
Company

LOGO

Optimizing Description
Logic Subsumption

Topics in Knowledge Representation and Reasoning

Maryam Fazel-Zarandi

Department of Computer Science
University of Toronto



Maryam Fazel-Zarandi 2

Company

LOGO Outline

� Introduction
� Optimization Techniques
� Comparison with Other Systems
� Comparing Optimizations
� Discussion



Maryam Fazel-Zarandi 3

Company

LOGO Introduction

� Realistic applications typically require:
� expressive logics
� acceptable performance from the reasoning services

� The usefulness of Description Logics (DLs) in
applications has been hindered by the basic
conflict between expressiveness and tractability.

� Early experiments with DLs indicated that
performance was a serious problem, even for
logics with relatively limited expressive powers.



Maryam Fazel-Zarandi 4

Company

LOGO Introduction

� Terminological reasoning in a DL based
Knowledge Representation System is based on
determining subsumption relationships with respect
to the axioms in a KB.

� Procedures for deciding subsumption (or
equivalently satisfiability) in DLs have high worst-
case complexities, normally exponential with
respect to problem size.

� Empirical analyses of real applications have shown
that the kinds of construct which lead to worst case
intractability rarely occur in practice.



Maryam Fazel-Zarandi 5

Company

LOGO Introduction

� Syntax and Semantics:
� DLs are formalisms that support the logical

description of concepts and roles.

� Tableaux subsumption testing algorithm
� “Using an Expressive Description Logic: FaCT

or Fiction?”
� Problem: The algorithm is too slow to form the

basis of a useful DL system.
� Solution: Employ optimization techniques.



Maryam Fazel-Zarandi 6

Company

LOGO Outline

�Introduction
� Optimization Techniques
� Comparison with Other Systems
� Comparing Optimizations
� Discussion



Company

LOGO

Optimization Techniques



Maryam Fazel-Zarandi 8

Company

LOGO Different Optimization Techniques

� Preprocessing optimizations
� Lexical Normalization and Simplification
� Absorption

� Partial ordering optimizations

� Satisfiability optimizations
� Semantic Branching Search
� Local Simplification
� Dependency Directed Backtracking
� Heuristic Guided Search
� Caching Satisfiability Status



Maryam Fazel-Zarandi 9

Company

LOGO Lexical Normalization & Simplification

� Concepts in negation normal form.
� An atomic concept and its negation

in the same node label → clash!
� Not good for concept expressions,

the negation is in NNF

� Normalization:
� Transform concept expressions

into a lexically normalized form
� Identify lexically equivalent

expressions

� Simplification:
� Eliminate redundancy
� Identify obvious satisfiability and

unsatisfiability



Maryam Fazel-Zarandi 10

Company

LOGO Lexical Normalization & Simplification

� Example:

� Advantages:
� Easy to implement.
� Subsumption/satisfiability problems can often be

simplified, and sometimes even completely avoided.
� The elimination of redundancies and the sharing of

syntactically equivalent structures may lead to the KB
being more compactly stored.

� Disadvantage:
� For very unstructured KBs there may be no benefit,

and it might even slightly increase size of KB.



Maryam Fazel-Zarandi 11

Company

LOGO Absorption

� General axioms are costly to reason with due to the high
degree of non-determinism that they introduce.
� Eliminate general axioms from the KB whenever possible

� Absorption is a technique that tries to eliminate general
inclusion axioms (CbD) by absorbing them into primitive
definition axioms.

� Example:



Maryam Fazel-Zarandi 12

Company

LOGO Absorption

� Advantages:
� It can lead to a dramatic improvement in

performance.
� It is logic and algorithm independent.

� Disadvantage:
� Overhead required for the pre-processing,

although this is generally small compared to
classification times.



Maryam Fazel-Zarandi 13

Company

LOGO Different Optimization Techniques

� Preprocessing optimizations
� Lexical Normalization and Simplification
� Absorption

� Partial ordering optimizations

� Satisfiability optimizations
� Semantic Branching Search
� Local Simplification
� Dependency Directed Backtracking
� Heuristic Guided Search
� Caching Satisfiability Status



Maryam Fazel-Zarandi 14

Company

LOGO Optimizing Classification

� DL systems are often used to classify a KB, that is to
compute a partial ordering or hierarchy of named
concepts in the KB based on the subsumption
relationship.

� Must ensure that the classification process uses the
smallest possible number of subsumption tests.

