Knowledge Compilation and Theory Approximation

Henry Kautz and Bart Selman Presented by Kelvin Ku kelvin@cs.toronto.edu

Overview

- Problem
- Approach
- Horn Theory and Approximation
- Computing Horn Approximations
- Empirical Results
- Generalizations

Problem Formulation

- Goal: Inference in clausal propositional KBs Σ is the KB/theory, α is a CNF formula
 - inference is checking $\Sigma \vDash \alpha$
- NP-complete (reduction to SAT)
- Alternatives
 - Restricted language: limited expressiveness
 - Incomplete inference, either resource-bounded or non-traditional inference: inconclusive results

Approach

- Basis: Compile (rewrite) KB into tractable language
- Not always possible, e.g. with incomplete languages
- Compromise: <u>approximate</u> KB using tractable language

KB Approximation

- Approximate Σ using Σ_{lb} and Σ_{ub} such that
 - inference in $\Sigma_{\text{lb,ub}}$ is fast
 - bound the original theory: $\Sigma_{\mathsf{lb}} \vDash \Sigma \vDash \Sigma_{\mathsf{ub}}$
 - in other words, $\mathcal{M}(\Sigma_{\mathsf{lb}}) \subseteq \mathcal{M}(\Sigma) \subseteq \mathcal{M}(\Sigma_{\mathsf{ub}})$
 - $\mathcal{M}(\Sigma)$: models of Σ
- Σ_{glb} is greatest/weakest lower-bound - $\neg \exists \Sigma' \cdot M(\Sigma_{glb}) \subset M(\Sigma') \subseteq M(\Sigma)$
- Σ_{lub} is least/strongest upper-bound - $\neg \exists \Sigma' \cdot M(\Sigma) \subseteq M(\Sigma') \subset M(\Sigma_{\text{lub}})$
- Transitivity of ⊨ leads to fast querying scheme

Fast Querying Scheme

Horn Theory

• Form: Subset of CNF with at most one positive literal per clause

-e.g. clause: $(\neg p \lor \neg q \lor r) \equiv (p \land q \Rightarrow r)$

- Natural form for some domains, e.g. Prolog rules
- Inference: Linear in size (number of literals) of KB and query
- Incomplete: e.g. cannot represent p ∨ q as a Horn clause (since it has two models)

Horn Approximation Example

• Non-Horn theory Σ :

$$(\neg a \lor c) \land (\neg b \lor c) \land (a \lor b)$$

- e.g. Horn LB: a \wedge b \wedge c
- e.g. Horn GLBs: a \wedge c, b \wedge c
- No Horn theory Σ' ≠ a ∧ c such that
 (a ∧ c) ⊨ Σ' ⊨ Σ
- e.g. Horn UB: $(\neg a \lor c) \land (\neg b \lor c)$
- Horn LUB: c
- No Horn theory $\Sigma' \neq c$ such that $\Sigma \models \Sigma' \models c$

Computing Horn Approximations

- Worst-case approximation time is $O(2^{|\Sigma|})$
 - either |approx| is $O(2^{|\Sigma|})$ or – |approx| is $O(|\Sigma|^n)$ and computation time is $O(2^{|\Sigma|})$
- Reasonable trade-off if we do many queries
- Compromise: incremental "anytime" approximation

Computing the Horn GLB

- Basis of method: Horn-strengthening
 - def: weakest Horn-clause subsuming a clause wrt. a positive literal
 - e.g. { $\neg p$, q, r} has Horn-strengthenings { $\neg p$, q} and { $\neg p$, r}
 - so remove all but one positive literal
- Lemma 1: If a Horn theory entails clause α , then it entails some Horn-strengthening of α
- Lemma 2: Every GLB of a theory is equivalent to some Horn-strengthening of the theory
- So searching through strengthenings for each clause will obtain the GLB; gives rise to algorithm ...

Generate_GLB

Input: a set of clauses $\Sigma = \{C_1, C_2, ..., C_n\}$ Output: a Horn GLB of Σ

begin

L := first Horn-strengthening of Σ

loop

L' := next Horn-strengthening of Σ

if none exists then exit loop

if $L \models L'$ then L := L' /* found weaker LB */

end loop

remove subsumed clauses from L

return L

end

Computing the Horn LUB

- Basis of method: Prime implicate
 - A strongest clause implied by Σ - In other words: $\Sigma \models C$ and $\neg \exists C' \subset C \cdot \Sigma \models C'$
- Horn LUB \equiv all Horn prime implicates of Σ
- Thus, naive Generate_LUB: Compute all resolutions in Σ, and collect Horn prime implicates
 - resolution is complete

Size of Approximations

- $|GLB| \leq |\Sigma|$ (recall Generate_GLB)
- Theorem: There exist theories Σ such that $|LUB| \in O(2^{|\Sigma|})$, so LUB is EXP in the worst case
- Compromise: Theory Compaction
 - Transform original theory to obtain relatively smaller LUB
 - Theorem: compaction can't always help either

Empirical Results

- Hypothesis: Fast querying with approximations can efficiently answer queries that are intractable in the original theory
- Theoretical Motivation
 - Finding model of theory with unique model is intractable
 - Probablistic analysis of inference in hard random theories

Empirical Results

- Experiment: Compare execution time and coverage against Davis-Putnam on hard random theories
- Results
 - All queries answered
 - Total time (bounds and querying) significantly better than DP

Generalizations

- Parameters: languages of original theory, approximation, and query
- Formally, elements of framework are $-\mathcal{L}, \vDash, \mathcal{L}_{S}, \mathcal{L}_{T}, \mathcal{L}_{O}, f_{I,U}: \mathcal{L}_{S} \times \mathbb{N} \rightarrow \mathcal{L}_{T}$
- For all classes of propositional clauses $\boldsymbol{\theta}$
 - ✓ Generate_GLB if (i) θ is closed under resolution and (ii) every clause is subsumed by a θ clause
 - ✓ Generate_LUB if (iii) θ is closed under subsumption

Alternative Clausal Languages

- Satisfying (i), (ii), and (iii)
 - Reverse-horn: {p \lor q $\lor \neg$ r}
 - Binary: {p $\lor \neg q$, r}
 - Unit: {p, ¬q, r}
- Requiring modification to compilation algorithms:
 - k-Horn: Horn w/at most k literals per clause (violates (i), LUB has polynomial size)

Alternative Logics

- First-Order Logic
 - In general, <u>GLB</u> in ground clauses is not well-defined
 - e.g. for $\exists x.P(x)$ exists an infinite series of better LBs
 - Special case: first-order clauses (prenex, universal, clausal body) have Horn GLBs

• e.g. $A(p) \lor B(q) \lor \neg C(r) \Leftarrow A(p) \lor \neg C(r)$

- Exist finite first-order clausal theories with no finite Horn LUB (even without function symbols)
- Description Logic (concepts, subsumption)
 - Exists a tractable subset of \mathcal{FL} , \mathcal{FL}^-
 - Compute and store tractable subsumption bounds for each concept

Related Work

- Darwiche and Marquis paper considers compiling to complete languages with polytime entailment
 - Horn is incomplete but permits anytime approx
 - Only considering CE here
 - D&M concerned with more general queries and theory transformation