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Introduction

= Realistic applications typically require:
o expressive logics
o acceptable performance from the reasoning services

= The usefulness of Description Logics (DLs) in
applications has been hindered by the basic
conflict between expressiveness and tractability.

= Early experiments with DLs indicated that
performance was a serious problem, even for
logics with relatively limited expressive powers.
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Introduction

= Terminological reasoning in a DL based
Knowledge Representation System is based on
determining subsumption relationships with respect
to the axioms in a KB.

» Procedures for deciding subsumption (or
equivalently satisfiability) in DLs have high worst-
case complexities, normally exponential with
respect to problem size.

= Empirical analyses of real applications have shown
that the kinds of construct which lead to worst case
intractabillity rarely occur in practice.
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Introduction

= Syntax and Semantics:

o DLs are formalisms that support the logical
description of concepts and roles.

= Tableaux subsumption testing algorithm

o "Using an Expressive Description Logic: FaCT
or Fiction?”

o Problem: The algorithm is too slow to form the
basis of a useful DL system.

o Solution: Employ optimization techniques.
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Optimization Techniques



Different Optimization Techniques

= Preprocessing optimizations
= [exical Normalization and Simplification
= Absorption

= Partial ordering optimizations

= Satisfiability optimizations
= Semantic Branching Search
* [ocal Simplification
= Dependency Directed Backtracking
= Heuristic Guided Search
= Caching Satisfiability Status
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Lexical Normalization & Simplification

]
= Concepts in negation normal form. Concept expression S
o An atomic concept and its negation T -
in the same node label — clash! ouD ~(=C' N -D)
o Not good for concept expressions, IR.C ~(YR.~C)
the negation is in NNF -0 C
cnb n{C, D}
» Normalization: E}g@l}...,cﬂ},...} B{Gh,..,(}n,...}
o Transform concept expressions
into a lexically normalized form Table 3. Normalisation rules for FaCT and DLP

o ldentify lexically equivalent
expressions

Concept expression | Simplification
: e e VR.T T
Slmpl_lflgatlon. LG ) e, )
o Eliminate redundancy n{-T,...} AT
o ldentify obvious satisfiability and n{C,-C,...} -T

unsatisfiability
Table 4. Lexical simplification rules for FaCT and DLP
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Lexical Normalization & Simplification

= Example: AR.(CN D)NVYR.-C,
{~(VR.-1{C,D}),YR.~C}.

= Advantages:
o Easy to implement.

o Subsumption/satisfiability problems can often be
simplified, and sometimes even completely avoided.

o The elimination of redundancies and the sharing of
syntactically equivalent structures may lead to the KB
being more compactly stored.

= Disadvantage:

o For very unstructured KBs there may be no benefit,
and it might even slightly increase size of KB.
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Absorption

= General axioms are costly to reason with due to the high
degree of non-determinism that they introduce.

o Eliminate general axioms from the KB whenever possible

= Absorption is a technique that tries to eliminate general
inclusion axioms (C=D) by absorbing them into primitive
definition axioms.

= Example:

geometric-figure ' Jdangles.three C dsides.three geometric-figure C figure

geometric-figure C Jsides.three LI —Jangles.three

v
geometric-figure C figure M (dsides.three L1 —Jangles.three).

Maryam Fazel-Zarandi 11



Absorption

= Advantages:

o It can lead to a dramatic improvement in
performance.

o It is logic and algorithm independent.

= Disadvantage:

o Overhead required for the pre-processing,
although this is generally small compared to
classification times.
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Different Optimization Techniques

v Preprocessing optimizations
v’ Lexical Normalization and Simplification
v Absorption

= Partial ordering optimizations

= Satisfiability optimizations
= Semantic Branching Search
* [ocal Simplification
= Dependency Directed Backtracking
= Heuristic Guided Search
= Caching Satisfiability Status
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Optimizing Classification

= DL systems are often used to classify a KB, that is to
compute a partial ordering or hierarchy of named
concepts in the KB based on the subsumption
relationship.

= Must ensure that the classification process uses the
smallest possible number of subsumption tests.

= Algorithms based on traversal of the concept hierarchy

o Compute a concept’'s subsumers by searching down the
hierarchy from the top node (the top search phase)

o Compute a concept’s subsumees by searching up the hierarchy
from the bottom node (the bottom search phase).
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Optimizing Classification

]
= Advantages: Thing
o It can significantly reduce “
the number of subsumption
tests required in order to Doctor
classify a KB [Baader et al., “
1992a].
o Itis logic and algorithm Speciaist
independent. ”EWSurgeon/ {
AmericanSpecialist
= |tis used (in some form) in /
mOSt Implemented DL AmericanSurgerySpecialist
systems.

