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Abstract

During the past several years, AI planning has
made major steps forward in terms of the size and
difficulty of problems that can be solved. In this
article we give an overview of the techniques that
have been part of the recent developments. Instead
of concentrating on individual planning systems,
we review the underlying principles behind many
of the successful planners. Most of the overview is
devoted to classical planning, that is fully determin-
istic planning with one initial state, and we discuss
more general forms of planning only briefly in the
end of the article.

1 Introduction
Research on AI planning had concentrated on the so-called
non-linear or partial-order planning algorithms (see for ex-
ample[McAllester and Rosenblitt, 1991]) until the introduc-
tion of the Graphplan algorithm in 1995 by Blum and Furst
[1997]. This algorithm had two characteristics that separated
it from earlier ones: it finds plans of a fixed length (that is
incrementally increased until a plan is found), and it uses
reachability information for pruning the search tree. These
differences brought the performance of Graphplan to a level
not seen in connection with earlier planners.

The success of Graphplan led the research community to
look at techniques outside the traditional AI planning toolbox.
Soon after the introduction of Graphplan Kautz and Selman
demonstrated that a general purpose satisfiability algorithm
can in many cases outperform Graphplan and other algo-
rithms specifically designed for AI planning[Kautz and Sel-
man, 1996]. This motivated researchers to investigate trans-
lating planning to other computational problems and using
solvers for them in finding plans. More recently, Bonet and
Geffner's HSP planners[Bonet and Geffner, 2001], which use
plain forward or backward chaining, have showed very good
performance on many benchmark problems, and increased in-
terest in heuristic search as a planning technique.

In this article we discuss the basic ideas related to some of
the more interesting recent approaches to planning. First we
discuss the constraint-based model that includes the Graph-
plan and the satisfiability planning approaches, among oth-
ers (Section 2). We identify the explicit representation of

fluent values at all time points as one of the properties of
the recent work that separates it from pre-Graphplan plan-
ners. This representation makes it easy to combine the ba-
sic planning algorithm with different kinds of constraints that
speed up plan search, for example reachability information
and domain-specific control information (Section 3), and to
handle parallel operator application efficiently.

The constraint-based model of classical planning allows
plan search in several alternative ways. The main approaches
have been backward chaining, as in the Graphplan algorithm,
and general constraint solving, as exemplified by the satisfi-
ability planning approach. The latter algorithms often need
far less search than backward chaining, but there is a cost to
pay: the amount of computation per search tree node is often
much higher than in a backward chaining planner. Depend-
ing on the type of problem instance at hand, the reduction
in the search tree size may dramatically outweight the more
expensive computation, and in other types of problems, not
much affect the search tree size and lead to an inferior per-
formance. Of course, asymptotically as problem instances
get bigger, any additional polynomial time computation that
leads to a sufficient reduction in the depth or branching factor
of the search trees is beneficial, but this might not show up in
problems of the size that can be practically solved.

Distance heuristics have recently caught the attention of the
research community, and we discuss some of the work in Sec-
tion 4. The techniques compute approximate distances be-
tween states, which helps in operator selection. For many of
the benchmark problems used by the research community, the
heuristics give a very good estimate of the distances, and plan
search even with a plain forward or backward chaining algo-
rithm can be very efficient. On some of the commonly used
benchmark problems, the problems that have been solved
this way have been far bigger than those solvable for ex-
ample with Graphplan or satisfiability planning. However,
these heuristic planners have been most successful in finding
non-optimal solutions to computationally easy (polynomial
time) planning problems, and the situation may be different
when optimal (shortest) solutions are needed and in connec-
tion with computationally more difficult problems (that are
NP-hard or PSPACE-hard) that inherently require search.

