Compilation of Planning to SAT

Yiqiao Wang

Motivation

> Propositional SAT: Given a Boolean formula

- e.g., $(P \lor Q) \land (\neg Q \lor R \lor S) \land (\neg R \lor \neg P)$,

does there exist a model?

- i.e., an assignment of truth values to the propositions that makes the formula true?

> Lots of research on algorithms for solving it

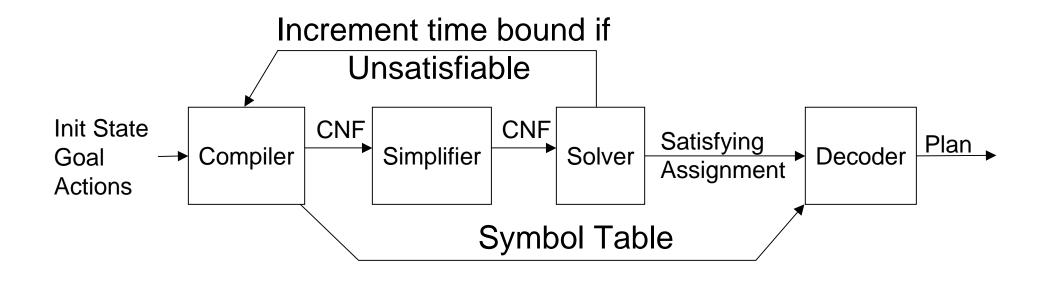
• This was the very first problem shown to be NP-complete

> IDEA:

• Translate classical planning problems into satisfiability problems, and solving them using highly optimized SATsolvers

- > Architecture of SAT-based planning
- SAT-based planning approach
- > Encoding planning problems as SAT problems
- > Making encodings more efficient
- Extracting a plan
- Satisfiability algorithms
 - Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 - Stochastic SAT Solvers: GSAT

Architecture of SAT-based planning system



Architecture of SAT-based planning system Cont.

> Compiler

• take a planning problem as input, guess a plan length, and generate a propositional logic formula, which if satisfied, implies the existence of a solution plan

Symbol table

• record the correspondence between propositional variables and the planning instance

> Simplifier

• use fast techniques such as unit clause propagation and pure literal elimination to shrink the CNF formula

> Solver

• use systematic or stochastic methods to find a satisfying assignment. If the formula is unsatisfiable, then the compiler generates a new encoding reflecting a longer plan length

> Decoder

• translate the result of solver into a solution plan.

- Architecture of SAT-based planning
- SAT-based planning approach
- Encoding planning problems as SAT problems
- > Making encodings more efficient
- Extracting a plan
- Satisfiability algorithms
 - Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 - Stochastic SAT Solvers: GSAT

Planning Problem Definition

> Define what a planning problem is

• Initial State

Describes the facts that hold and do not hold in initial state

• Goal State

Describes the facts that much hold in goal state

- Transition function γ : S x A -> S
 - S: Sets of states
 - A: Set of actions
 - γ is encoded in terms of actions' preconditions and effects, and exclusion axioms

Bounded planning problem (P,n):

- *P* is a planning problem; *n* is a positive integer
- Find a solution for *P* of length <= *n*
 - $< a_0, a_1, ..., a_{n-1} >$ is a solution for (P, n),
 - Plan length not known in advance => the approach needs to repeat for different tentative lengths

SAT-based Planning Approach

> Do iterative deepening:

- for n = 0, 1, 2, ...,
 - encode (P,n) as a satisfiability problem Φ
 - if Φ is satisfiable, then
 - From the set of truth values that satisfies Φ , a solution plan can be constructed, so return it and exit

Fluents

> If $\pi = \langle a_0, a_1, ..., a_{n-1} \rangle$ is a solution for (*P*,*n*), then it generates the following states:

 $s_0, \quad s_1 = \gamma(s_0, a_0), \quad s_2 = \gamma(s_1, a_1), \quad \dots, \quad s_n = \gamma(s_{n-1}, a_{n-1})$

- Fluents: propositions that describe what's true in each s_i
 at(r1,loc1,i) is a fluent that's true iff at(r1,loc1) is in s_i
 - We'll use l_i to denote the fluent for literal l in state s_i
 - e.g., if l = at(r1, loc1)then $l_i = at(r1, loc1, i)$
 - a_i is a fluent saying that a is the *i* 'th step of π
 - e.g., if a = move(r1, loc2, loc1)then $a_i = move(r1, loc2, loc1, i)$

- Architecture of SAT-based planning
- SAT-based planning approach
- > Encoding planning problems as SAT problems
- > Making encodings more efficient
- Extracting a plan
- Satisfiability algorithms
 - Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 - Stochastic SAT Solvers: GSAT

What is in Φ ?

