

Topics in Knowledge Representation and Reasoning

Optimizing Description Logic Subsumption

Maryam Fazel-Zarandi

Department of Computer Science University of Toronto

Outline

- Introduction
- Optimization Techniques
- Comparison with Other Systems
- Comparing Optimizations
- Discussion

Introduction

- Realistic applications typically require:
 - expressive logics
 - acceptable performance from the reasoning services
- The usefulness of Description Logics (DLs) in applications has been hindered by the basic conflict between expressiveness and tractability.
- Early experiments with DLs indicated that performance was a serious problem, even for logics with relatively limited expressive powers.

Introduction

- Terminological reasoning in a DL based Knowledge Representation System is based on determining subsumption relationships with respect to the axioms in a KB.
- Procedures for deciding subsumption (or equivalently satisfiability) in DLs have high worstcase complexities, normally exponential with respect to problem size.
- Empirical analyses of real applications have shown that the kinds of construct which lead to worst case intractability rarely occur in practice.

Introduction

- Syntax and Semantics:
 - DLs are formalisms that support the logical description of concepts and roles.
- Tableaux subsumption testing algorithm
 - "Using an Expressive Description Logic: FaCT or Fiction?"
 - <u>Problem</u>: The algorithm is too slow to form the basis of a useful DL system.
 - <u>Solution</u>: Employ optimization techniques.

Outline

✓ Introduction

- Optimization Techniques
- Comparison with Other Systems
- Comparing Optimizations
- Discussion

Optimization Techniques

Different Optimization Techniques

- Preprocessing optimizations
 - Lexical Normalization and Simplification
 - Absorption
- Partial ordering optimizations
- Satisfiability optimizations
 - Semantic Branching Search
 - Local Simplification
 - Dependency Directed Backtracking
 - Heuristic Guided Search
 - Caching Satisfiability Status

Lexical Normalization & Simplification

- Concepts in negation normal form.
 - An <u>atomic</u> concept and its negation in the same node label \rightarrow clash!
 - Not good for concept expressions, the negation is in NNF
- Normalization:
 - Transform concept expressions into a lexically normalized form
 - Identify lexically equivalent expressions
- Simplification:
 - Eliminate redundancy
 - Identify obvious satisfiability and unsatisfiability

Concept expression	Normal form
\perp	¬Τ
$C \sqcup D$	$\neg(\neg C \sqcap \neg D)$
$\exists R.C$	$\neg(\forall R.\neg C)$
$\neg \neg C$	C
$C\sqcap D$	$\sqcap \{C, D\}$
$\sqcap\{\sqcap\{C_1,\ldots,C_n\},\ldots\}$	$\sqcap \{C_1, \ldots, C_n, \ldots \}$
$\sqcap\{C\}$	C

Table 3. Normalisation rules for FaCT and DLP

Concept expression	Simplification
$\forall R. \top$	Т
$\sqcap\{\top, C, \ldots\}$	$\sqcap \{C, \ldots \}$
⊓{¬T,}	$\neg T$
$\sqcap\{C,\neg C,\ldots\}$	٦T

Table 4. Lexical simplification rules for FaCT and DLP

Lexical Normalization & Simplification

- Example: $\exists R.(C \sqcap D) \sqcap \forall R.\neg C, \\ \sqcap \{\neg(\forall R.\neg \sqcap \{C,D\}), \forall R.\neg C\}, \end{cases}$
- Advantages:
 - Easy to implement.
 - Subsumption/satisfiability problems can often be simplified, and sometimes even completely avoided.
 - The elimination of redundancies and the sharing of syntactically equivalent structures may lead to the KB being more compactly stored.
- Disadvantage:
 - For very unstructured KBs there may be no benefit, and it might even slightly increase size of KB.

Absorption

- General axioms are costly to reason with due to the high degree of non-determinism that they introduce.
 - Eliminate general axioms from the KB whenever possible
- Absorption is a technique that tries to eliminate general inclusion axioms (C □D) by absorbing them into primitive definition axioms.