A strand of research that is based on a different way of
exploring state spaces uses ordered binary decision diagrams
(OBDDs) and is discussed in Section 5. So far, OBDD-based



algorithms for classical planning have been rather good on
certain benchmarks, but they also have had serious problems
with memory consumption, which is an inherent problem of
OBDDs. There may be planning problems where symbolic
breadth-first search as used by OBDD-based planners would
outperform other approaches to classical planning discussed
in this article, but it seems that the main applications are in
the more general forms of planning that are discussed in the
last section of the article.

Section 6 concludes the overview by a brief discussion
of algorithms for more general planning problems involv-
ing uncertainty and incomplete information. This kind of
planning is needed when there are more than one initial
state and when the operators and the environment are non-
deterministic. Many of the recent techniques for classical
planning can be generalized to this setting, but the algorithms
have a distinctly different flavor as the notion of plans is more
general than in classical planning.

2 Planning as a constraint satisfaction
problem

Many of the recent planning algorithms and translational ap-
proaches to planning look for plans of a given lengthn that is
increased step by step until a plan is found. Doing plan search
in this way has several benefits. First, shortest plans (in terms
of points of time) are found. Second, the descriptions of both
the initial and the goal states can be used for effectively infer-
ring fluent values at different time points, thereby reducing
exhaustive search. In this section we formalize planning in
this setting, as well as discuss different search techniques and
ways of constraining the search problems further.

Plan operators are pairshp; ei wherep (the preconditions)
ande (the effects) are sets of literals, that is atomic fluents
or negations of atomic fluents. Sometimesp is restricted
to atomic fluents. Fluents are often called state variables
or facts, and they assume different values at different time
points. An operator can be applied if its preconditions are
true, and as a result the effects become true. More general
definitions of plan operators can be given, for example with
arbitrary formulae as preconditions, and so-called conditional
effects in which the set of fluents that change is dependent on
the truth of some formulae. Most planners take schematic
plan operators (parameterized by the domain objects) as in-
put, but transform them to sets of operators like described
above.

2.1 Parallelism
An operator application in general means that the effects be-
come true and other, unaffected fluents preserve their truth-
values. However, it is not necessary to restrict to one operator
application at a time: several operators can often be applied
in parallel. This may reduce the planning effort substantially
because separately consideringn! different (but behaviorally
equivalent) orderings ofn mutually independent operators is
avoided.

The parallel application of operators is well-defined when
the operators do not interact. This means that the result of ap-
plying the operators in any order is possible and has the same

effect. A sufficient condition for this is that the operators do
not have contradictory effects and none of the operators falsi-
fies the preconditions of any other. Allowing parallel applica-
tion still more liberally is possible, and this sometimes leads
to even more efficient planning[Dimopouloset al., 1997].

2.2 Constraints on consecutive fluent values
From the above description of (parallel) operator application
the following characterization of possible sequences of oper-
ator applications can be derived. For a given initial state, the
application of a sequenceA0; A1; : : : ; An�1 of sets of op-
erators determines the fluent values at time points0; : : : ; n.
This can be viewed as a modelM that is a sequence of
propositional models, one for each time point. The truth
of a propositional formulaP or a set of formulaeP at t is
denoted byM j=t P . The application of operatorsAt =
fhp1; e1i; : : : ; hpm; emig at t must satisfy the following.

1. pi[ej is consistent for allfi; jg � f1; : : : ;mg such that
i 6= j.

2. M j=t pi for all i 2 f1; : : : ;mg.

3. M j=t+1 ei for all i 2 f1; : : : ;mg.

4. If an atomic fluentf occurs nowhere ine1 [ � � � [ em,
thenM j=t f iff M j=t+1 f .

The planning problem can now be described as follows.
Find a modelM (and setsA0; : : : ; An�1) that satisfies the
conditions 1-4, and satisfiesM j=0 I for the formulaI de-
scribing the initial state, and satisfiesM j=n G for the for-
mulaG describing the goals. There is suchM if and only if
there is a plan of lengthn.

