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Two Separated Worlds

First-Order

Reasoning

Propositional

Reasoning

Techniques Resolution DPLL

Model Elimination OBDD

Hyper Linking Stalmarck’s Method

Tableaux

Stochastic (GSAT)

Systems E, Otter, Setheo, SNARK,

Spass, Vampire

Chaff, SMV, Heerhugo, FACT,

WalkSat

Applications SW-Verification (Limited) Symbolic Model Checking

Mathematics Mathematics

Discourse Representation Planning, Description Logics

TPTP Nonmonotonic Reasoning

Can couple these worlds more closely?
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Overview

• Intro to First-Order Theorem Proving

• FDPLL Motivation

• DPLL as a Semantic Tree Method

• FDPLL as a First-Order Semantic Tree Method

• Soundness and Completeness of FDPLL

• Discussion



Refutational Theorem Proving

Suppose we want to prove H |= G .

Equivalently, we can prove that F := H → G is valid.

Equivalently, we can prove that ¬F , i.e.H ∧ ¬G is unsatisfiable.

This principle of “refutational theorem proving” is the basis of almost all

automated theorem proving methods.

First-Order Theorem Proving – Peter Baumgartner – p.30



Normal Forms

Study of normal forms motivated by

reduction of logical concepts,

efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The

subsequent normal form transformations are intended to eliminate many

of them.

First-Order Theorem Proving – Peter Baumgartner – p.31



Prenex Normal Form

Prenex formulas have the form

Q1x1 . . .Qnxn F ,

where F is quantifier-free and Qi ∈ {∀, ∃};

we call Q1x1 . . .Qnxn the quantifier prefix and F the matrix of the

formula.

First-Order Theorem Proving – Peter Baumgartner – p.32



Skolemization

Intuition: replacement of ∃y by a concrete choice function computing y

from all the arguments y depends on.

∀ x1, . . . , xn∃yF ⇒S ∀x1, . . . , xnF [f (x1, . . . , xn)/y ]

where f /n is a new function symbol (Skolem function).

First-Order Theorem Proving – Peter Baumgartner – p.35



Skolemization

Together: F
∗

⇒P G︸︷︷︸
prenex

∗
⇒S H︸︷︷︸

prenex, no ∃

Theorem: The given and the final formula are equi-satisfiable.

First-Order Theorem Proving – Peter Baumgartner – p.36



The Compl e te P i cture

F
∗

⇒P Q1y1 . . .Qnyn G (G quantifier-free)

∗
⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸
clauses Ci︸ ︷︷ ︸

F ′

N = {C1, . . . , Ck} is called the clausal (normal) form (CNF) of F .

Note: the variables in the clauses are implicitly universally quantified.

First-Order Theorem Proving – Peter Baumgartner – p.39



The C ompl e te P i cture

F
∗

⇒P Q1y1 . . .Qnyn G (G quantifier-free)

∗
⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K 

∀ x1 

, . . . , xm︸ ︷︷ ︸
l ea ve o ut

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸
clauses Ci︸ ︷︷ ︸

F ′

N = {C1, . . . , Ck} is called the clausal (normal) form (CNF) of F .

Note: the variables in the clauses are implicitly universally quantified.

Now we a r r i ved a t “ l ow- l evel p red i c a te l og i c ” a nd t h e p roof p rob l em ,

proper, i.e. to prove that the clause set is unsatisfiable.

First-Order Theorem Proving – Peter Baumgartner – p.39



Herbrand Theory

Some thoughts

Suppose we want to prove H |= G .

Equivalently, we can prove that F := H ∧ ¬G is unsatisfiable.

We have seen how F can be syntactically simplified to clause form F ′

in a satisfiability preserving way.

It remains to prove that F ′ is unsatisfiable.

First-Order Theorem Proving – Peter Baumgartner – p.41



Herbrand Theory

Some thoughts

Suppose we want to prove H |= G .

Equivalently, we can prove that F := H ∧ ¬G is unsatisfiable.

We have seen how F can be syntactically simplified to clause form F ′

in a satisfiability preserving way.

It remains to prove that F ′ is unsatisfiable.

Does this mean that “all interpretations have to be searched”?

No! It suffices to “search only through Herbrand interpretations”

First-Order Theorem Proving – Peter Baumgartner – p.41



Herbrand Interpretations

va l ues a re f i xed to be gro und ter ms a nd f unc t i ons a re

f i xed to be the ter m c ons t r uc tor s . O nl y predi c a te s ymbo l s ma y

be f reel y i nter preted a s rel a ti o ns .

P rop osition

Every set of ground atoms I uniquely determines a Herbrand

interpretation A via

(s1, . . . , sn) ∈ pA :⇔ p(s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with sets of

Σ-ground atoms.