AmericanDermatologySpecialist
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Different Optimization Techniques

v Preprocessing optimizations
v’ Lexical Normalization and Simplification
v Absorption

v' Partial ordering optimizations

= Satisfiability optimizations
= Semantic Branching Search
* [ocal Simplification
= Dependency Directed Backtracking
= Heuristic Guided Search
= Caching Satisfiability Status
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Semantic Branching Search

= Syntactic branching:

o Choose a disjunction (C, L L(z)={(AUB),(ALC)} (7)

.. UC)) 1 i
o Sear_ch the dlﬁer_ent models £(z)U{A} = clash (Y ') L(z)U{B)
obtained by adding each of — =
_ L L
the disjuncts o p N
L{x)U{A} = clash (z) (z) L(z)u{C}
Alternative branches of the Syntactic branching search.

search tree are not disjoint —»
recurrence of an unsatisfiable

disjunct in different branches. )
L(z) ={(ALUB),(AUC)} ()

= Semantic branching:

o Choose a single disjunct D L(z)U{A} = clash :"'&:/1 (1) Lz)u{-4,B.C)

o Search the two possible = \/
search trees obtained by Semantic branching search.
adding D or =D
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Semantic Branching Search

= Advantages:

o Itis DPLL based. A great deal is known about the
implementation and optimization of the this algorithm.

o It can be highly effective with some problems,
particularly randomly generated problems.

= Disadvantages:

o Itis possible that performance could be degraded by
adding the negated disjunct in the second branch of
the search tree:

= Example: if the disjunct is a very large or complex concept.
o Its effectiveness is problem dependent.
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Simplification

= A technique used to reduce the amount of
branching in the expansion of node lables:

o Deterministically expand disjunctions in £(x) that
present only one expansion possibility.

o Detect a clash when a disjunction in £(x) has no
expansion possibilities.

= Also called boolean constraint propagation (BCP)
o The inference rule X Cn 18- 0% BB heing used to
simplify expressions.
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Simplification

]
= Example:
o {(CU(D;MDy), (-D;U-D,), -C}c L(x)
o - Ce [(x) > deterministically expand (C U (D, 1 D,)) — add both
D,and D, to £(x)
o ldentify (=D, Ll -D,) as a clash
» No branching

= Advantages:
o Itis applicable to a wide range of logics and algorithms.
o It can never increase the size of the search space.

= Disadvantages:

o It may be costly to perform without using complex data structures
[Freeman, 1993].

o lIts effectiveness is relatively limited and problem dependant.

» Most effective with randomly generated problems, particularly those
that are over-constrained.
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Dependency Directed Backtracking

* Trashing:
o Inherent unsatisfiability concealed in sub-problems can

lead to large amounts of unproductive backtracking
search.

= Example: &) ={(CiuDy)....,(C,uD,),3R.(CN D),YR.~C}

{{Gl U jr-—-""1}: ey {f'rn U Dn]1 HH{CH D}lfH_'c’r} |f-d'_h.I-'\"|

_-{\
RS
Lz)u{C1} (&, 7N L{z)u{=C1, Dv}

1)
l.__-{ L

LI ‘U ¥
Liz1) U{C:) |£§<1 /TN L(z1) U{=Cy, D)
ORI
7 DY Blwa) U{~Cs, Ds}
Lzn_) U{CRY (7.5 P

Tn,
Y i

{l:.c M D]1 _|C1 C, .D} Iiy}::' . @; {(C’rl_l D}, _|C! G! D}

clash clash
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Dependency Directed Backtracking

= Allows rapid recovery from bad branching choices

* Most commonly used technique is backjumping

o

o

o

o

= Highly effective —
essential for usable system rﬁ |

o

Tag concepts introduced at branch
points

Expansion rules combine and
propagate tags

On discovering a clash, identify most
recently introduced concepts involved

Jump back to relevant branch points
without exploring alternative
branches

Effect is to prune away part of the
search space

Backjump

E.g., GALEN KB, 30s (with) P
— months++ (without) D,
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Dependency Directed Backtracking

= Advantages:

o It can lead to a dramatic reduction in the size of the
search tree and thus a huge performance improvement.

o The size of the search space can never be increased.

* Disadvantage:

o The overhead of propagating and storing the
dependency sets.
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Heuristic Guided Search

= Guide the search — try to minimize the size of the tree.

= MOMS heuristic:

o Branch on the disjunct that has the maximum number of
occurrences in disjunctions of minimum size —» maximizes the
effectiveness of BCP

= JW heuristic: (a variant of MOMS)

o Consider all occurrences of a disjunct, weight them according to
the size of the disjunction in which they occur.

o Select the disjunct with the highest overall weighting.