Example:

Absorption

- Advantages:
 - It can lead to a dramatic improvement in performance.
 - It is logic and algorithm independent.
- Disadvantage:
 - Overhead required for the pre-processing, although this is generally small compared to classification times.

Different Optimization Techniques

- Preprocessing optimizations
 Lexical Normalization and Simplification
 Absorption
- Partial ordering optimizations
- Satisfiability optimizations
 - Semantic Branching Search
 - Local Simplification
 - Dependency Directed Backtracking
 - Heuristic Guided Search
 - Caching Satisfiability Status

Optimizing Classification

- DL systems are often used to classify a KB, that is to compute a partial ordering or *hierarchy* of named concepts in the KB based on the subsumption relationship.
- Must ensure that the classification process uses the smallest possible number of subsumption tests.
- Algorithms based on traversal of the concept hierarchy
 - Compute a concept's subsumers by searching down the hierarchy from the top node (the *top search* phase)
 - Compute a concept's subsumees by searching up the hierarchy from the bottom node (the *bottom search* phase).

Optimizing Classification

Advantages:

- It can significantly reduce the number of subsumption tests required in order to classify a KB [Baader *et al.*, 1992a].
- It is logic and algorithm independent.
- It is used (in some form) in most implemented DL systems.

Different Optimization Techniques

- Preprocessing optimizations
 Lexical Normalization and Simplification
 Absorption
- Partial ordering optimizations
- Satisfiability optimizations
 - Semantic Branching Search
 - Local Simplification
 - Dependency Directed Backtracking
 - Heuristic Guided Search
 - Caching Satisfiability Status

Semantic Branching Search

- Syntactic branching:
 - Choose a disjunction $(C_1 \sqcup \dots \sqcup C_n)$
 - Search the different models obtained by adding each of the disjuncts
- Alternative branches of the search tree are not disjoint → recurrence of an unsatisfiable disjunct in different branches.
- Semantic branching:
 - Choose a single disjunct *D*
 - Search the two possible search trees obtained by adding *D* or ¬*D*

$$\begin{split} \mathcal{L}(x) &= \{(A \sqcup B), (A \sqcup C)\} \\ x \\ \mathcal{L}(x) \cup \{A\} \Rightarrow clash \\ \mathcal{L}(x) \cup \{A\} \Rightarrow clash \\ x \\ \mathcal{L}(x) \cup \{A\} \Rightarrow clash \\ x \\ \mathcal{L}(x) \cup \{C\} \end{split}$$

Syntactic branching search.

$$\begin{split} \mathcal{L}(x) &= \{(A \sqcup B), (A \sqcup C)\} & \\ & \sqcup & \\ \mathcal{L}(x) \cup \{A\} \Rightarrow clash & \\ & & \\$$

Semantic branching search.

Maryam Fazel-Zarandi

Semantic Branching Search

Advantages:

- It is DPLL based. A great deal is known about the implementation and optimization of the this algorithm.
- It can be highly effective with some problems, particularly randomly generated problems.
- Disadvantages:
 - It is possible that performance could be degraded by adding the negated disjunct in the second branch of the search tree:
 - Example: if the disjunct is a very large or complex concept.
 - Its effectiveness is problem dependent.

Simplification

- A technique used to reduce the amount of branching in the expansion of node lables:
 - Deterministically expand disjunctions in $\mathcal{L}(x)$ that present only one expansion possibility.
 - Detect a clash when a disjunction in L(x) has no expansion possibilities.
- Also called boolean constraint propagation (BCP)
 The inference rule <sup>¬C₁,...,¬C_n,C₁ □ ... □ C_n □ D D
 being used to simplify expressions.

 </sup>

Simplification

- Example:
 - {($C \sqcup (D_1 \sqcap D_2)$), $(\neg D_1 \sqcup \neg D_2)$, $\neg C$ } $\subseteq \mathcal{L}(x)$
 - $\neg C \in \mathcal{L}(x) \rightarrow$ deterministically expand $(C \sqcup (D_1 \sqcap D_2)) \rightarrow$ add both D_1 and D_2 to $\mathcal{L}(x)$
 - Identify $(\neg D_1 \sqcup \neg D_2)$ as a clash
 - No branching
- Advantages:
 - It is applicable to a wide range of logics and algorithms.
 - It can never increase the size of the search space.
- Disadvantages:
 - It may be costly to perform without using complex data structures [Freeman, 1995].
 - Its effectiveness is relatively limited and problem dependant.
 - Most effective with randomly generated problems, particularly those that are over-constrained.