Consider the problem of moving objectA from room 1 to
room 3 through room 2, and objectB from room 2 to room
1. We assume that there are three points of time, and hence
two sets of parallel operators can be applied respectively at 0
and 1. In Figure 1 on the left the description of the planning
problem is shown, and on the right one of the two solutions
with 3 time steps. The corresponding plan consists of oper-
ator move(A,R1,R2) at time 0 and operators move(A,R2,R3)
and move(B,R2,R1) at time 1.

2.3 Search techniques
Planning proceeds by trying to find plans of lengthn =
0; 1; 2; : : : until a plan is a found. Several approaches to plan
search have been proposed.

1. The Graphplan algorithm which uses backward chain-
ing (regression) starting from the description of the goal
states[Blum and Furst, 1997].
This corresponds to selecting the operators in the or-
derAn�1; An�2; : : : ; A1; A0. To reduce the amount of
search, Graphplan uses memoization: information from
failed subgoals are recorded so that isomorphic subtrees
of the search tree will not be traversed several times.

2. Translation to the satisfiability problem of the classical
propositional logic[Kautz and Selman, 1996] (satisfia-
bility planning.)
The descriptions of the goal and the initial states as well
as the conditions 1-4 are translated into propositional
logic, and plans are found by a satisfiability algorithm.



time t
fluent 0 1 2
at(A,R1) T
at(A,R2) F
at(A,R3) F T
at(B,R1) F T
at(B,R2) T
at(B,R3) F
operators 0 1
move(A,R1,R2)
move(A,R2,R3)
move(A,R3,R2)
move(A,R2,R1)
move(B,R1,R2)
move(B,R2,R3)
move(B,R3,R2)
move(B,R2,R1)

time t
fluent 0 1 2
at(A,R1) T F F
at(A,R2) F T F
at(A,R3) F F T
at(B,R1) F F T
at(B,R2) T T F
at(B,R3) F F F
operators 0 1
move(A,R1,R2) Y N
move(A,R2,R3) N Y
move(A,R3,R2) N N
move(A,R2,R1) N N
move(B,R1,R2) N N
move(B,R2,R3) N N
move(B,R3,R2) N N
move(B,R2,R1) N Y

Figure 1: The representation of a planning problem in terms of the fluent values at different time points, and a solution to the
problem that corresponds to a plan. Y in columnt means thato 2 At and N thato 62 At.

3. Translation to other NP-hard computational problems.
Several alternatives have been tried out, and the effi-
ciency with best solvers is often at the same order of
magnitude as with satisfiability algorithms. Some of
these include integer programming[Vossenet al., 1999;
Kautz and Walser, 1999], mixed integer linear program-
ming [Wolfman and Weld, 1999], nonmonotonic logic
programming[Dimopouloset al., 1997], and CSPs[van
Beek and Chen, 1999].

4. Direct solution by a specialized constraint solver[Rinta-
nen, 1998]. In contrast to the translational approaches,
planning-specific properties of the problem instances
may be taken advantage of and memory consumption
is much lower.

Finding plans in all the above approaches can be sped up
by constraining the search problems further. Different types
of declarative control information are discussed next.

3 Declarative control information
Many planning algorithms work by incrementally making a
description of a plan more complete, and they backtrack when
it turns out that the current incomplete plan cannot be ex-
tended to a full plan. It is critical to prune the search tree
by reducing the number of consecutive backtracking points
(the depth of the search tree) and the degree of backtracking
points (branching factor). Linear reduction in either yields an
exponential reduction in search tree size.

There are many types of declarative control information
that help reducing search effort. Some control information,
most notably invariants and planning graphs (Section 3.1),
contribute to detecting the impossibility of extending an in-
complete plan to a full plan, but do not affect the set of pos-
sible plans. Other forms of information, for example con-
straints derived from symmetries (Section 3.2) and domain-
specific constraints on operator sequences (Section 3.3), re-
duce the set of possible plans, but do not make a solvable

problem instance unsolvable.

3.1 Invariants and planning graphs
An important form of control information that can be derived
from the operator definitions and the initial state isinvariants.
Invariants are formulae that are true in the initial state and
are preserved by the application of every operator, and conse-
quently they are true in all states that are reachable from the
initial state.