= QOldest-First heuristic:

o Use dependency sets to guide the expansion — maximizes the
effectiveness of backjumping.

o Choose a disjunction whose dependency set does not include any
recent branching points.
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Heuristic Guided Search

= Example:

o

o

o

{(CuDbD,),...,(CuD,)}c £(x)
When C is added to £(x), all of the disjunctions are fully expanded
When - C is added to £(x), BCP will expand all of the disjunctions

= Advantages:

o They can be used to complement other optimizations.
o They can be selected and tuned to take advantage of the kinds

of problem that are to be solved (if this is known).

* Disadvantages:

o

o

o

They can add a significant overhead.
Heuristics can interact adversely with other optimizations.

Heuristics designed to work well with purely propositional
reasoning may not be particularly effective with DLs, where
much of the reasoning is modal.
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Caching

= During a satisfiability test there may be many successor
nodes created.

» These nodes tend to look very similar.

= Considerable time can be spent re-performing the computations on
nodes that end up having the same label.

o The satisfiability algorithm only cares whether a node is satisfiable or
not — this time is wasted.

= Successors are only created when other possibilities at a
node are exhausted — The entire set of concept
expressions that come into a node label can be
generated at one time.

» The satisfiability status is determined by this set of
concept expressions.

= QOther nodes with the same set of initial formulae will have the same
satisfiability status — saves a considerable amount of processing.
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Caching

]
= Advantages:

o It can be highly effective with some problems,
particularly those with a repetitive structure.

o It can be effective with both single satisfiability tests
and across multiple tests (as in KB classification).

* Disadvantages:

o Retaining node labels and their satisfiability status
Involves a storage overhead.

o The adverse interaction with dependency directed
backtracking

o Its effectiveness is problem dependent.
= Highly effective with some hand crafted problems,
» | ess effective with realistic classification problems,

= Almost completely ineffective with randomly generated
problems.
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Comparison with Other
Systems



Effectiveness of the Optimizations

= Schild has shown that determining subsumption in expressive DLs is

equivalent to determining satisfiability of formulae in propositional
modal or dynamic logics.

= Four systems were tested:

o Optimized DL systems:
= FaCT Vv
= DPL V

o Unoptimized DL system:
= KRIS V
= CRACK

o Heavily-optimized reasoner for propositional modal logics:
= KSAT Vv

= Neither KRIS nor KSAT can be used on all tests.
o Neither handle transitive roles.
o KSAT cannot handle a knowledge base.
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Test Suite 1 - Tableaux’98

A propositional modal test suite.

Consists of 9 classes of formulae, in both provable and
non-provable forms, for each of K, KT, and $4.

21 examples of exponentially increasing difficulty for
each class of formula
» The increase in difficulty is achieved by increasing the modal depth.

Test methodology: ascertain the number of the largest
formula of each type that the system is able to solve
within 100 seconds of CPU time.

Results: FaCT and DLP outperformed the other systems,
with DLP being a clear winner.
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Test Suite 1 - Tableaux’98

FaCT DLP KSAT Kris FaCT DL
b K; p:a H4 f@ ?x ps na p*a n3 = i P
FaFch ks ks
d4 20 slls20s20 s s g&| e 45 >20 1>20 |[>20 |>20
dum  |[20 |20 [|s20 [s20 || 11 [s20 || 15]520 branch 4 4 18 12
a1z 520 520 [[520 520 || 17 [520 ] 13 |>20 grz 21520 ||>20 |>20
lin >20 [>20 [|>20 [>20 [[>20 3 61 9 ipc 5 4 10 |20
path 7] 6|>20|=20( 4 8 3|11 micl 2 4 3 =20
ph o D A A path 21 1| 151 15
poly >20 [520 |[>20 |=20 || 13| 12 11|20 ; 5 4 7 {220
p  [|>20]>20 520 [>20 ] 10f 18| 7] 5 P - N
KT p | n NV p | n 535 =20 2 ||=20 |=20
45 220 [s20 [s20 (=20 5| S| 4 3 rdp ] 3 ||=20 |20
branch 6 4 191 12 8 7 3 3
dum 11 |>20|[=20|=20 71 12 3| 14 Table 6. Results for S4
arz >20 [»20 ||>20 [=20 9 [>20 0 5
md al sl 3ls20| 2| 4| 3| 4
path s| aff 1ef 14)) 2| s|| 1| 13 .
oh ol 71 7120l 2l sl 3| 3 = Neither KSAT nor KRIS can
poly |>20 7|>20| 12f 1] 2f 2| 2 be used to perform S4
sl 4] 2)|>20)>200 1] T 1] 7 satisfiability tests (They can’t

Table 5. Results for K and K'T reason with transitive roles).
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Test Suite 2 — A Set of Random Formula

= Another propositional modal test suite

*» The method uses a random generator to produce formulae. Each
formula is a conjunction of L K-clauses
o A K-clause is a disjunction of K elements, each element being negated
with a probability of 0.5.
o An elementis either:
= a modal atom of the form VR.C, where C is a K-clause

= a propositional variable chosen from the N propositional variables that appear
in the formula, at the maximum modal depth D.

