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Soundness Theorem

Theorem (Soundness)

Let T be a theory, S a set of clauses, and C a T-resolvent of S. Then every
T -interpretation that satisfies S also satisfies C.

Nice, but is it useful?
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Soundness Theorem

Theorem (Soundness)

Let T be a theory, S a set of clauses, and C a T-resolvent of S. Then every
T -interpretation that satisfies S also satisfies C.

Nice, but is it useful? No!

Problem

Generating all possible resolvents is impractical.
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Theorem (Soundness)

Nice, but is it useful? No!

Problem

Solution

Soundness Theorem
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heory Resolution; Types of Resolvents)

Given: CG,G,...,Ch,m>1
decompose to: KiV Li,...,KnV Lyn,#m>1 K nen-empty clauses

m =1 (unary), m = 2 (binary) unit (narrow)
Total Wide .
Theory R Reo > 0 umit-elanses
Resolution goeey TS
\
oo (total)
Resolution .
Theory suppose: Ki,...,Km, Ri,..., R, are T-unsatisfiable
atings
then: Li,...,Lm,—Ry,...,~ R, is a T-resolvent

Examples
of Theory
Resolution

Empirical
Results

ordinary resolution is total, narrow, and binary
e P is a unary total narrow ORD-resolvent of (a < a) V P

PV QV RVS is a 4-ary total narrow ORD-resolvent of
(a<b)VP,(b<c)VQ,(c<d)VR,~(a<d)VS

(a< c)V PV Q is a partial narrow ORD-resolvent of (a < b) V P and
(b < ¢) vV Q with condition R = —(a < ¢)
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vs partial): unconditioned (no R’s) narrow (vs wide): Keys are unit

Total Wide Theory Resolution

wide: keys can be non-unit

total: unconditioned, i.e. no R’s needed to resolve J

Total wide theory resolution is complete.

e given a procedure to find all minimally T-unsatisfiable subsets of a set of
clauses only containing predicates in T,

o split the set S of clauses to refute into Sp U Sg, P the predicates in T,
o first resolve away all predicates P using T-resolution,

e then, resolve the rest using ordinary resolution which is a special case of
total wide resolution.
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Narrow Theory Resolution

narrow: keys are unit, resolve over sets of literals — no disjunctions anymore!

o like ordinary resolution but resolving over more than just two literals

e demanding on the decision procedure of the theory
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Narrow Theory Resolution

narrow: keys are unit, resolve over sets of literals — no disjunctions anymore!

o like ordinary resolution but resolving over more than just two literals

e demanding on the decision procedure of the theory

e less demanding: just name a condition for T-unsatisfiability of literals

o key selection and corresponding condition matter
e may resolve upon unrelated clauses

e introduced conditions may not be refutable
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Narrow Theory Resolution

narrow: keys are unit, resolve over sets of literals — no disjunctions anymore!

o like ordinary resolution but resolving over more than just two literals

e demanding on the decision procedure of the theory

less demanding: just name a condition for T-unsatisfiability of literals

o key selection and corresponding condition matter

e may resolve upon unrelated clauses

e introduced conditions may not be refutable

e we could resolve (a < b) V P and (¢ < d) V R with condition
(b < ¢) A (d < a) but that’s useless

o keys should be suitably related

e size and amount of introduced residues should be minimized
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vs partial): unconditioned (no R’s)

consider:
LizV 6LV Lim
Loy V LoV Lom
Lnl\/LnZ"'\/an
o Naively: consider all combinations S = {Lyj,, Laj,, - - -, Lni, }
e Instead can work incrementally upon keys K C S if:
e there is a set of literals R = {R1,..., Rc} (a condition) such that
KU {=Ry,...,— Rk} is minimally T-unsatisfiable, and
o (S—K)U{R1V:--V Ry} is minimally T-unsatisfiable
o called key selection criterion

Incremental Approach (Partial Narrow Theory Resolution)

narrow (vs wide): Keys are unit

Key Selection

preserves com pleteness
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Definition (Path)

A path through clauses G, ..., Gy, is a set of literals K; € C.

Theorem (Mating)

B A set of clauses is unsatisfiable iff every path though it contains a
Theory complementary pair of literals.