� Algorithms based on traversal of the concept hierarchy
� Compute a concept’s subsumers by searching down the

hierarchy from the top node (the top search phase)
� Compute a concept’s subsumees by searching up the hierarchy

from the bottom node (the bottom search phase).



Maryam Fazel-Zarandi 15

Company

LOGO Optimizing Classification

� Advantages:
� It can significantly reduce

the number of subsumption
tests required in order to
classify a KB [Baader et al.,
1992a].

� It is logic and algorithm
independent.

� It is used (in some form) in
most implemented DL
systems.



Maryam Fazel-Zarandi 16

Company

LOGO Different Optimization Techniques

� Preprocessing optimizations
� Lexical Normalization and Simplification
� Absorption

� Partial ordering optimizations

� Satisfiability optimizations
� Semantic Branching Search
� Local Simplification
� Dependency Directed Backtracking
� Heuristic Guided Search
� Caching Satisfiability Status



Maryam Fazel-Zarandi 17

Company

LOGO Semantic Branching Search
� Syntactic branching:

� Choose a disjunction (C17
… 7 Cn)

� Search the different models
obtained by adding each of
the disjuncts

� Alternative branches of the
search tree are not disjoint →
recurrence of an unsatisfiable
disjunct in different branches.

� Semantic branching:
� Choose a single disjunct D
� Search the two possible

search trees obtained by
adding D or ¬D



Maryam Fazel-Zarandi 18

Company

LOGO

� Advantages:
� It is DPLL based. A great deal is known about the

implementation and optimization of the this algorithm.
� It can be highly effective with some problems,

particularly randomly generated problems.

� Disadvantages:
� It is possible that performance could be degraded by

adding the negated disjunct in the second branch of
the search tree:
� Example: if the disjunct is a very large or complex concept.

� Its effectiveness is problem dependent.

Semantic Branching Search



Maryam Fazel-Zarandi 19

Company

LOGO Simplification

� A technique used to reduce the amount of
branching in the expansion of node lables:
� Deterministically expand disjunctions in L(�) that

present only one expansion possibility.
� Detect a clash when a disjunction in L(�) has no

expansion possibilities.

� Also called boolean constraint propagation (BCP)
� The inference rule is being used to

simplify expressions.



Maryam Fazel-Zarandi 20

Company

LOGO Simplification
� Example:

� {(C 7 (D16 D2)), (¬D17 ¬D2), ¬C} ` L(�)
� ¬C c L(�) → deterministically expand (C 7 (D16 D2)) → add both

D1 and D2 to L(�)
� Identify (¬D17 ¬D2) as a clash
� No branching

� Advantages:
� It is applicable to a wide range of logics and algorithms.
� It can never increase the size of the search space.

� Disadvantages:
� It may be costly to perform without using complex data structures

[Freeman, 1995].
� Its effectiveness is relatively limited and problem dependant.

� Most effective with randomly generated problems, particularly those
that are over-constrained.



Maryam Fazel-Zarandi 21

Company

LOGO Dependency Directed Backtracking

� Trashing:
� Inherent unsatisfiability concealed in sub-problems can

lead to large amounts of unproductive backtracking
search.

� Example:



Maryam Fazel-Zarandi 22

Company

LOGO Dependency Directed Backtracking

� Allows rapid recovery from bad branching choices
� Most commonly used technique is backjumping

� Tag concepts introduced at branch
points

� Expansion rules combine and
propagate tags

� On discovering a clash, identify most
recently introduced concepts involved

� Jump back to relevant branch points
without exploring alternative
branches

� Effect is to prune away part of the
search space

� Highly effective —
essential for usable system

� E.g., GALEN KB, 30s (with)
→ months++ (without)



Maryam Fazel-Zarandi 23

Company

LOGO Dependency Directed Backtracking

� Advantages:
� It can lead to a dramatic reduction in the size of the

search tree and thus a huge performance improvement.
� The size of the search space can never be increased.

� Disadvantage:
� The overhead of propagating and storing the

dependency sets.



Maryam Fazel-Zarandi 24

Company

LOGO Heuristic Guided Search
� Guide the search → try to minimize the size of the tree.

� MOMS heuristic:
� Branch on the disjunct that has the maximum number of

occurrences in disjunctions of minimum size → maximizes the
effectiveness of BCP

� JW heuristic: (a variant of MOMS)
� Consider all occurrences of a disjunct, weight them according to

the size of the disjunction in which they occur.
� Select the disjunct with the highest overall weighting.