Invariants are useful because they characterize the set of
reachable states of the planning problem. If a (possibly in-
complete) description of a state violates an invariant, it can-
not be reachable from the initial state, and for example a
backward chaining planner should reject that kind of subgoal.
Similarly, an incomplete descriptionM of states can be ex-
tended by using invariants: ifM j=t a holds and:a_ b is an
invariant, thenM j=t b must hold.

The connection to reachability leads to iterative algorithms
for computing invariants[Blum and Furst, 1997; Rintanen,
2000]. These algorithms iteratively compute sets of formu-
lae that describe an upper bound of the sets of states that
are reachable with an increasing number of operator appli-
cations from the initial state. When the upper bound changes
no more, the formulae are invariants. Blum and Furst use
the intermediate stages of the invariant computation for con-
structing planning graphs, which are useful in speeding up
backward-chaining planning algorithms, like Graphplan.

3.2 Symmetries
Many planning problems involve interchangeable objects that
cause state spaces to be highly symmetric. For example, a
transportation problem with two identical vehicles A and B
that are initially at the same location is symmetric with re-
spect to A and B: for all plans the roles of A and B can be
exchanged without affecting the correctness of the plans.

The existence of symmetries allows the reduction of search
effort. If a planner has determined that solving a certain prob-
lem with vehicle A is not possible, it is not necessary to try



to solve the same problem with vehicle B, and thereby the
amount of work is halved. The recognition of symmetries
may exponentially reduce the search effort as the number of
interchangeable objects increases.

Joslin and Roy[1997] give an algorithm that detects
symmetries in schematic representations of planning prob-
lems. The algorithm is based on recognizing automorphisms
in graphs. From the detected symmetries one can infer
symmetry-breaking constraints that prevent redundant work.

3.3 Domain-dependent control rules
Domain-independent planners are often not capable of solv-
ing certain classes of problems efficiently, even when very
effective domain-dependent techniques exist. Strategies for
solving such problems can often be expressed as domain-
dependent control rules that can be interpreted by a domain-
independent planner. Early work on such control rules relied
on procedural and planner dependent representations. Re-
cently, Bacchus and Kabanza[2000] have advocated a declar-
ative approach to control information that uses temporal log-
ics.

In classical planning an initial state and a plan determine a
sequence of truth-assignments to the fluents, which is essen-
tially a semantic model in a linear temporal logic. A temporal
logic formula can therefore be seen as expressing properties
of the desired plans. If it is required that the formula is true
in the model corresponding to a plan, the possible choices
of operators can be restricted. This may speed up planning
considerably.

Bacchus and Kabanza presented a procedure for interpret-
ing temporal logic formulae within a simple forward-chaining
planner. The progression procedure takes as input a state (the
current time point) and a formula, and evaluates the formula
with respect to the current fluent values (this evaluation is
only partial because the truth of the formula in general de-
pends on future fluent values), and derives a new formula that
the next time point has to satisfy. This formula is used in se-
lecting the next operator: if the state obtained by applying an
operator cannot satisfy the formula, that operator is rejected.

A formula for a transportation problem could state that a
vehicle must stay at a gas station until its tank is full.

(at(v; g) ^ gasstation(g))!(at(v; g)U fulltank(v))

HereU is the operatoruntil. In a state in which the vehicle
is at the gas station and its tank is not full, the progression
algorithm produces the following formula.

at(v; g)U fulltank(v)

When the planner considers an operator that takes the vehicle
away from the gas station without filling the tank, the pro-
gression algorithm detects the violation of the formula, and
the operator must be rejected.

4 Domain independent distance heuristics
The basic idea of heuristic search can be described as follows.
Derive an estimation function, a heuristic, that assigns to each
search state a value indicating how good that state is. Then,

during search, favor those states that seem to be best. The dif-
ficulty in applying this to domain independent planning lies
in the derivation of the heuristic.