Dependency Directed Backtracking

- Trashing:
 - Inherent unsatisfiability concealed in sub-problems can lead to large amounts of unproductive backtracking search.
- **Example:** $\mathcal{L}(x) = \{(C_1 \sqcup D_1), \dots, (C_n \sqcup D_n), \exists R. (C \sqcap D), \forall R. \neg C\}$

Dependency Directed Backtracking

- Allows rapid recovery from bad branching choices
- Most commonly used technique is backjumping
 - Tag concepts introduced at branch points
 - Expansion rules combine and propagate tags
 - On discovering a clash, identify most recently introduced concepts involved
 - Jump back to relevant branch points without exploring alternative branches
 - Effect is to prune away part of the search space
- Highly effective essential for usable system
 - E.g., GALEN KB, 30s (with) \rightarrow months++ (without)

Dependency Directed Backtracking

Advantages:

- It can lead to a dramatic reduction in the size of the search tree and thus a huge performance improvement.
- The size of the search space can never be increased.
- Disadvantage:
 - The overhead of propagating and storing the dependency sets.

Heuristic Guided Search

- Guide the search \rightarrow try to minimize the size of the tree.
- MOMS heuristic:
 - Branch on the disjunct that has the maximum number of occurrences in disjunctions of minimum size → maximizes the effectiveness of BCP
- JW heuristic: (a variant of MOMS)
 - Consider all occurrences of a disjunct, weight them according to the size of the disjunction in which they occur.
 - Select the disjunct with the highest overall weighting.
- Oldest-First heuristic:
 - Use dependency sets to guide the expansion \rightarrow maximizes the effectiveness of backjumping.
 - Choose a disjunction whose dependency set does not include any recent branching points.

Heuristic Guided Search

• Example:

- $\{(C \sqcup D_1), \ldots, (C \sqcup D_n)\} \subseteq \mathcal{L}(\chi)$
- When C is added to $\mathcal{L}(x)$, all of the disjunctions are fully expanded
- When $\neg C$ is added to $\mathcal{L}(x)$, BCP will expand all of the disjunctions

Advantages:

- They can be used to complement other optimizations.
- They can be selected and tuned to take advantage of the kinds of problem that are to be solved (if this is known).

Disadvantages:

- They can add a significant overhead.
- Heuristics can interact adversely with other optimizations.
- Heuristics designed to work well with purely propositional reasoning may not be particularly effective with DLs, where much of the reasoning is modal.

Caching

- During a satisfiability test there may be many successor nodes created.
 - These nodes tend to look very similar.
 - Considerable time can be spent re-performing the computations on nodes that end up having the same label.
 - The satisfiability algorithm only cares whether a node is satisfiable or not \rightarrow this time is wasted.
- Successors are only created when other possibilities at a node are exhausted → The entire set of concept expressions that come into a node label can be generated at one time.
- The satisfiability status is determined by this set of concept expressions.
 - Other nodes with the same set of initial formulae will have the same satisfiability status → saves a considerable amount of processing.

Caching

Advantages:

- It can be highly effective with some problems, particularly those with a repetitive structure.
- It can be effective with both single satisfiability tests and across multiple tests (as in KB classification).

Disadvantages:

- Retaining node labels and their satisfiability status involves a storage overhead.
- The adverse interaction with dependency directed backtracking
- Its effectiveness is problem dependent.
 - Highly effective with some hand crafted problems,
 - Less effective with realistic classification problems,
 - Almost completely ineffective with randomly generated problems.