First-Order Theorem Proving – Peter Baumgartner – p.43



FDPLL Motivation

• Propositional Case:

– SAT: Is the set of propositional clauses 
C unsatisfiable?

– View DPLL as a way to search for a model among all 
propositional Herbrand interpretations.

• First-Order Case:

– Refutational theorem proving: Is the set of FOL clauses 
C unsatisfiable? 

– FDPLL: Use the same ideas as in DPLL to search for a 
model among all FOL Herbrand interpretations

– Take advantage of efficient methods for unification, 
subsumption, …



Propositional DPLL as a Semantic Tree Method

(1) A∨B (2) C∨¬A (3) D∨¬C∨¬A (4) ¬D∨¬B

� � ��
= A

�

B

� � �
= C

� �A
� � �

= D

� �C

� �A
� � �

= �D

� �B

�

empty tree

�

✗ A Branch stands for an interpretation

✗ Purpose of splitting: Satisfy a clause that is currently “false”

✗ Close branch if some clause plainly contradicts it (?)

✗ Sound and complete, also for (minimal) model reasoning

A First-Order Davis-Putnam-Logemann-Loveland Procedure – P. Baumgartner – p.8
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Meta-Level Strategy

Lifted data structures:

Propositional

Reasoning

First-Order

Reasoning

Resolution A∨¬B∨C P(x, y)∨¬Q(x, z)∨R(y, z)

DPLL

B

A A

B

C C

P(x, y) P(x, y)

P(x, a) P(x, a)

Q(x, y)Q(x, y)

FDPLL: First-Order Semantic Trees
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Meta-Level Strategy

Lifted data structures:

Propositional

Reasoning

First-Order

Reasoning

Resolution A∨¬B∨C P(x, y)∨¬Q(x, z)∨R(y, z)

DPLL

B

A �A

�B

C �C	

P(x, y) �P(x, y)
�P(x, a) P(x, a)

�Q(x, y)	Q(x, y)

FDPLL: First-Order Semantic Trees
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First-Order Semantic Trees

P(x, y) �P(x, y)

�P(x, a) P(x, a)

�Q(x, y)	Q(x, y)

Issues:

✗ How are variables treated?

(a) Universal, as in Resolution?, (b) Rigid, as in Tableaux? (c) Schema!

✗ How to extract an interpretation from a branch?

✗ When is a branch closed?

✗ How to construct such trees (calculus)?

A First-Order Davis-Putnam-Logemann-Loveland Procedure – P. Baumgartner – p.16
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Extracting an Interpretation from a Branch

Branch



:

P(x, y)

Interpretation [[



]] =

��
�
� �
�

:

✗ A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.

✗ The order of literals does not matter.

A First-Order Davis-Putnam-Logemann-Loveland Procedure – P. Baumgartner – p.18
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Branch (Literal Set) N

¬x
N={¬x}N={¬x}



Branch (Literal Set) N

¬x

P(x,y)

N={¬x, P(x,y)}N={¬x, P(x,y)}



Branch (Literal Set) N

¬x

P(x,y)

¬P(a,x)

N={¬x, P(x,y)
¬P(a,x)}

N={¬x, P(x,y)
¬P(a,x)}



Branch (Literal Set) N

¬x

P(x,y)

¬P(a,x)

P(a,b)

N={¬x, P(x,y)
¬P(a,x)
P(a,b)}

N={¬x, P(x,y)
¬P(a,x)
P(a,b)}



Most Specific Generalization of L in N

MSG of P(x,a):

What is the smallest
“container” that covers
all instances of P(x,a)?

MSG of P(x,a):

What is the smallest
“container” that covers
all instances of P(x,a)?

¬x

P(x,y)

¬P(a,x)

P(a,b)

• P(x,y) is a MSG 
of P(x,a) 

• ¬x is a MSG of 
¬P(x,a) 

• P(x,y) is a MSG 
of P(x,a) 

• ¬x is a MSG of 
¬P(x,a) 



Branch N Produces L

Does N produce P(x,a)?
Is there a smallest 
container that covers 
P(x,a) and no smaller 
one that covers ¬P(x,a)?

Does N produce P(x,a)?
Is there a smallest 
container that covers 
P(x,a) and no smaller 
one that covers ¬P(x,a)?

