Generalized Boolean Satisfiability ZAP II: Theory

Jessica Davies Knowledge Representation and Reasoning

March 23, 2006

Outline

- Motivation and Intuition
- Group Theory Background
- Augmented Resolution
- Proof lengths of our examples
- DPLL in the new setting
- Experimental results
- Summary
- Discussion

Motivation

		p-simulation		unit	
	rep. eff.	hierarchy	inference	propagation	learning
SAT	1	EEE	resolution	watched literals	relevance
cardinality	exp	P?E	not unique	watched literals	relevance
PB	exp	P?E	unique	watched literals	+ strengthening
symmetry	1	EEE^*	not in P	same as SAT	same as SAT
QPROP	exp	???	in P using reasons	exp improvement	+ first-order

- None admits a poly-sized proof for clique colouring
- Is there a representation such that:
 - 1. Exponential savings in size of representation
 - 2. Poly-size proofs of the 3 problems exist
 - 3. DPLL is still efficient

Intuition – Pigeon Hole

- "no two pigeons are in the same hole": $\neg p_{ik} \lor \neg p_{jk} \quad \forall i \neq j, k$
- One axiom represents (ⁿ₂)n clauses
- Generate other clauses by permuting the literals

Intuition – Parity Axioms

$$x_1 + x_2 + x_3 \equiv 1 \pmod{2}$$

equivalent to the 4 clauses

How can the other three clauses be generated from the first using permutations?

Intuition – Parity Axioms cont.

1.
$$X_1 \lor X_2 \lor X_3$$

2. $X_1 \lor \neg X_2 \lor \neg X_3$
3. $\neg X_1 \lor X_2 \lor \neg X_3$

$$\mathbf{A}. \quad \neg \mathbf{X}_1 \lor \neg \mathbf{X}_2 \lor \mathbf{X}_3$$

Permutations:

$$1 \rightarrow 1: ()$$

$$1 \rightarrow 2: (x_2 \neg x_2)(x_3 \neg x_3)$$

$$1 \rightarrow 3: (x_1 \neg x_1)(x_3 \neg x_3)$$

$$1 \rightarrow 4: (x_1 \neg x_1) (x_2 \neg x_2)$$

Permutation Set Properties

- Set of permutations for the parity clause: $S = \{(), (x_2 \neg x_2)(x_3 \neg x_3), (x_1 \neg x_1)(x_3 \neg x_3), (x_1 \neg x_1) (x_2 \neg x_2)\}$
- Compose elements of S:
 - $\begin{array}{rcl} (x_2 \neg x_2)(x_3 \neg x_3) & (x_1 \neg x_1)(x_3 \neg x_3) = & (x_1 \neg x_1)(x_2 \neg x_2) \\ (x_2 \neg x_2)(x_3 \neg x_3) & (x_1 \neg x_1)(x_2 \neg x_2) = & (x_1 \neg x_1)(x_3 \neg x_3) \\ (x_1 \neg x_1)(x_3 \neg x_3) & (x_1 \neg x_1)(x_2 \neg x_2) = & (x_2 \neg x_2)(x_3 \neg x_3) \end{array}$

S is closed under function composition

$$(x_2 \neg x_2)(x_3 \neg x_3) (x_2 \neg x_2)(x_3 \neg x_3) = (x_1) (x_2) (x_3) (x_4) = ()$$

Each element of S is its own inverse

Group Theory

- Set of permutations S:
 - closed under the composition operator (which is associative)
 - contains an identity ()
 - every element has an inverse
 - \Rightarrow S with composition operator is a group
- Groups:
 - structured set with operator
 - properties have been studied intensively
- If a set of clauses intuitively has structure, its set of permutations will be a group

Group Theory - Definitions

- Sym(n) the Symmetric group on n elements
 the group made up of all permutations of {1,...,n}
- W_n the subgroup of Sym(2n) s.t. ¬I₁ is mapped to ¬I₂ whenever I₁ is mapped to I₂
- Generators: <x> is the group generated by the element x
 - $< x > = \{1, x, x^2, x^3, ..., x^{m-1}\}$ where m is the smallest number s.t. $x^m = 1$
 - Every group has a set of $\leq \log_2 |G|$ generators
 - can find in poly time

Progress

- Motivation and Intuition
- Group Theory Background
- > Augmented Resolution
- Proof lengths of our examples
- DPLL in the new setting
- Experimental results
- Summary
- Discussion

Reasoning and Inference

Reasoning with augmented clauses:

- lifted form of resolution, watched literals for UP, and clause learning
- Lets start with resolution, since the size of resolution proofs determines the complexity of DPLL

Augmented Clauses

- Augmented clause (c, G)
 - c is the prototypical clause
 - G is a group of permutations
 - $c^G = \{g(c) \mid g \in G\}$ set of ground clauses represented
 - Note that if some clauses are not related to others, they can still be represented as (c, {I})

Augmented Resolution

- Result of resolving (c₁, G₁) and (c₂, G₂)
 - ideally another augmented clause (c, G)
 - (c, G) should capture all clauses which can be produced by resolving clauses in (c₁, G₁) and (c₂, G₂)
- But this is not possible!