Resolution

Narrow
Theory
Resolution

Theory
Matings

Example

Examples

of Theory L1V 6LV Lim

Resolution

Empirical L21 \/ L22 .. V L2m

Results

LanLnZ"'Van
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vs partial): unconditioned (no R’s)

Definition (Path)

narrow (vs wide): Keys are unit

Theory Matings

A path through clauses G, ..., Gy, is a set of literals K; € C;.

Theorem ( Mating)

A set of clauses is T-unsatisfiable iff every path though it contains a

T -unsatisfiable set of literals.

Example

L1V L2
Lo V Lo

Lnl \ Ln2

...\/le
"'VL2m

...\/Lnm
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vs partial): unconditioned (no R’s)

Definition (Path)

narrow (vs wide): Keys are unit

Theory Matings

A path through clauses G, ..., Gy, is a set of literals K; € C;.

Theorem ( Mating)

A set of clauses is T-unsatisfiable iff every path though it contains a

T -unsatisfiable set of literals.

L1V L2
Lo V Lo

Lnl \ Ln2

...\/le
"'VL2m

...\/Lnm

cf. total narrow theory resolution



Examples of Theory Resolution
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vs partial): unconditioned (no R’s) narrow (vs wide): Keys are unit

Hyperresolution

® From the electron clauses K; V L; with K; a literal and L; a clause, and the
nucleus clause =K1V ---V = Kn V R derive L1 V---V L, VR.

® corresponds to:

e partial, narrow theory resolution, where
e =K1 V---V Ky V R is a consequence of the theory
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Hyperresolution

® From the electron clauses K; V L; with K; a literal and L; a clause, and the
nucleus clause =K1V ---V = Kn V R derive L1 V---V L, VR.

® corresponds to:

e partial, narrow theory resolution, where
e =K1 V---V Ky V R is a consequence of the theory

Procedural Attachment

® Expressions can be “evaluated” to produce new ones, e.g. 2 < 3 — true

® corresponds to:

e unary theory resolution,
e can be extended to attach procedures to sets of literals
eg. a<bb<c—a<c
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Paramodulation/Equality /Unification

e P(b) is a paramodulant of P(a) and a= b
e the empty clause is a E-resolvent of P(a),—P(b), and a = b
e a# bis a RUE-resolvent of P(a) and ~P(b)

e corresponds to:
e some form of binary-partial /total theory resolution, with equality theory
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Paramodulation/Equality /Unification

e P(b) is a paramodulant of P(a) and a= b
e the empty clause is a E-resolvent of P(a),—P(b), and a = b
e a# bis a RUE-resolvent of P(a) and ~P(b)

e corresponds to:
e some form of binary-partial /total theory resolution, with equality theory

Resolution for Modal Logic of Belief

e recognize unsatisfiability of- and resolve over modal belief literals, e.g.

OpVAOpPpDq)VB,-OgvC — AVBVC

e corresponds to:
o wide total theory resolution with theory of modal belief
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Christian 3. Girl(z) D Person(z)
Fritz 4. [Girl(z) A Sex(z,y)] D Female(y)
(presenter) 5. [NoSon(z)A Child(z,y)] D Girl(y)
6. [NeDaughter(z) A Child(z,y)] D Boy(y)
7. Person(z) D Sex(z,skl(z))
8. = —Female(z)
hypot hesis 9.
hypothesis 10.
negated conclusion 11.
resolve 11 and 5, simplify by 9 12.
resolve 12 and 3
resolve 7 and 13
resolve 11 and 6, simplify by 10 5 3
resolve 15 and 2 &l e x) D Male(z)
resolve 14 and 17 . Male(sk1(sk2))
resolve 8 and 18 (
resolve 12 and 4
resolve 14 and 20, simplify by 19 21.
E{aT”;g'o‘fy Figure 1: Resolution Proof for Childless Problem
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of Theory
Resolution hypothesis . NoSon(Chris)

hypothesis 10. NoDaughter(Chris)
negated conclusion . Child(Chris, sk2)
resolve 11 and 9 . Girl (sk2)

resolve 11 and 10, simplify by 12 o

Figure 2: KRyPTON Proof for Childless Problem
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Resolution hypothesis 9. NoSon(Chris)
hypothesis 10. NoDaughter(Chris)
negated conclusion 11.  Child(Chris, sk2)
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Built In  Inputted  Derived Retained  Successful Time Proof