¬x

P(x,y)

¬P(a,x)

P(a,b)

• N produces 
P(x,a)

• N does not 
produce P(a,a)

• N produces 
P(x,a)

• N does not 
produce P(a,a)



Interpretation

• Let N be a branch, [[N]] are all the ground 
literals that are produced by the branch

• If N includes ¬x then [[N]] is complete (includes 
either L or ¬L for every ground L)

• If [[N]] includes both L and ¬L then N is 
inconsistent

• If N is complete and consistent it is an 
interpretation! ☺



Interpretation

• Let N be a branch, [[N]] are all the ground 
literals that are produced by the branch

• If N includes ¬x then [[N]] is complete (includes 
either L or ¬L for every ground L)

• If [[N]] includes both L and ¬L then N is 
inconsistent

• If N is complete and consistent it is an 
interpretation! ☺

• “N produces L” does not coincide with 
“[[N]] models L” for non-ground literals!



First-Order Semantic Trees

P(x, y) �P(x, y)

�P(x, a) P(x, a)

Q(x, y) �Q(x, y)	

Issues:

✗ How are variables treated?

(a) Universal, as in Resolution?, (b) Rigid, as in Tableaux? (c) Schema!

✗ How to extract an interpretation from a branch? ✔

✗ When is a branch closed?

✗ How to construct such trees (calculus)?

A First-Order Davis-Putnam-Logemann-Loveland Procedure – P. Baumgartner – p.19



Calculus: Branch Closure

Purpose: Determine if branch elementary contradicts an input clause.

Propositional case:

�C

�B

	

�AA

C B

�

Cclosed by

B

1.

2.

3.

Theorem: FDPLL is sound (because propositional DPLL is sound)

A First-Order Davis-Putnam-Logemann-Loveland Procedure – P. Baumgartner – p.20



Calculus: Branch Closure

Purpose: Determine if branch elementary contradicts an input clause.

FDPLL case:

closed by�Q(x, y)

�P(x, a)

�P(x, y)P(x, y)

Q(x, y)

P(x, a)

P(x, y)

�

Q(x, x) ?

1.

2.

3.

Theorem: FDPLL is sound (because propositional DPLL is sound)
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Branch N Closed by C

Branch N: {¬x,…, ¬P(x,x)}Branch N: {¬x,…, ¬P(x,x)}

Unit Clause C: P(x,y)Unit Clause C: P(x,y)

¬P(x,x)



Branch N Closed by C

Branch N: {¬x,…, ¬P(x,x)}Branch N: {¬x,…, ¬P(x,x)}

Unit Clause C: P(x,y)Unit Clause C: P(x,y)

¬P(x,x)
P(x,x)

No progress can
be made!
No progress can
be made!



Repair Branch N (not Closed by C)

Branch N: {¬x,…}Branch N: {¬x,…}

Unit Clause C:Unit Clause C:

Progress can
be made!
Progress can
be made!



First-Order Semantic Trees

P(x, y) �P(x, y)

�P(x, a) P(x, a)

Q(x, y) �Q(x, y)	

Issues:

✗ How are variables treated?

(a) Universal, as in Resolution?, (b) Rigid, as in Tableaux? (c) Schema!

✗ How to extract an interpretation from a branch? ✔

✗ When is a branch closed? ✔

✗ How to construct such trees (calculus)?
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FDPLL Calculus

Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

�

empty
tree

�

Init

Next: Testing [[B]] |= S and splitting

A First-Order Davis-Putnam-Logemann-Loveland Procedure – P. Baumgartner – p.22
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B

? ?

? ?

No

Yes

Closed?
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Select open

Yes

[[B]]
?�

=

�
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Repair Branch N (not Closed by C)
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Unit Clause C:Unit Clause C:

Progress can
be made!
Progress can
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FDPLL Calculus

Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

branch B unsatisfiable

satisfiable

? ?

? ?

No

Closed?

STOP:

No

Select open

Yes

[[B]]
?�

=

�

Yes

STOP:

Next: Testing [[B]] |= S and splitting
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FDPLL Calculus

Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

branch B

satisfiable

unsatisfiable
and split

�

with L and �L

L �L

? ?

STOP:

Yes

Closed?

STOP:

No

Select open

Yes

[[B]]
?�

=

�

Select literal L

No

? ?

Next: Testing [[B]] |= S and splitting
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FDPLL Calculus

Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

branch B unsatisfiable
and split

�

with L and �L

satisfiable

L �L

? ?

Closed?

STOP:

No

Select open

Yes

Select literal L

No

[[B]]
?�

=

�

Yes

STOP:

? ?

Next: Testing [[B]] |= S and splitting
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Calculus: The Splitting Rule

Purpose: Satisfy a clause that is currently “false”

P(y, a)�P(y, a)

P(x, y)

� �P(y, x)

�P(a, b)

�P(a, y

�

)

P(y

� �

, x

� �

)

Some clause
from

�

1.

2.

3.

This split was really necessary!