Outline

✓ Introduction

- ✓ Optimization Techniques
- Comparison with Other Systems
- Comparing Optimizations
- Discussion

Comparison with Other Systems

Effectiveness of the Optimizations

- Schild has shown that determining subsumption in expressive DLs is equivalent to determining satisfiability of formulae in propositional modal or dynamic logics.
- Four systems were tested:
 - Optimized DL systems:
 - FaCT
 - DPL 🗸
 - Unoptimized DL system:
 - KRIS √
 - CRACK
 - Heavily-optimized reasoner for propositional modal logics:
 - KSAT √
- Neither KRIS nor KSAT can be used on all tests.
 - Neither handle transitive roles.
 - KSAT cannot handle a knowledge base.

Test Suite 1 - Tableaux'98

- A propositional modal test suite.
- Consists of 9 classes of formulae, in both provable and non-provable forms, for each of K, KT, and S4.
- 21 examples of exponentially increasing difficulty for each class of formula
 - The increase in difficulty is achieved by increasing the modal depth.
- <u>Test methodology</u>: ascertain the number of the largest formula of each type that the system is able to solve within 100 seconds of CPU time.
- Results: FaCT and DLP outperformed the other systems, with DLP being a clear winner.

Test Suite 1 - Tableaux'98

	Fa	СТ	D	LP	KSAT		Kris	
К	р	n	р	n	p	n	р	n
branch	6	4	19	13	8	8	3	3
d4	>20	8	>20	>20	8	5	8	6
dum	>20	>20	>20	>20	11	>20	15	>20
grz	>20	>20	>20	>20	17	>20	13	>20
lin	>20	>20	>20	>20	>20	3	6	9
path	7	6	>20	>20	4	8	3	11
ph	6	7	7	9	5	5	4	5
poly	>20	>20	>20	>20	13	12	11	>20
t4p	>20	>20	>20	>20	10	18	7	5
KT	р	п	р	n	р	n	р	n
45	>20	>20	>20	>20	5	5	4	3
branch	6	4	19	12	8	7	3	3
dum	11	>20	>20	>20	7	12	3	14
grz	>20	>20	>20	>20	9	>20	0	5
md	4	5	3	>20	2	4	3	4
path	5	3	16	14	2	5	1	13
ph	6	7	7	>20	4	5	3	3
poly	>20	7	>20	12	1	2	2	2
t4p	4	2	>20	>20	1	1	1	7

Table 5. Results for K and KT

	Fa	СТ	DLP		
$\mathbf{S4}$	р	n	р	n	
45	>20	>20	>20	>20	
branch	4	4	18	12	
grz	2	>20	>20	>20	
ipc	5	4	10	>20	
md	8	4	3	>20	
path	2	1	15	15	
ph	5	4	7	>20	
s5	>20	2	>20	>20	
t4p	5	3	>20	>20	

Table 6. Results for S4

 Neither KSAT nor KRIS can be used to perform S4 satisfiability tests (They can't reason with transitive roles).

Test Suite 2 – A Set of Random Formulae

- Another propositional modal test suite
- The method uses a random generator to produce formulae. Each formula is a conjunction of *L K*-clauses
 - A *K*-clause is a disjunction of *K* elements, each element being negated with a probability of 0.5.
 - An element is either:
 - a modal atom of the form $\forall R.C$, where C is a K-clause
 - a propositional variable chosen from the N propositional variables that appear in the formula, at the maximum modal depth D.
- 2 sets of formulae:
 - **PS12** with *N* = 4, *K* = 3, and *D* = 1
 - **PS13** with *N* = 6, *K* = 3, and *D* = 1
- The test sets are created by varying *L* from *N* to 30*N*, and generating 100 formulae for each integer value of *L*/*N*.
 - For SAT problems, when the other parameters are fixed, the value of L/N determines the "hardness" of formulae.

Test Suite 2 – A Set of Random Formulae

- The performance differences between FaCT, DLP, and KSAT are much less marked
 - With such small number of literals, the purely propositional problems at depth 1 can almost always be solved deterministically.

Test Suit 3 – Expressive KBs

- Take an expressive knowledge base and construct a version of it that is acceptable to FaCT, DLP, KRIS, and CRACK.
- GALEN knowledge base
 - High level ontology
- Test KB construction:
 - Translate the GRAIL syntax of the GALEN KB into the standard syntax
 - Eliminate concept inclusion axioms by using absorption
 - Discard all role axioms
- The resulting KB contains 2,719 named concepts and 413 roles.