 $(c_1, G) = (a \lor b, (bc)) \rightarrow \{(a \lor b), (a \lor c)\}$ $(c_2, G) = (\neg a \lor d, (dc)) \rightarrow \{(\neg a \lor d), (\neg a \lor c)\}$ Resolving ground clauses produces: $\{(b \lor d), (b \lor c), (c \lor d), (c)\}$

Augmented Resolution – cont.

- Conditions for satisfactory resolution rule:
 - 1. $(c_1, G_1) \land (c_2, G_2) \Rightarrow (c, G)$
 - 2. resolve(c₁, c₂) is an instance of (c, G)
 - 3. $G_1 \le H_1$, $G_2 \le H_2 \Rightarrow$ (c, G) is a resolvant of (c₁, H₁) and (c₂, H₂)
 - 4., 5. & 6. on pages 501-502

Augmented Resolution Rule

- Resolvant of (c₁, G₁), (c₂, G₂) is any clause (resolve(c₁, c₂), G) s.t.
 - $G \leq stab(c_i, H_i) \cap W_n$ where $H_1 \leq G_{1,} H_2 \leq G_2$
- What is stab(c_i, H_i) ???
 - subgroup of Sym(2n)
 - ω ∈ stab(c_i, H_i) iff ω behaves the same as some h₁ ∈ H₁ on (c₁, H₁), and behaves the same as some h₂ ∈ H₂ on (c₂, H₂),

Properties of Augmented Resolution

- Time to find resolvant:
 - In NP ⇒ worst case exponential in size of augmented clauses
 - but: augmented clauses exponentially smaller than CNF encoding
 - ∴ poly in the CNF encoding
- One augmented resolution step: how many resolutions between ground clauses?

Progress

- Motivation and Intuition
- Group Theory Background
- Augmented Resolution
- > Proof lengths of our examples
- DPLL in the new setting
- Experimental results
- Summary
- Discussion

Proof Lengths

Representational Efficiency

Proof Lengths

clause	Boolean		\mathbf{total}
type	axioms	generators	size
$\operatorname{cardinality}$	$\binom{m}{k-1}$	2	m + 1
parity	2^{k-1}	3	k + 5
QP ROP	d^v	2v	v(d+1)

	efficiency	proof		propagation	learning
	of rep'n	length	resolution	technique	method
SAT	—	EEE	—	watched literals	relevance
cardinality	exponential	P?E	not unique	watched literals	relevance
pseudo- Boolean	exponential	P?E	unique	watched literals	+ strengthening
symmetry	—	EEE*	not believed in P	same as SAT	same as SAT
QPROP	exponential	???	in Pusing reasons	exp improvement	+ first-order
ZAP	exponential	PPP			

 $\operatorname{rel}(C, D, P)$:

```
\langle x, y \rangle \leftarrow \text{Unit-Propagate}(C \cup D, P)
 1
    if x = true
 2
 3
         then (c,G) \leftarrow y
                if c is empty
 4
 5
                   then return FAILURE
 6
                   else remove successive elements from P so that c is unit
 7
                          D \leftarrow D \cup \{c\}
 8
                           remove from D all augmented clauses without k-relevant instances
                          return \operatorname{ret}(C, D, P)
 9
10
         else P \leftarrow y
                if P is a solution to C
11
12
                   then return P
                   else l \leftarrow a literal not assigned a value by P
13
14
                           return RBL(C, \langle P, (l, true) \rangle)
```


Summary

- New representation language of augmented clauses
- New inference rule: augmented resolution

	efficiency	proof		propagation	learning
	of rep'n	length	resolution	technique	method
SAT		EEE	—	watched literals	relevance
cardinality	exponential	P?E	not unique	watched literals	relevance
pseudo- Boolean	exponential	P?E	unique	watched literals	+ strengthening
symmetry	—	EEE*	not believed in P	same as SAT	same as SAT
QPROP	exponential	???	in P using reasons	exp improvement	+ first-order
ZAP	exponential	PPP	in P using reasons	watched literals, exp improvement	+ first-order + parity + others

Discussion

- How often does group structure occur?
- How hard is it to find existing group structure?
- What about the completeness of augmented resolution?
- How does this representation subsume cardinality, pseudo-boolean, QPROP?