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Overview
• Problem
• Approach
• Horn Theory and Approximation
• Computing Horn Approximations
• Empirical Results
• Generalizations
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Problem Formulation
• Goal: Inference in clausal propositional KBs

– Σ is the KB/theory, α is a CNF formula
– inference is checking Σ ² α

• NP-complete (reduction to SAT)
• Alternatives

– Restricted language: limited expressiveness
– Incomplete inference, either resource-bounded or

non-traditional inference: inconclusive results
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Approach
• Basis: Compile (rewrite) KB into tractable

language
• Not always possible, e.g. with incomplete

languages
• Compromise: approximate KB using tractable

language
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KB Approximation
• Approximate Σ using Σlb and Σub such that

– inference in Σlb,ub is fast
– bound the original theory: Σlb ² Σ ² Σub

– in other words, M(Σlb) µ M(Σ) µ M(Σub)
•  M(Σ): models of Σ

• Σglb is greatest/weakest lower-bound
– ¬9 Σ’·M(Σglb) ½ M(Σ’) µ M(Σ)

•  Σlub is least/strongest upper-bound
– ¬ 9 Σ’·M(Σ) µ M(Σ’) ½ M(Σlub)

• Transitivity of ² leads to fast querying scheme
...
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Fast Querying Scheme

Σub ² α

Σlb 2 α

Return “yes”

Return “no”

Σ ² α ?

Return “don’t know” or fall back to Σ

“yes”

“yes”
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Horn Theory
• Form: Subset of CNF with at most one

positive literal per clause
– e.g. clause: (¬p Ç ¬q Ç r) ´ (p Æ q ) r)
– Natural form for some domains, e.g. Prolog rules

• Inference: Linear in size (number of literals) of
KB and query

• Incomplete: e.g. cannot represent p Ç q as a
Horn clause (since it has two models)
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Horn Approximation Example
• Non-Horn theory Σ:

(¬a Ç c) Æ (¬b Ç c) Æ (a Ç b)
• e.g. Horn LB: a Æ b Æ c
• e.g. Horn GLBs: a Æ c, b Æ c
• No Horn theory Σ’ ≠ a Æ c such that

(a Æ c) ² Σ’ ² Σ
• e.g. Horn UB: (¬a Ç c) Æ (¬b Ç c)
• Horn LUB: c
• No Horn theory Σ’ ≠ c such that Σ ² Σ’ ² c
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Computing Horn Approximations
• Worst-case approximation time is O(2|Σ|)

– either |approx| is O(2|Σ|) or
– |approx| is O(|Σ|n) and computation time is O(2|Σ|)

• Reasonable trade-off if we do many queries
• Compromise: incremental “anytime”

approximation
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Computing the Horn GLB
• Basis of method: Horn-strengthening

– def: weakest Horn-clause subsuming a clause wrt. a
positive literal

• e.g. {¬p, q, r} has Horn-strengthenings {¬p, q} and {¬p, r}

– so remove all but one positive literal
• Lemma 1: If a Horn theory entails clause α, then it

entails some Horn-strengthening of α
• Lemma 2: Every GLB of a theory is equivalent to

some Horn-strengthening of the theory
• So searching through strengthenings for each

clause will obtain the GLB; gives rise to algorithm ...
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Generate_GLB
Input: a set of clauses Σ = {C1,C2,...,Cn}
Output: a Horn GLB of Σ
begin

L := first Horn-strengthening of Σ
loop

L’ := next Horn-strengthening of Σ
if none exists then exit loop
if L ² L’ then L := L’ /* found weaker LB */

end loop
remove subsumed clauses from L
return L

end
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Computing the Horn LUB
• Basis of method: Prime implicate

– A strongest clause implied by Σ
– In other words: Σ ² C and ¬9 C’ ½ C · Σ ² C’

• Horn LUB ´ all Horn prime implicates of Σ
• Thus, naive Generate_LUB: Compute all

resolutions in Σ, and collect Horn prime
implicates
– resolution is complete
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Size of Approximations
• |GLB| · |Σ| (recall Generate_GLB)
• Theorem: There exist theories Σ such that

|LUB| 2 O(2|Σ|), so LUB is EXP in the worst
case

• Compromise: Theory Compaction
– Transform original theory to obtain relatively

smaller LUB
– Theorem: compaction can’t always help either
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Empirical Results
• Hypothesis: Fast querying with

approximations can efficiently answer queries
that are intractable in the original theory

• Theoretical Motivation
– Finding model of theory with unique model is

intractable
– Probablistic analysis of inference in hard random

theories
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Empirical Results
• Experiment: Compare execution time and

coverage against Davis-Putnam on hard
random theories

• Results
– All queries answered
– Total time (bounds and querying) significantly

better than DP



16

Generalizations
• Parameters: languages of original theory,

approximation, and query
• Formally, elements of framework are

–  L, ², LS, LT, LQ, fL,U:LS £ N → LT

• For all classes of propositional clauses θ
Generate_GLB if (i) θ is closed under resolution

and (ii) every clause is subsumed by a θ clause
Generate_LUB if (iii) θ is closed under

subsumption
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Alternative Clausal Languages
• Satisfying (i), (ii), and (iii)

– Reverse-horn: {p Ç q Ç ¬r}
– Binary: {p Ç ¬q, r}
– Unit: {p, ¬q, r}

• Requiring modification to compilation
algorithms:
– k-Horn: Horn w/at most k literals per clause

(violates (i), LUB has polynomial size)
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Alternative Logics
• First-Order Logic

– In general, GLB in ground clauses is not well-defined
• e.g. for 9x.P(x) exists an infinite series of better LBs

– Special case: first-order clauses (prenex, universal,
clausal body) have Horn GLBs

• e.g. A(p) Ç B(q) Ç ¬C(r) ( A(p) Ç ¬ C(r)

– Exist finite first-order clausal theories with no finite Horn
LUB (even without function symbols)

• Description Logic (concepts, subsumption)
– Exists a tractable subset of FL, FL

– Compute and store tractable subsumption bounds for
each concept
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Related Work
• Darwiche and Marquis paper considers

compiling to complete languages with
polytime entailment
– Horn is incomplete but permits anytime approx
– Only considering CE here
– D&M concerned with more general queries and

theory transformation