� Oldest-First heuristic:
� Use dependency sets to guide the expansion → maximizes the

effectiveness of backjumping.
� Choose a disjunction whose dependency set does not include any

recent branching points.



Maryam Fazel-Zarandi 25

Company

LOGO Heuristic Guided Search
� Example:

� {(C 7 D1), … , (C 7 Dn)} ` L(�)
� When C is added to L(�), all of the disjunctions are fully expanded
� When ¬C is added to L(�), BCP will expand all of the disjunctions

� Advantages:
� They can be used to complement other optimizations.
� They can be selected and tuned to take advantage of the kinds

of problem that are to be solved (if this is known).

� Disadvantages:
� They can add a significant overhead.
� Heuristics can interact adversely with other optimizations.
� Heuristics designed to work well with purely propositional

reasoning may not be particularly effective with DLs, where
much of the reasoning is modal.



Maryam Fazel-Zarandi 26

Company

LOGO Caching

� During a satisfiability test there may be many successor
nodes created.

� These nodes tend to look very similar.
� Considerable time can be spent re-performing the computations on

nodes that end up having the same label.
� The satisfiability algorithm only cares whether a node is satisfiable or

not → this time is wasted.

� Successors are only created when other possibilities at a
node are exhausted → The entire set of concept
expressions that come into a node label can be
generated at one time.

� The satisfiability status is determined by this set of
concept expressions.

� Other nodes with the same set of initial formulae will have the same
satisfiability status → saves a considerable amount of processing.



Maryam Fazel-Zarandi 27

Company

LOGO Caching
� Advantages:

� It can be highly effective with some problems,
particularly those with a repetitive structure.

� It can be effective with both single satisfiability tests
and across multiple tests (as in KB classification).

� Disadvantages:
� Retaining node labels and their satisfiability status

involves a storage overhead.
� The adverse interaction with dependency directed

backtracking
� Its effectiveness is problem dependent.

� Highly effective with some hand crafted problems,
� Less effective with realistic classification problems,
� Almost completely ineffective with randomly generated

problems.



Maryam Fazel-Zarandi 28

Company

LOGO Outline

�Introduction
�Optimization Techniques
� Comparison with Other Systems
� Comparing Optimizations
� Discussion



Company

LOGO

Comparison with Other
Systems



Maryam Fazel-Zarandi 30

Company

LOGO Effectiveness of the Optimizations
� Schild has shown that determining subsumption in expressive DLs is

equivalent to determining satisfiability of formulae in propositional
modal or dynamic logics.

� Four systems were tested:
� Optimized DL systems:

� FaCT „
� DPL „

� Unoptimized DL system:
� KRIS „
� CRACK

� Heavily-optimized reasoner for propositional modal logics:
� KSAT „

� Neither KRIS nor KSAT can be used on all tests.
� Neither handle transitive roles.
� KSAT cannot handle a knowledge base.



Maryam Fazel-Zarandi 31

Company

LOGO Test Suite 1 - Tableaux’98

� A propositional modal test suite.

� Consists of 9 classes of formulae, in both provable and
non-provable forms, for each of K, KT, and S4.

� 21 examples of exponentially increasing difficulty for
each class of formula

� The increase in difficulty is achieved by increasing the modal depth.

� Test methodology: ascertain the number of the largest
formula of each type that the system is able to solve
within 100 seconds of CPU time.

� Results: FaCT and DLP outperformed the other systems,
with DLP being a clear winner.



Maryam Fazel-Zarandi 32

Company

LOGO Test Suite 1 - Tableaux’98

� Neither KSAT nor KRIS can
be used to perform S4
satisfiability tests (They can’t
reason with transitive roles).



Maryam Fazel-Zarandi 33

Company

LOGO Test Suite 2 – A Set of Random Formulae

� Another propositional modal test suite

� The method uses a random generator to produce formulae. Each
formula is a conjunction of L K-clauses
� A K-clause is a disjunction of K elements, each element being negated

with a probability of 0.5.
� An element is either:

� a modal atom of the form ∀R.C, where C is a K-clause
� a propositional variable chosen from the N propositional variables that appear

in the formula, at the maximum modal depth D.

� 2 sets of formulae:
� PS12 with N = 4, K = 3, and D = 1
� PS13 with N = 6, K = 3, and D = 1

� The test sets are created by varying L from N to 30N, and generating
100 formulae for each integer value of L/N.