= 2 sets of formulae:
= PS12with N=4,K=3,and D = 1
= PS13with N=6,K=3,and D =1

» The test sets are created by varying L from N to 30N, and generating
100 formulae for each integer value of L/N.

= For SAT problems, when the other parameters are fixed, the value of L/N
determines the “hardness” of formulae.
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Test Suite 2 — A Set of Random Formula
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Iig. 5. Median solution times for PS12 formulae

= The performance differences between FaCT, DLP, and KSAT are

much less marked
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Fig. 6. Median solution times for PS13 formulae

o With such small number of literals, the purely propositional problems at
depth 1 can almost always be solved deterministically.
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Test Suit 3 — Expressive KBs

= Take an expressive knowledge base and construct a
\(/;ersi%n of it that is acceptable to FaCT, DLP, KRIS, and
RACK.

= GALEN knowledge base
o High level ontology

= Test KB construction:

o Translate the GRAIL syntax of the GALEN KB into the standard
syntax

o Eliminate concept inclusion axioms by using absorption
o Discard all role axioms

= The resulting KB contains 2,719 named concepts and
413 roles.
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Test Suit 3 — Expressive KBs

]
= Results: FiCT|DLP| KRIS | CRACK
: Load 603 —| 3] —
o Neither KRIS nor Pf:_pmss w |
CRAQK was able to Classify 20403 —{3400,000[310,000
classify the KB Total CPU time (s)[|210.91{69.56[3>400.000> 10,000

o FaCT classified the KB
In 211 seconds.

o DLP did soin 70

Table 7. Classification times for GALEN knowledge base

Knowledge base||Concepts|FaCT|[DLP|KRIS|JCRACK|NeoClassic

seconds ckb-roles 79( 0.19]0.27] 0.68] 1.19 0.42
datamont-roles 1200 0.4210.36] 0.89( 1.18 0.65

. ] espr-roles 142( 0.33)0.13) 0.58]  0.00 0.63

= Testing other KBs: fss-foles 32| oe6losa| 116 0311 078
o They are too Sma” or wines 267) 4.7112.05] 2.99] 237 217
tOO S|mple wisber-roles 1401 0.48(0.78] 1.0 1.63 1.03

Table 8. Classification times for other knowledge bases (CPU seconds)
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Comparing
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Comparing Optimizations

= The comparison with other systems does not show which
of the optimizations are most effective.

= Recent versions of DLP have compile-time configuration
options.

= 22 configurations — Each was ran over the 3 test suites.

= Results:

o Test Suite 1:

Caching — Backjumping — Semantic Branching
o Test Suite 2:

= Normalization — Semantic Branching — Backjumping — BCP
o Test Suite 3:

= Backjumping — Caching — Semantic Branching

= Without absorption, satisfiability could not be proved by either FaCT or
DLP
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Discussion

= To be useful in realistic applications, DL systems need
both expressive logics and fast reasoners.

= Effective optimization techniques can make a dramatic
difference in the performance of knowledge
representation systems based on expressive DLs.

= These techniques can operate at every level of a DL
system:
=  Simplify the KB,
= Reduce the number of subsumption tests required to classify it,
=  Substitute tableaux subsumption tests with less costly tests,

» Reduce the size of the search space resulting from non-
deterministic tableaux expansion.
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Discussion

= The most effective of these optimizations are absorption
and backjumping:
= Impose a very small additional overhead,
= Can dramatically improve typical case performance,
= Hardly ever degrade performance (to any significant extent).

=  Other widely applicable optimizations include
normalization, semantic branching and local simplification.

= Various forms of caching can also be highly effective, but
they do impose a significant additional overhead in terms
of memory usage, and can sometimes degrade
performance.

= Heuristic techniques, at least those currently available, are
not particularly effective and can often degrade
performance.
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Discussion

=  Several exciting new application areas for very

expressive DLs:
= Reasoning about DataBase schemata and queries
=  Providing reasoning support for the Semantic Web.

» Require logics even more expressive than those implemented in
existing systems.

» The challenge is to demonstrate that highly optimized reasoners
can provide acceptable performance even for these logics.

=  Given the immutability of theoretical complexity, no
(complete) implementation can guarantee to provide
good performance in all cases.

= The objective of optimized implementations is to
provide acceptable performance in typical applications.
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Propositional Modal Logic

]
= Syntax
o Propositional logic S5
o Modal operators /\
e [I- nece_ssarlly_ (box) 9060 B S4
« & - possibly (diamond) I
= K f K4 Op—~g
o Necessitation Rule: Hp—~©¢ D
If A is a theorem of K, then
so is oA. K

o Distribution Axiom:
0(A—B) —» (cA—aoB).

= http://plato.stanford.edu/entries/logic-modal/
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