Knowledge Compilation and Theory Approximation

Henry Kautz and Bart Selman
Presented by Kelvin Ku
kelvin@cs.toronto.edu
Overview

- Problem
- Approach
- Horn Theory and Approximation
- Computing Horn Approximations
- Empirical Results
- Generalizations
Problem Formulation

• Goal: Inference in clausal propositional KBs
 – \(\Sigma \) is the KB/theory, \(\alpha \) is a CNF formula
 – inference is checking \(\Sigma \models \alpha \)

• NP-complete (reduction to SAT)

• Alternatives
 – Restricted language: limited expressiveness
 – Incomplete inference, either resource-bounded or non-traditional inference: inconclusive results
Approach

- Basis: Compile (rewrite) KB into tractable language
- Not always possible, e.g. with incomplete languages
- Compromise: approximate KB using tractable language
KB Approximation

• Approximate Σ using Σ_{lb} and Σ_{ub} such that
 – inference in $\Sigma_{lb,ub}$ is fast
 – bound the original theory: $\Sigma_{lb} \models \Sigma \models \Sigma_{ub}$
 – in other words, $\mathcal{M}(\Sigma_{lb}) \subseteq \mathcal{M}(\Sigma) \subseteq \mathcal{M}(\Sigma_{ub})$
 • $\mathcal{M}(\Sigma)$: models of Σ

• Σ_{glb} is greatest/weakest lower-bound
 – $\neg \exists \quad \Sigma' \cdot \mathcal{M}(\Sigma_{glb}) \subset \mathcal{M}(\Sigma') \subset \mathcal{M}(\Sigma)$

• Σ_{lub} is least/strongest upper-bound
 – $\neg \exists \quad \Sigma' \cdot \mathcal{M}(\Sigma) \subseteq \mathcal{M}(\Sigma') \subset \mathcal{M}(\Sigma_{lub})$

• Transitivity of \models leads to fast querying scheme

...
Fast Querying Scheme

\[\Sigma \models \alpha ? \]

- If \(\Sigma_{ub} \models \alpha \):
 - Return "yes"
- If \(\Sigma_{lb} \not\models \alpha \):
 - "yes" → Return "no"
- Return "don’t know" or fall back to \(\Sigma \)
Horn Theory

- Form: Subset of CNF with at most one positive literal per clause
 - e.g. clause: \((\neg p \lor \neg q \lor r) \equiv (p \land q \Rightarrow r)\)
 - Natural form for some domains, e.g. Prolog rules

- Inference: Linear in size (number of literals) of KB and query

- Incomplete: e.g. cannot represent \(p \lor q\) as a Horn clause (since it has two models)
Horn Approximation Example

• Non-Horn theory Σ:

 \[(\neg a \lor c) \land (\neg b \lor c) \land (a \lor b) \]

• e.g. Horn LB: $a \land b \land c$

• e.g. Horn GLBs: $a \land c$, $b \land c$

• No Horn theory $\Sigma' \neq a \land c$ such that

 \[(a \land c) \models \Sigma' \models \Sigma \]

• e.g. Horn UB: $\neg a \lor c \land (\neg b \lor c)$

• Horn LUB: c

• No Horn theory $\Sigma' \neq c$ such that $\Sigma \models \Sigma' \models c$
Computing Horn Approximations

• Worst-case approximation time is $O(2^{|\Sigma|})$
 – either $|\text{approx}|$ is $O(2^{|\Sigma|})$ or
 – $|\text{approx}|$ is $O(|\Sigma|^n)$ and computation time is $O(2^{|\Sigma|})$

• Reasonable trade-off if we do many queries

• Compromise: incremental “anytime” approximation
Computing the Horn GLB

• Basis of method: Horn-strengthening
 – def: weakest Horn-clause subsuming a clause wrt. a positive literal
 • e.g. \{ \neg p, q, r \} has Horn-strengthenings \{ \neg p, q \} and \{ \neg p, r \}
 – so remove all but one positive literal
• Lemma 1: If a Horn theory entails clause \(\alpha \), then it entails some Horn-strengthening of \(\alpha \)
• Lemma 2: Every GLB of a theory is equivalent to some Horn-strengthening of the theory
• So searching through strengthenings for each clause will obtain the GLB; gives rise to algorithm ...

Generate_GLB

Input: a set of clauses $\Sigma = \{C_1, C_2, \ldots, C_n\}$
Output: a Horn GLB of Σ

begin
 L := first Horn-strengthening of Σ

 loop
 L' := next Horn-strengthening of Σ
 if none exists then exit loop
 if $L \vDash L'$ then $L := L'$ /* found weaker LB */
 end loop

 remove subsumed clauses from L

 return L
end
Computing the Horn LUB

• Basis of method: Prime implicate
 – A strongest clause implied by Σ
 – In other words: $\Sigma \models C$ and $\neg \exists C' \subset C \cdot \Sigma \models C'$

• Horn LUB \equiv all Horn prime implicates of Σ

• Thus, naive Generate_LUB: Compute all resolutions in Σ, and collect Horn prime implicates
 – resolution is complete
Size of Approximations

• $|GLB| \leq |\Sigma|$ (recall Generate_GLB)

• Theorem: There exist theories Σ such that $|LUB| \in O(2^{|\Sigma|})$, so LUB is EXP in the worst case

• Compromise: Theory Compaction
 – Transform original theory to obtain relatively smaller LUB
 – Theorem: compaction can’t always help either
Empirical Results

• Hypothesis: Fast querying with approximations can efficiently answer queries that are intractable in the original theory

• Theoretical Motivation
 – Finding model of theory with unique model is intractable
 – Probablistic analysis of inference in hard random theories
Empirical Results

• Experiment: Compare execution time and coverage against Davis-Putnam on hard random theories

• Results
 – All queries answered
 – Total time (bounds and querying) significantly better than DP
Generalizations

- Parameters: languages of original theory, approximation, and query
- Formally, elements of framework are
 - $\mathcal{L}, \models, \mathcal{L}_S, \mathcal{L}_T, \mathcal{L}_Q, f_{L,U} : \mathcal{L}_S \times \mathbb{N} \rightarrow \mathcal{L}_T$
- For all classes of propositional clauses θ
 - \checkmark Generate_GLB if (i) θ is closed under resolution and (ii) every clause is subsumed by a θ clause
 - \checkmark Generate_LUB if (iii) θ is closed under subsumption
Alternative Clausal Languages

• Satisfying (i), (ii), and (iii)
 – Reverse-horn: \{p \lor q \lor \neg r\}
 – Binary: \{p \lor \neg q, r\}
 – Unit: \{p, \neg q, r\}

• Requiring modification to compilation algorithms:
 – k-Horn: Horn w/at most k literals per clause (violates (i), LUB has polynomial size)
Alternative Logics

• First-Order Logic
 – In general, GLB in ground clauses is not well-defined
 • e.g. for $\exists x. P(x)$ exists an infinite series of better LBs
 – Special case: first-order clauses (prenex, universal, clausal body) have Horn GLBs
 • e.g. $A(p) \lor B(q) \lor \neg C(r) \iff A(p) \lor \neg C(r)$
 – Exist finite first-order clausal theories with no finite Horn LUB (even without function symbols)

• Description Logic (concepts, subsumption)
 – Exists a tractable subset of \mathcal{FL}, \mathcal{FL}^-
 – Compute and store tractable subsumption bounds for each concept
Related Work

• Darwiche and Marquis paper considers compiling to complete languages with polytime entailment
 – Horn is incomplete but permits anytime approx
 – Only considering CE here
 – D&M concerned with more general queries and theory transformation