Proposition: If [[B]] 6|= S, then split is applicable to some clause from S
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Calculus: The Splitting Rule

Purpose: Satisfy a clause that is currently “false”

P(y, a)�P(y, a)

�P(a, b)

�P(a, y

�

)

P(y

� �

, x

� �

)

� =

�

x

�

a, � � �
�

P(x, y)

� �P(y, x)�

P(a, y)

� �P(y, a)

1. Compute simultaneous most general unifier σ

2.

3.

This split was really necessary!

Proposition: If [[B]] 6|= S, then split is applicable to some clause from S

A First-Order Davis-Putnam-Logemann-Loveland Procedure – P. Baumgartner – p.23



Calculus: The Splitting Rule

Purpose: Satisfy a clause that is currently “false”

P(y

� �

, x

� �

)

�P(a, y

�

)

�P(a, b) P(x, y)

� �P(y, x)

P(a, y)

� �P(y, a)
� =

�

x

�

a, � � �
�

litsel

1. Compute simultaneous most general unifier σ

2. Select from clause instance a literal not on branch

3.

This split was really necessary!

Proposition: If [[B]] 6|= S, then split is applicable to some clause from S
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Calculus: The Splitting Rule

Purpose: Satisfy a clause that is currently “false”

P(y, a)�P(y, a)

P(y

� �

, x

� �

)

�P(a, b)

�P(a, y

�

)

P(x, y)

� �P(y, x)

P(a, y)

� �P(y, a)
� =

�

x

�

a, � � �
�

1. Compute simultaneous most general unifier σ

2. Select from clause instance a literal not on branch

3. Split with this literal

This split was really necessary!

Proposition: If [[B]] 6|= S, then split is applicable to some clause from S
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Calculus: The Commit Rule

Purpose: Achieve consistency of interpretation associated to branch

P(x, y)

P(a, y)

�P(x, b)

1.

2.

Now have removed the inconsistency
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Calculus: The Commit Rule

Purpose: Achieve consistency of interpretation associated to branch

P(x, y)

P(a, y)

�P(x, b)

�

P(a, b), �P(a, b)
�

is inconsistent!Problem:

1.

2.

Now have removed the inconsistency
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Calculus: The Commit Rule

Purpose: Achieve consistency of interpretation associated to branch

� =

�

x

�

a, y

�

b
�

P(a, b)

P(x, y)

P(a, y)

�P(x, b)

1. Compute a MGU σ of branch literals with opposite sign

2.

Now have removed the inconsistency
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Calculus: The Commit Rule

Purpose: Achieve consistency of interpretation associated to branch

P(x, y)

P(a, y)

�P(x, b)

�P(a, b)P(a, b)

� =

�

x

�

a, y

�

b
�

P(a, b)

1. Compute a MGU σ of branch literals with opposite sign

2. Split with instance, if not on branch

Now have removed the inconsistency

A First-Order Davis-Putnam-Logemann-Loveland Procedure – P. Baumgartner – p.25



Calculus: The Commit Rule

Purpose: Achieve consistency of interpretation associated to branch

P(x, y)

P(a, y)

�P(x, b)

�P(a, b)P(a, b)

� =

�

x

�

a, y

�

b
�

P(a, b)

1. Compute a MGU σ of branch literals with opposite sign

2. Split with instance, if not on branch

Now have removed the inconsistency

A First-Order Davis-Putnam-Logemann-Loveland Procedure – P. Baumgartner – p.25



First-Order Semantic Trees

P(x, y) �P(x, y)

�P(x, a) P(x, a)

Q(x, y) �Q(x, y)	

Issues:

✗ How are variables treated?

(a) Universal, as in Resolution?, (b) Rigid, as in Tableaux? (c) Schema!

✗ How to extract an interpretation from a branch? ✔

✗ When is a branch closed? ✔

✗ How to construct such trees (calculus)? ✔
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Soundness and Completeness

• Soundness:

If FDPLL derives a refutation for C 
then C is unsatisfiable.

• Completeness * :

If C is unsatisfiable 
then FDPLL derives a refutation.

• FOL is semi-decidable:

– FDPLL is not guaranteed to terminate with a 
model of C when there is one.



Discussion

• Why is this lifting from propositional to FOL important?
– Propositional logic is limited comparing to FOL: FOL 

allows infinite domains, unnamed constants,…

– FOL is much more concise: propositional problems might 
even be solved more efficient when represented in FOL.

• FOL is semi-decidable so why do we care anyway?

– There are decidable fragments such as the B-S class, 
Description Logics, …

• Relation to other proof calculi: Resolution, Semantic 
Tableaux,… 

– Sound and Complete, but how about proof length?

• So, is this efficient after all? How does it compare to other 
FOL theorem provers?
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