter plans – smaller encoding

� Uncontrolled parallelism is problematic
● Can create valid plans without valid solution

- Action α has precondition X and effect Y
- Action β has precondition ¬Y and effect ¬X

19

Explanatory frame axioms (cont)
Need Exclusion Axioms

● Complete exclusion axioms – totally ordered plan
- Only one action occurs at a time

¬ αt ∨ ¬ βt

● Conflict exclusion axioms – partially ordered plan
- Two actions conflict if one’s precondition is inconsistent

with the other’s effect
- Conflict exclusion should be used whenever possible

20

Outline
� Architecture of SAT-based planning
� SAT-based planning approach
� Encoding planning problems as SAT problems
� Making encodings more efficient
� Extracting a plan
� Satisfiability algorithms

● Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
● Stochastic SAT Solvers: GSAT

� Discussion

21

Compiler Simplifier
Init State
Goal
Actions

Solver Decoder

Increment time bound if
Unsatisfiable

Symbol Table

CNF CNF Satisfying
Assignment

Plan

Architecture of
SAT-based planning system

22

Space of Encodings
� Want a compiler to quickly produce a small SAT

encoding
● Number of variables
● Number of clauses
● Total number of literals summed over all clauses

� Two factors determine these sizes:
● Encoding

- Choice of Action Representation
• Regular, simple split, overloaded split, or bitwise
• Tradeoff between the number of variables and the

number of clauses in the formula
- Choice of Frame Axioms: classical or explanatory

● Optimizations being used

23

Action Encoding
� Regular

● Each ground action is represented by a different logical variable

� Simple Operator Splitting
● Replace each n-ary action proposition with n unary propositions
● Advantage: instances of each action share the same variable

- move2(l1,i) is used to represent move(r1,l1,l2,i), can be reused to
represent move(r2,l1,l2,i) – represent cases where starting location is the
same

� Overloaded Operator Splitting
● Allowing different actions to share the same variable

� Bitwise
● Propositional variables are represented using bits

24

Action Encoding

Bitwise

Overloaded-split

Simply-split

Regular

Representation

Binary encodings of actions
n|F| + n[log2 |O||D|A0]

fully-instantiated argument
n|F| + n(|O|+|D|A0)

fully-instantiated action’s
argument

n|F| + n|O||D|A0

fully-instantiated action
n|F| + n|O||D|A0

One Propositional
Variable per

Bit1

Act(move, i) ∧ Act1(r1, i)
∧ Act2(l1, i) ∧ Act3(l2, i)

move1(r1,i) ∧ move1(l1,i)
∧ move1(l2,i)

move(r1,l1,l2,i)

Example
more
vars

more
clauses

[Ernst et al, IJCAI 1997]

N – number of steps; |F| - number of fluents;
|O| - number of operators; A0 – maximum arity of predicates

25

Comparisons of Different Encodings
� Regular explanatory and simple splitting explanatory

encodings are the smallest
● Explanatory frame axioms are smaller

- State only what changes, not what does not change
● Regular explanatory encodings allow for parallel actions

- Shorter plans
- Conflict exclusion axioms are a subset of complete exclusion

axioms.

26

Compiler Simplifier
Init State
Goal
Actions

Solver Decoder

Increment time bound if
Unsatisfiable

Symbol Table

CNF CNF Satisfying
Assignment

Plan

Architecture of
SAT-based planning system

Other
Domain-specific

Knowledge
(optional)

27

Optimizations
� Optimize the CNF formula produced by a compiler

1. Compile-time optimization
- Shrink the size of CNF formula that SAT-compiler generates

2. Adding domain-specific information (e.g., control knowledge)
- Precondition |= action conflicts, effects |=derived effects
- State invariant:

• A truck is at only one location
- Optimality: disallowing unnecessary subplans

• Do not return a package to its original location
- Simplifying assumptions: not logically entailed

• Once trucks are loaded they should immediately move

28

Outline
� Architecture of SAT-based planning
� SAT-based planning approach
� Encoding planning problems as SAT problems
� Making encodings more efficient
� Extracting a plan
� Satisfiability algorithms

● Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
● Stochastic SAT Solvers: GSAT

� Discussion

29

Extracting a Plan
� Suppose we find an assignment of truth values that

satisfies ΦΦΦΦ.
● This means P has a solution of length n

� For i=1,…,n, there will be exactly one action a such
that ai = true
● This is the i’th action of the plan.

� Example (from the previous slides):
● Φ can be satisfied with move(r1,l1,l2,0) = true
● Thus 〈move(r1,l1,l2,0)〉 is a solution for (P,0)

- It’s the only solution - no other way to satisfy Φ

30

Outline
� Architecture of SAT-based planning
� SAT-based planning approach
� Encoding planning problems as SAT problems
� Making encodings more efficient
� Extracting a plan
� Satisfiability algorithms

● Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
● Stochastic SAT Solvers: GSAT

� Discussion

31

SAT AlgorithmsSAT Algorithms
� How to find an assignment of truth values that

satisfies ΦΦΦΦ?
● Use a satisfiability algorithm

� Systematic Search
● E.g., DP (Davis Putnam Logemann Loveland)

backtrack search + unit propagation

� Local Search
● E.g., GSAT (Selman), Walksat (Selman, Kautz & Cohen)

greedy local search + noise to escape minima

32

Outline
� Architecture of SAT-based planning
� SAT-based planning approach
� Encoding planning problems as SAT problems
� Making encodings more efficient
� Extracting a plan
� Satisfiability algorithms

● Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
● Stochastic SAT Solvers: GSAT

� Discussion

33

Discussion
� Recall the overall approach:

● for n = 0, 1, 2, …,
- encode (P,n) as a satisfiability problem Φ
- if Φ is satisfiable, then

• From the set of truth values that satisfies Φ, extract a solution plan
and return it

� By itself, not very practical (takes too much memory and time)

� But it can be combined with other techniques
● e.g., planning graphs
● Blackbox: combines planning-graph expansion and satisfiability checking

34

Conclusion
� What SATPLAN shows

● General SAT solvers can compete with state of the art
specialized planning systems, in fact today’s SAT-based
planners are among the fastest!!!

� Why SATPLAN works
● More flexible than forward or backward chaining
● Randomized algorithms less likely to get trapped on bad paths

35

Acknowledgement
� I have reused slides from the following two sources:

● Open-Loop Planning as Satisfiability by Henry Kautz
http://www.cs.washington.edu/homes/kautz/talks/tutorial99/ope
nloop.ppt

● Aussagenlogische Erfllbarkeitstechniken SATPlan by Ulrich
Scholz
http://www.intellektik.informatik.tu-
darmstadt.de/~scholz/Vorlesung/07_Satplan_2005_12_08.pdf