� For SAT problems, when the other parameters are fixed, the value of L/N
determines the “hardness” of formulae.



Maryam Fazel-Zarandi 34

Company

LOGO Test Suite 2 – A Set of Random Formulae

� The performance differences between FaCT, DLP, and KSAT are
much less marked
� With such small number of literals, the purely propositional problems at

depth 1 can almost always be solved deterministically.



Maryam Fazel-Zarandi 35

Company

LOGO Test Suit 3 – Expressive KBs

� Take an expressive knowledge base and construct a
version of it that is acceptable to FaCT, DLP, KRIS, and
CRACK.

� GALEN knowledge base
� High level ontology

� Test KB construction:
� Translate the GRAIL syntax of the GALEN KB into the standard

syntax
� Eliminate concept inclusion axioms by using absorption
� Discard all role axioms

� The resulting KB contains 2,719 named concepts and
413 roles.



Maryam Fazel-Zarandi 36

Company

LOGO Test Suit 3 – Expressive KBs

� Results:
� Neither KRIS nor

CRACK was able to
classify the KB

� FaCT classified the KB
in 211 seconds.

� DLP did so in 70
seconds

� Testing other KBs:
� They are too small or

too simple



Maryam Fazel-Zarandi 37

Company

LOGO Outline

�Introduction
�Optimization Techniques
�Comparison with Other Systems
� Comparing Optimizations
� Discussion



Company

LOGO

Comparing
Optimizations



Maryam Fazel-Zarandi 39

Company

LOGO Comparing Optimizations
� The comparison with other systems does not show which

of the optimizations are most effective.

� Recent versions of DLP have compile-time configuration
options.

� 22 configurations – Each was ran over the 3 test suites.

� Results:
� Test Suite 1:

Caching – Backjumping – Semantic Branching
� Test Suite 2:

� Normalization – Semantic Branching – Backjumping – BCP
� Test Suite 3:

� Backjumping – Caching – Semantic Branching
� Without absorption, satisfiability could not be proved by either FaCT or

DLP



Maryam Fazel-Zarandi 40

Company

LOGO Outline

�Introduction
�Optimization Techniques
�Comparison with Other Systems
�Comparing Optimizations
� Discussion



Maryam Fazel-Zarandi 41

Company

LOGO Discussion
� To be useful in realistic applications, DL systems need

both expressive logics and fast reasoners.

� Effective optimization techniques can make a dramatic
difference in the performance of knowledge
representation systems based on expressive DLs.

� These techniques can operate at every level of a DL
system:

� Simplify the KB,
� Reduce the number of subsumption tests required to classify it,
� Substitute tableaux subsumption tests with less costly tests,
� Reduce the size of the search space resulting from non-

deterministic tableaux expansion.



Maryam Fazel-Zarandi 42

Company

LOGO Discussion
� The most effective of these optimizations are absorption

and backjumping:
� Impose a very small additional overhead,
� Can dramatically improve typical case performance,
� Hardly ever degrade performance (to any significant extent).

� Other widely applicable optimizations include
normalization, semantic branching and local simplification.

� Various forms of caching can also be highly effective, but
they do impose a significant additional overhead in terms
of memory usage, and can sometimes degrade
performance.

� Heuristic techniques, at least those currently available, are
not particularly effective and can often degrade
performance.



Maryam Fazel-Zarandi 43

Company

LOGO Discussion
� Several exciting new application areas for very

expressive DLs:
� Reasoning about DataBase schemata and queries
� Providing reasoning support for the Semantic Web.
� Require logics even more expressive than those implemented in

existing systems.
� The challenge is to demonstrate that highly optimized reasoners

can provide acceptable performance even for these logics.

� Given the immutability of theoretical complexity, no
(complete) implementation can guarantee to provide
good performance in all cases.

� The objective of optimized implementations is to
provide acceptable performance in typical applications.



Company

LOGO

THANK YOU!!!

Any Questions ???



Maryam Fazel-Zarandi 45

Company

LOGO Propositional Modal Logic

� Syntax
� Propositional logic
� Modal operators

• � - necessarily (box)
• ¡ - possibly (diamond)

� K:
� Necessitation Rule:

If A is a theorem of K, then
so is □A.

� Distribution Axiom:
□(A→B) → (□A→□B).

� http://plato.stanford.edu/entries/logic-modal/