Test Suit 3 – Expressive KBs

Results:

- Neither KRIS nor CRACK was able to classify the KB
- FaCT classified the KB in 211 seconds.
- DLP did so in 70 seconds
- Testing other KBs:
 - They are too small or too simple

	FaCT	DLP	Kris	CRACK
Load	6.03		135.90	
Pre-process	0.85	—	_	
Classify	204.03	_	≫400,000	≫10,000
Total CPU time (s)	210.91	69.56	≫400,000	≫10,000

Table 7. Classification times for GALEN knowledge base

Knowledge base	Concepts	FaCT	DLP	KRIS	CRACK	NeoClassic
ckb-roles	79	0.19	0.27	0.68	1.19	0.42
datamont-roles	120	0.42	0.36	0.89	1.18	0.65
espr-roles	142	0.33	0.13	0.58	0.00	0.63
fss-roles	132	0.66	0.64	1.16	0.37	0.78
wines	267	4.71	2.05	2.99	2.37	2.77
wisber-roles	140	0.48	0.78	1.03	1.63	1.03

 Table 8. Classification times for other knowledge bases (CPU seconds)

Outline

✓ Introduction

- ✓ Optimization Techniques
- ✓ Comparison with Other Systems
- Comparing Optimizations
- Discussion

Comparing Optimizations

Comparing Optimizations

- The comparison with other systems does not show which of the optimizations are most effective.
- Recent versions of DLP have compile-time configuration options.
- 22 configurations Each was ran over the 3 test suites.
- Results:
 - Test Suite 1:
 - Caching Backjumping Semantic Branching
 - Test Suite 2:
 - Normalization Semantic Branching Backjumping BCP
 - Test Suite 3:
 - Backjumping Caching Semantic Branching
 - Without absorption, satisfiability could not be proved by either FaCT or DLP

Outline

✓ Introduction

- ✓ Optimization Techniques
- ✓ Comparison with Other Systems
- ✓ Comparing Optimizations
- Discussion

Discussion

- To be useful in realistic applications, DL systems need both expressive logics and fast reasoners.
- Effective optimization techniques can make a dramatic difference in the performance of knowledge representation systems based on expressive DLs.
- These techniques can operate at every level of a DL system:
 - Simplify the KB,
 - Reduce the number of subsumption tests required to classify it,
 - Substitute tableaux subsumption tests with less costly tests,
 - Reduce the size of the search space resulting from nondeterministic tableaux expansion.

Discussion

- The most effective of these optimizations are absorption and backjumping:
 - Impose a very small additional overhead,
 - Can dramatically improve typical case performance,
 - Hardly ever degrade performance (to any significant extent).
- Other widely applicable optimizations include normalization, semantic branching and local simplification.
- Various forms of caching can also be highly effective, but they do impose a significant additional overhead in terms of memory usage, and can sometimes degrade performance.
- Heuristic techniques, at least those currently available, are not particularly effective and can often degrade performance.

Discussion

- Several exciting new application areas for very expressive DLs:
 - Reasoning about DataBase schemata and queries
 - Providing reasoning support for the Semantic Web.
 - Require logics even more expressive than those implemented in existing systems.
 - The challenge is to demonstrate that highly optimized reasoners can provide acceptable performance even for these logics.
- Given the immutability of theoretical complexity, no (complete) implementation can guarantee to provide good performance in all cases.
- The objective of optimized implementations is to provide acceptable performance in typical applications.

THANK YOU!!!

Any Questions ???

Propositional Modal Logic

- Syntax
 - Propositional logic
 - Modal operators
 - - necessarily (box)

• K:

- Necessitation Rule:
 If A is a theorem of K, then so is □A.
- Distribution Axiom:
 - $\Box(A{\rightarrow}B) \rightarrow (\Box A{\rightarrow}\Box B).$
- http://plato.stanford.edu/entries/logic-modal/