The current techniques to derive heuristics for planning are
based on the number of operators that are needed for reaching
the goals. Solving this problem exactly is computationally
very difficult, and the techniques are based on relaxing the
problemP at hand into a simpler problemP 0 that can be
solved efficiently. The solution can be used for estimating the
difficulty of P .

A straightforward way to relax a planning problem is to
ignore the negative effects of all operators. This relaxation
has been proposed by Bonet et al.[1997]. Computing the
optimal relaxed solution length, which would yield an admis-
sible heuristic, isNP-hard[Bylander, 1994], so Bonet et al.
introduced a method for approximating that length. Facing a
search stateS, initialize theweightsof all fluents inS to 0,
and that of all other fluents to1. Then apply all operators.
For each operator with preconditionsp that adds a fluentf ,
update the weight off to

weight(f) := min(weight(f); weight(p) + 1):

Iterate the updates until the weight values of all fluents have
reached their fixpoint. It is assumed here that operators have
only positive preconditions. The weight of a set of fluents is
defined as the sum of the individual weights. The difficulty
of the state can be estimated as

h(S) := weight(G):

Here,G denotes the goal state of the problem at hand. Bonet
and Geffner use this estimation process in all versions of the
HSP system[Bonet and Geffner, 2001]. A variation of the
process, taking into account positive interactions between the
fluents, has recently been proposed by Hoffmann[2000].

In difference to the above estimation processes, going for-
ward from a state towards the goal, one can also estimate
backwards, from the goal to the current state. Such ap-
proaches have been proposed by McDermott[1996] and Re-
fanidis and Vlahavas[2000].

4.1 Planning with heuristics
Heuristic planners based on ignoring negative effects have
achieved extremely competitive runtime behavior on a lot of
the commonly used benchmark planning domains. At the
AIPS-2000 planning systems competition, four out of five
awarded fully automatic planners were based on, or at least
incorporating, that approach[Bacchus and Nau, 2001]. All
of those planners use the same naive search paradigm, state
space search. Their success is apparently due to the quality of
their heuristics on many of the current planning benchmarks.
The open question is how one can develop heuristic search
algorithms that work well on planning problems where ig-
noring negative effects yields estimates of less quality.

5 Planning with ordered binary decision
diagrams

Ordered binary decision diagrams[Bryant, 1992] have been
extensively used in computer-aided verification, especially in
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Figure 2: An OBDD

symbolic model-checking, that is formal verification of tran-
sition systems (a communication protocol, a circuit, a pro-
gram) with respect to correctness properties. These proper-
ties are typically expressed in a temporal logic. If the transi-
tion system does not have the desired property, the model-
checker attempts to produce a counterexample, which is a
transition sequence that violates the property. Classical plan-
ning is equivalent to the model-checking (and counterexam-
ple generation) problem restricted tosafetyproperties that
say that states with a given undesired property should not
be reachable. These states correspond to the goal states
in planning, and the corresponding counterexamples (transi-
tion sequences) are plans. Techniques developed for model-
checking are therefore directly applicable to AI planning, and
vice versa.

Model-checking (and AI planning) can be performed by
explicitly enumerating the state space and finding transition
sequences by algorithms that traverse graphs. However, the
numbers of states in transition systems are often high, and
explicit enumeration of the state space is therefore often not
possible. Algorithms that need to handle large state spaces
have to represent them implicitly, for example as ordered bi-
nary decision diagrams[Bryant, 1992].

Ordered binary decision diagrams provide an efficient
canonical representation of Boolean functions. Two OBDDs
are logically equivalent if they are the same OBDD. The
negation of an OBDD and the conjunction and disjunction of
two OBDDs can be computed relatively efficiently. Because
of these properties, OBDDs are applied in symbolic model-
checking of transition systems and in verifying the equiva-
lence of combinatory circuits. Even though OBDDs are often
efficient, in more complex applications their size and mem-
ory requirements become prohibitively high, and this is their
main drawback.