Axioms Formulas Formulas Formulas Unifications (seconds) Length

none 11 10 20 37 1.1 9
1-8 3 2 5 4 0.4 2
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&
) > Plant(i(x
) > Likes-to-ca
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Rew e [[Animal(z) A Much-smaller(z,z) A Plant(w) A Likes-to-eat(z,w)] > Likes-to-eat(z,

Negated conclusion for Proof (a):
—Animal(z) V ~Animal (y) V =Grain( i (y,2) V —Likes-to-eat(z

Negated conclusion for Proof (b):
[Animal(z) A Animal(y)] D Grain(j(z,y))
—Animal(z) V - Animal (y) V —~Likes-to-eat( ,Y))V ~Likes-to-eat(z,y)

Axioms
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Snail(z) D Animal (z)
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[Caterpillar(x) A Bird(y)] > Much-smaller(z,y) Pl [ Plerb ), Plos o), Pla. o 5)})
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-Paxa | -Pabc 8 -Pawc |-Pwyw

Negated conclusion for Proof (a):
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—Animal(z) V = Animal(y) vV ~Likes-to-eat(y, j (z, y)) V ~Likes-to-cat(s, y)
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Built In  Inputted  Derived Retained  Successful Time Proof
Axioms Formulas Formulas Formulas Unifications (seconds) Length
none 26 4,518 72 245,820 5,694 61
1-6 20 2,751 119 57,100 1,261 27
1-10 16 257 23 3,602 88 32
1-13 13 215 37 3,353 73 32
1-14 12 115 23 2,494 54 32
1-18 8 310 20 11,130 224 17
none 27 & ? & ? ?
1-6 21 7,037 30 172,338 11,027 34
1-10 17 243 23 5,793 140 21
1-13 14 216 20 5,836 143 21
1-14 13 151 19 5,840 124 21
1-18 9 155 29 5,822 138 17




Mark
Stickel
(author)
Christian

Empirical Results

Fritz
(presenter)

Empirical
Results

Built In  Inputted  Derived Retained  Successful Time Proof
Axioms Formulas Formulas Formulas Unifications (seconds) Length
none 26 4,518 72 245,820 5,694 61
1-6 20 2,751 119 57,100 1,261 27
1-10 16 257 23 3,602 88 32
1-13 13 215 37 3,353 73 32
1-14 12 115 23 2,494 54 32
1-18 8 310 20 11,130 224 17
none 27 & ? & ? ?
1-6 21 7,037 30 172,338 11,027 34
1-10 17 243 23 5,793 140 21
1-13 14 216 20 5,836 143 21
1-14 13 151 19 5,840 124 21
1-18 9 155 29 5,822 138 17




Summary
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e Total theory resolution is possible if there exists a decision procedure for
deciding T-unsatisfiability of arbitrary sets of clauses over predicates in

the theory.
e Partial narrow theory resolution is possible if there exists a decision

procedure for deciding T-unsatisfiability of sets of literals under some
condition.
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Total Wide
Theory
Resolution
Narrow
Theory
Resolution
Theory
Matings

Examples
of Theory
Resolution

Empirical
Results

vs partial): unconditioned (no R’s) narrow (vs wide): Keys are unit

Summary

e Total theory resolution is possible if there exists a decision procedure for
deciding T-unsatisfiability of arbitrary sets of clauses over predicates in
the theory.

e Partial narrow theory resolution is possible if there exists a decision
procedure for deciding T-unsatisfiability of sets of literals under some
condition.

Theory Resolution is ..
e .. a nice generalization of many existing approaches,
e .. formalizes a way for integrating domain knowledge into resolution

e .. can reduce proof lengths and time



Critique
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e key selection criterion for partial narrow TR seems very strong
e no results for restrictions, “which should | use?”
e no empirical results on satisfiable cases

e moves part of problem into decision procedure of theory or in the
presented empirical problem into the preprocessing

hard to gage the practical impact
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