Formula describing the initial state:

 $\bigwedge \{ l_0 \mid l \in s_0 \} \land \bigwedge \{ \neg l_0 \mid l \in L - s_0 \}$

Formula describing the goal state:

 $\bigwedge\{l_n \ | \ l \in g^+\} \land \ \bigwedge\{\neg l_n \ | \ l \in g^-\}$

Formulas describing the preconditions and effects of actions:

For every action a in A, formulas describing what changes a would make if it were the *i*'th step of the plan:

- $a_i \implies \bigwedge \{ p_i \mid p \in \operatorname{Precond}(a) \} \land \bigwedge \{ e_{i+1} \mid e \in \operatorname{Effects}(a) \}$
- > Formulas describing *Complete exclusion*:
 - For all actions *a* and *b*, formulas saying they cannot occur at the same time $\neg a_i \lor \neg b_i$
 - this guarantees there can be only one action at a time

Formulas providing a solution to the Frame Problem

Example

> Planning domain:

- one robot r1
- two adjacent locations 11, 12
- one action (move the robot)

> Encode (*P*,*n*) where *n* = 1

- Initial state: {at(r1,l1)}
 Encoding: at(r1,l1,0) ∧ ¬at(r1,l2,0)
- Goal: {at(r1,l2)}
 Encoding: at(r1,l2,1) ∧ ¬at(r1,l1,1)

Example (continued)

Action: move(r,l1,l2)

precond: at(r, |1)effects: at(r, |2), $\neg at(r, |1)$

Encoding:

 $move(r1,I1,I2,0) \Rightarrow at(r1,I1,0) \land at(r1,I2,1) \land \neg at(r1,I1,1)$ $move(r1,I2,I1,0) \Rightarrow at(r1,I2,0) \land at(r1,I1,1) \land \neg at(r1,I2,1)$

Complete-exclusion axiom:

 \neg move(r1,l1,l2,0) $\lor \neg$ move(r1,l2,l1,0)

> Explanatory frame axioms:

 $\neg at(r1,l1,0) \land at(r1,l1,1) \Rightarrow move(r1,l2,l1,0)$ $\neg at(r1,l2,0) \land at(r1,l2,1) \Rightarrow move(r1,l1,l2,0)$ $at(r1,l1,0) \land \neg at(r1,l1,1) \Rightarrow move(r1,l1,l2,0)$ $at(r1,l2,0) \land \neg at(r1,l2,1) \Rightarrow move(r1,l2,l1,0)$ What are these "Explanatory Frame Axioms" and the "Complete Exclusion Axioms"?

The Frame Problem

The Frame Problem:

Describing what *does not* change between steps *i* and *i*+1

Two Common Solutions:

- 1. Classical Frame Axioms
- 2. Explanatory frame axioms

1. Classical Frame Axioms

Classical frame axioms (McCarthy & Hayes 1969)

- State which fluents are unaffected by a given action
- For each action a, for each fluent not in effects(a), and for each step i, we have: f_i ∧ a_i => f_{i+1}
- Problem: if no action occurs at step i nothing can be inferred about propositions at level i+1
- Sol: at-least-one axiom: at least one action occurs
- If more than one action occurs at a step, either one can be selected.

2. Explanatory frame axioms

> Explanatory frame axioms (Haas 1987)

- Enumerate the set of actions that could have occurred in order to account for a state change.
- Says that if *f* changes between *s_i* and *s_{i+1}*, then the action at step *i* must be responsible:

 $(\neg f_i \land f_{i+1} \Rightarrow \mathsf{V}\{a_i \mid f \in \mathsf{effects}^+(a)\}) \land (f_i \land \neg f_{i+1} \Rightarrow \mathsf{V}\{a_i \mid l \in \mathsf{effects}^-(a)\})$

• Example:

 $\neg at(r1,l1,0) \land at(r1,l1,1) \Rightarrow move(r1,l2,l1,0)$ $\neg at(r1,l2,0) \land at(r1,l2,1) \Rightarrow move(r1,l1,l2,0)$ $at(r1,l1,0) \land \neg at(r1,l1,1) \Rightarrow move(r1,l1,l2,0)$ $at(r1,l2,0) \land \neg at(r1,l2,1) \Rightarrow move(r1,l2,l1,0)$