OBDDs are based on the ternary Boolean operator if-then-
elseite(p; �1; �2) defined as(p ^ �1) _ (:p ^ �2), where
p is a propositional variable. Any Boolean formula can be
represented by using this operator together with propositional
variables and the constants true and false. Figure 2 depicts an
OBDD for the formula(A_B)^ (B_C). The normal arrow
coming from a node forP corresponds to the case in which
P is true, and the dotted arrow the case in whichP is false.

5.1 Representation of transition systems as
OBDDs

The usefulness of OBDDs in representing transition systems
was discovered by MacMillan et al. at the Carnegie-Mellon
University in the end of 1980's. The transition relation of
the transition system and the sets of reachable states can be
represented as OBDDs, and relevant operations on sets of
states can be performed by straightforward OBDD manipu-
lation [Burchet al., 1994].

A transition relation expresses which combinations of
truth-values are possible for the fluents in the predecessor and
in the successor state. For example, the transition relation for
a plan operatoroi with preconditionp1^p2^:p3 and effects
p2;:p3; p4 is represented by

�i =

precondition
z }| {

p1 ^ p2 ^ :p3 ^(p1 $ p01)^

effects
z }| {

p02 ^ :p
0

3 ^ p04 ^(p5 $ p05);

that is, the precondition and the effects are true, and fluents
not occurring in the effects preserve their truth-values. Here
p1; : : : ; p5 represent the fluents in the predecessor state and
p01; : : : ; p

0

5 represent the fluents in the successor state. Transi-
tion relation� for all n operators is�1 _ � � � _ �n.

Given an initial stateI that assigns a truth-value to every
fluent or a descriptionG of goal states that assigns truth-
values to some of the fluents, we are interested in finding
out which states are reachable fromI and from which states
the statesG are reachable. For this the computation ofim-
agesand preimagesof sets of states under� are needed.
Here we use preimage computations only. The preimage
preimg�(S) of statesS under� is computed by first renam-
ing variablespi to p0i in S to obtainS0, and then computing
9p01p

0

2 � � � p
0

n(S
0 ^�). Here9p� means�[T=p] _ �[F=p].

5.2 An OBDD-based planning algorithm
An OBDD-based planner can be easily constructed on the ba-
sis of image or preimage computation, and the resulting al-
gorithm is a special case of algorithms for model-checking
and construction of counterexamples[Burch et al., 1994;
Clarkeet al., 1994]. The traversal of the state space corre-
sponds to breadth-first search, and there is the choice between
forward traversal starting from the initial stateI (by image
computations) and backward traversal starting from the goal
statesG (by preimage computations). We discuss the back-
wards case only. Below, the setsDi consist of states from
which some state inG is reachable byi operator applications
or less.

D0 = G

Di = preimg�(Di�1) [Di�1; for i � 1

The computation is terminated whenI 2 Di for somei. Now
i is the number of operators needed for reachingG from I ,
and a plan is a sequence of operators each of which reaches a
state that is one step closer to a goal state.

s := I
for j := i� 1 to 0 do

output o 2 O such that applyingo in s yieldss0 2 Dj

s := s0



end for

Planners based on variations of state-space exploration by
OBDDs as described above have been presented by several
researchers. The first one was by Cimatti et al.[1997].

6 Conditional and probabilistic planning
The classical planning problem considered in this overview
so far is a special case of the problem of planning under
uncertainty and incomplete information, often calledcondi-
tional planningor probabilistic planning. The former term
sometimes refers only to the special case in which the exact
probabilities of possible events are ignored.

The more general problem arises because the world in
which the plans are executed is not completely known or can-
not be completely observed, and events taking place during
plan execution may be nondeterministic. Because of these
properties, it is not in general possible to determine before-
hand one single sequence of operators that would always
reach the goals. Instead, the plans have to choose the op-
erators during execution based on the observations concern-
ing the events that actually have taken place. Such plans ex-
plicitly assign an operator to every possible state, or take the
form of a program in a simple programming language with
operators as atomic statements and conditional and loop state-
ments, or, equivalently, as finite automata.