Explanatory frame axioms (cont)

> Allows parallelism

- Two actions can be executed in parallel if
 - Their preconditions are satisfied at time t
 - Their effects do not conflict
- Gives shorter plans smaller encoding

> Uncontrolled parallelism is problematic

- Can create valid plans without valid solution
 - Action α has precondition X and effect Y
 - Action β has precondition $\neg Y$ and effect $\neg X$

Explanatory frame axioms (cont)

Need Exclusion Axioms

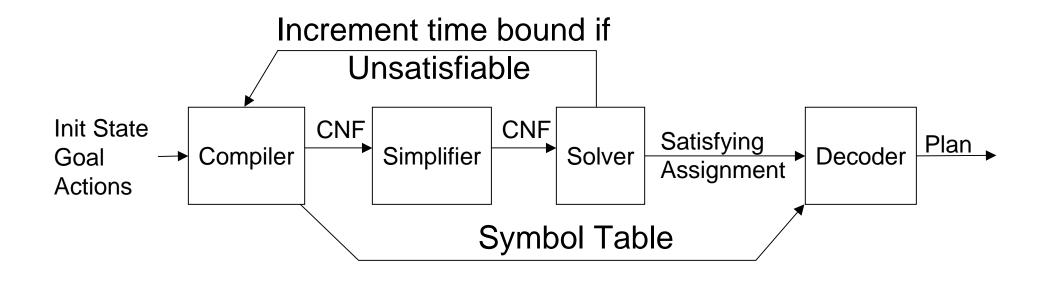
- Complete exclusion axioms *totally ordered plan*
 - Only one action occurs at a time

 $\neg \alpha_t \lor \neg \beta_t$

- Conflict exclusion axioms *partially ordered plan*
 - Two actions conflict if one's precondition is inconsistent with the other's effect
 - Conflict exclusion should be used whenever possible

- Architecture of SAT-based planning
- SAT-based planning approach
- Encoding planning problems as SAT problems
- > Making encodings more efficient
- Extracting a plan
- Satisfiability algorithms
 - Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 - Stochastic SAT Solvers: GSAT

Architecture of SAT-based planning system



Space of Encodings

Want a compiler to quickly produce a small SAT encoding

- Number of variables
- Number of clauses
- Total number of literals summed over all clauses

> Two factors determine these sizes:

- Encoding
 - Choice of Action Representation
 - Regular, simple split, overloaded split, or bitwise
 - Tradeoff between the number of variables and the number of clauses in the formula
 - Choice of Frame Axioms: classical or explanatory
- Optimizations being used

Action Encoding

> Regular

• Each ground action is represented by a different logical variable

Simple Operator Splitting

- Replace each n-ary action proposition with n unary propositions
- Advantage: instances of each action share the same variable
 - move2(11,i) is used to represent move(r1,11,12,i), can be reused to represent move(r2,11,12,i) – represent cases where starting location is the same

> Overloaded Operator Splitting

• Allowing different actions to share the same variable

> Bitwise

• Propositional variables are represented using bits

Action Encoding [Ernst et al, IJCAI 1997]

Representation	One Propositional Variable per	Example
Regular	fully-instantiated action $n F + n O D ^{A0}$	move(r1,11,12,i)
Simply-split	fully-instantiated action's argument $n F + n O D A_0$	move1(r1,i) \land move1(l1,i) \land move1(l2,i)
Overloaded-split	fully-instantiated argument $n F + n(O + D A_{0})$	Act(move, i) \land Act1(r1, i) \land Act2(l1, i) \land Act3(l2, i)
Bitwise	Binary encodings of actions $n F + n[log_2 O D ^{A0}]$	Bit1

N – number of steps; |F| - number of fluents;