Many of the recent algorithms for conditional and proba-
bilistic planning are generalizations of algorithms for classi-
cal planning that we have already described. In this section
we briefly discuss some of the main approaches.

6.1 Planning with ordered binary decision
diagrams

OBDDs have successfully been used for classical planning, as
discussed in Section 5, but their benefits fully show up when
a lot of uncertainty and incompleteness is involved.

Cimatti et al.[1998] generalize their earlier work[Cimatti
et al., 1997] to universal/reactive/conditional planning with
several initial states, nondeterministic operators and environ-
ment. This works as follows. Starting from the goal states,
the sets of states from which a goal state is reachable with
n � 0 steps or less are computed. When for somen the set
includes all initial states, a plan has been found. During the
computation, each state is associated with an operation that
is along a shortest path to a goal state. Plans are executed
by repeatedly observing the current state and executing the
operator associated with the state.

In the work by Cimatti et al. discussed above, full ob-
servability was assumed. Another extreme is that none of
the fluents are observable. This has been calledconformant
planning. Now the plans are sequences of operators, just like
in classical planning, because acting differently in different
situations is not possible. Cimatti and Roveri[2000] pro-
pose an OBDD-based approach to conformant planning. Plan
construction is based on representing sets of sets of possible
current states (sets of belief states) as OBDDs. Each opera-
tor maps belief states to belief states, and plans are found by
backward chaining from the goal states.

The Markov decision processes[Puterman, 1994] model
of sequential decision making generalizes many types of AI
planning. A main difference between most of the work in that
area and in AI planning is that AI planners do not represent
the transition relations associated with state spaces explicitly.
Recently there have been works that combine MDPs with the
representation of the underlying transition systems as plan
operators. For example, Hoey et al.[1999] perform value
iteration on Markov decision processes that are represented
as algebraic decision diagrams, which is a generalization of
ordered binary decision diagrams.

6.2 Heuristic search

Bonet and Geffner[2000] view conditional and probabilistic
planning as heuristic search in the belief space. Each belief
state corresponds to a set of states of the underlying planning
problem. Plans are found by algorithms like A� and real time
dynamic programming. State spaces are represented explic-
itly.

6.3 Constraint-based planners

The Graphplan algorithm has been generalized to conformant
planning by Smith and Weld[1998]. The algorithm con-
structs a planning graph for every initial state, and during plan
search the subgoals are compared to every planning graph.
This guarantees the correctness of the plan for every initial
state.

There are also generalizations of Kautz and Selman's sat-
isfiability planning to conditional and probabilistic planning.
Majercik and Littman[1999] translate probabilistic planning
into stochastic satisfiability (SSAT), which is an extension of
the propositional satisfiability problem to randomized (prob-
abilistic) quantifiers. Rintanen[1999] translates conditional
planning into quantified Boolean formulae (QBF). The plan-
ning problems that have been solved by using SSAT/QBF
have so far been relatively small.

7 Conclusions
We have discussed a number of techniques that have proved
to be useful for AI planning. Many of the developments in
the research area are orthogonal to each other, and different
successful planners have addressed different aspects in plan
search. For example in the context of Graphplan and satisfi-
ability planning, general purpose inference techniques were
emphasized. Recent planners that use distance heuristics dis-
pense with the inference aspect almost completely, rely on
plain forward or backward chaining, and do not use reacha-
bility or other techniques for pruning search trees. These ap-
proaches have strengths in different types of problems, and a
main challenge in the research field is to discover algorithms
that show a strong performance on a wider range of problems
than any of the current algorithms.

Research on algorithms for conditional and probabilistic
planning has also accelerated during the last decade. This
research area has close connections to problems addressed in
other areas in computer science, such as program synthesis,
as well as to operations research and control theory.
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