more clauses

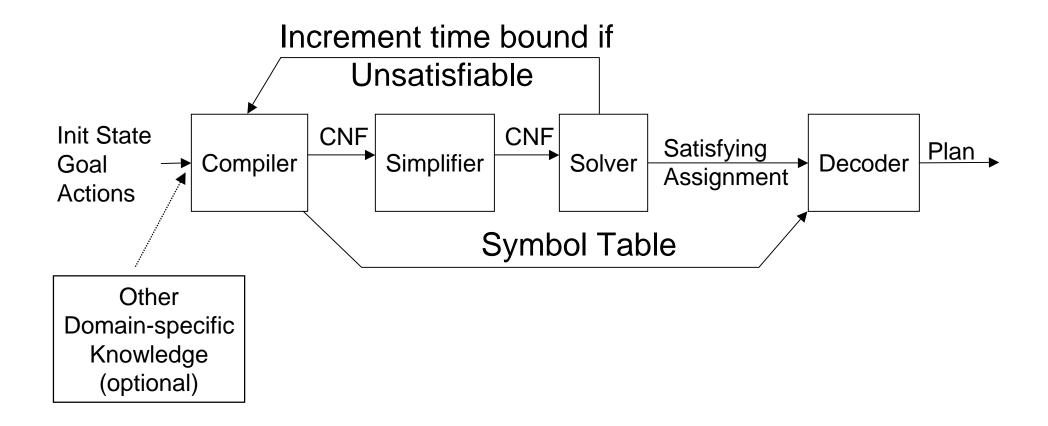
|O| - number of operators; A_0 – maximum arity of predicates

Comparisons of Different Encodings

> Regular explanatory and simple splitting explanatory encodings are the smallest

- Explanatory frame axioms are smaller
 - State only what changes, not what does not change
- Regular explanatory encodings allow for parallel actions
 - Shorter plans
 - Conflict exclusion axioms are a subset of complete exclusion axioms.

Architecture of SAT-based planning system



Optimizations

- > Optimize the CNF formula produced by a compiler
 - **1.** Compile-time optimization
 - Shrink the size of CNF formula that SAT-compiler generates
 - 2. Adding **domain-specific information** (e.g., control knowledge)
 - Precondition |= action conflicts, effects |=derived effects
 - State invariant:
 - A truck is at only one location
 - Optimality: disallowing unnecessary subplans
 - Do not return a package to its original location
 - Simplifying assumptions: not logically entailed
 - Once trucks are loaded they should immediately move

- Architecture of SAT-based planning
- ✓ SAT-based planning approach
- Encoding planning problems as SAT problems
- Making encodings more efficient
- Extracting a plan
- Satisfiability algorithms
 - Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 - Stochastic SAT Solvers: GSAT

Extracting a Plan

Suppose we find an assignment of truth values that satisfies Φ.

• This means *P* has a solution of length *n*

For *i*=1,...,*n*, there will be exactly one action *a* such that *a_i* = *true*

• This is the *i*'th action of the plan.

> Example (from the previous slides):

- Φ can be satisfied with move(r1,l1,l2,0) = *true*
- Thus (move(r1, l1, l2, 0)) is a solution for (P, 0)
 - It's the only solution no other way to satisfy Φ

- Architecture of SAT-based planning
- ✓ SAT-based planning approach
- Encoding planning problems as SAT problems
- Making encodings more efficient
- Extracting a plan
- Satisfiability algorithms
 - Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 - Stochastic SAT Solvers: GSAT

SAT Algorithms

➤ How to find an assignment of truth values that satisfies Φ?

• Use a satisfiability algorithm

> Systematic Search

• E.g., DP (Davis Putnam Logemann Loveland) backtrack search + unit propagation

Local Search

• E.g., GSAT (Selman), Walksat (Selman, Kautz & Cohen) greedy local search + noise to escape minima

- Architecture of SAT-based planning
- SAT-based planning approach
- Encoding planning problems as SAT problems
- Making encodings more efficient
- Extracting a plan
- Satisfiability algorithms
 - Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 - Stochastic SAT Solvers: GSAT

Discussion

Recall the overall approach:

- for n = 0, 1, 2, ...,
 - encode (P,n) as a satisfiability problem Φ
 - if Φ is satisfiable, then
 - From the set of truth values that satisfies Φ , extract a solution plan and return it
- > By itself, not very practical (takes too much memory and time)
- But it can be combined with other techniques
 - e.g., planning graphs
 - Blackbox: combines planning-graph expansion and satisfiability checking

Conclusion

> What SATPLAN shows

• General SAT solvers can compete with state of the art specialized planning systems, in fact today's SAT-based planners are among the fastest!!!

> Why SATPLAN works

- More flexible than forward or backward chaining
- Randomized algorithms less likely to get trapped on bad paths

Acknowledgement

> I have reused slides from the following two sources:

- Open-Loop Planning as Satisfiability by Henry Kautz http://www.cs.washington.edu/homes/kautz/talks/tutorial99/ope nloop.ppt
- Aussagenlogische Erfllbarkeitstechniken SATPlan by Ulrich Scholz

http://www.intellektik.informatik.tu-

 $darmstadt.de/\sim scholz/Vorlesung/07_Satplan_2005_12_08.pdf$