|
by

< [Automated
b 4 Theorem Proving

< Ih Scott Sanner, Guest Lecture
| Topics in Automated Reasoning
Thursday, Jan. 19, 2006

«l
I Introduction
Xl

< Ih * Def. Automated Theorem Proving:

I Proof of mathematical theorems by a
< _ computer program.

|. * Depending on underlying logic, task
& varies from trivial to impossible:
— Simple description logic: Poly-time
- Propositional logic: NP-Complete (3-SAT)
Ih — First-order logic w/ arithmetic: Impossible

.

l i
I Applications
al

Jh s Proofs of Mathematical Conjectures
< — Graph theory: Four color theorem
J - Boolean algebra: Robbins conjecture

)|

s Hardware and Software Verification
“ — Verification: Arithmetic circuits
)| - Program correctness: Invariants, safety

< “_ * Query Answering
- Build domain-specific knowledge bases,
use theorem proving to answer queries

X
I Basic Task Structure
a

Jh s Given:
< — Set of axioms (KB encoded as axioms)
Jh - Conjecture (assumptions + consequence)

< s Inference:
< “_ - Search through space of valid inferences

- Proof (if found, a sequence of steps

| s Output:
)| _

deriving conjecture consequence from
J axioms and assumptions)

)

.

| “_ Many Logics / Many Theorem

M“ Proving Techniques
“

Jh Focus on theorem proving for logics
< with a model-theoretic semantics (TBD)

o o Logics:
“ - Propositional, and first-order logic
_ - Modal, temporal, and description logic

)|

H“ s Theorem Proving Techniques:
«(- Resolution, tableaux, sequent, inverse
J“ — Best technique depends on logic and app.

)

l “_ Example of Propositional
H“ Logic Sequent Proof
«|

Jh o Given: » Direct Proof:
< - Axioms: (m
| None

| — Conjecture:
“_ A O=A ?

Al-A

o Inference:

- Gentzen
Sequent
Calculus

.

| “_ Example of First-order Logic

|
Jh s Given:

< — Axioms:

[Ix Man () = Moxrtal ()

Man(Soecrates)

— Conjecture:
[0y Mortal(y) 2

o Inference:

— Refutation
Resolution

M“ Resolution Proof

 CNF:

=sMan () M Mortal(x)
Man(Socrates)
sMortal(y) [Neg. conj.]

» Proof:

1. =sMaertal(y) [Neg. conj-]

2. =Man(x) OiMortal(>) [Given]
3. Man(Soecrates) [Given]

4. Mortal(Socrates) [Res. 2,3]
5. O [Res. 1,4]

Contradiction = Conj. IS true

o “_ Example of Description Logic
M“ Tableaux Proof
«|

Jh o Given:

- Axioms:

Jh Noene

— Conjecture:
“_ @ Child.-Male =
|
| “_ o Inference:
- Tableaux
I

.

«

)

[H Child. Maler 2

 Proof:
Check unsatisifiability of
child.~Male [| @ Child.Male

x: mchild.—Male [@ child. Male
x: O Child.Male [[] -rule]
x: child.=Male [[T -rule]
Xz Child'y [C-rule]

y: =Male [C-rule]

y: Male [O-rule]
<CLASH>

Contradiction = Conj. IS true

[

l
0 Lecture Outline
al

Jh s Common Definitions
« - Soundness, completeness, decidability

Jh s Propositional and first-order logic
- Syntax and semantics
“_ — Tableaux theorem proving

— Resolution theorem proving

s Strategies, orderings, redundancy, saturation
optimizations, & extensions

s Modal, temporal, & description logics
- Quick overview of logics / TP techniques

l
I Entailment vs. Truth
«l

Jh s For each logic and theorem proving
approach, we’ll specify:
— Syntax and semantics
— Foundational axioms (if any)
- Rules of inference

«

Entailment vs. Truth

— Let KB be the conjunction of axioms

— Let F be a formula (possibly a conjecture)

— We say KB |- F (read: KB entails F) if F can be
derived from KB through rules of inference

— We say KB |= F (read: KB models F) if semantics
hold that F is true whenever KB is true

)

.

|
n.

|. Model-theoretic semantics
«

}_ s Model-theoretic semantics for logics
— An interpretation is a truth assighment to atomic
elements of a KB: I(C,D) = {(F,F), (F,T), (T,F), (T,T)}
- A model of a formula is an interpretation where
it is true: I(C,D) = (F,T) models C[D,C—D; but not CD
— Two properties of a formula F w.r.t. axioms of KB:
o Validity: F is true in all models of KB
o Satisfiability: F is true in =1 model of KB

|. o Think of truth in a set-theoretic manner

Models of KB
[l Models of C

« l. Soundness, Completeness,
|. and Decidability
«l

Ih s Two properties of ATP inference systems:
il — Soundness: If KB |- C then KB |= C
_ — Completeness: If KB |= C then KB |- C

s For a given logic, an ATP decision
procedure returns true or false for KB |- C

2|

» For a logic, a sound and complete decision
P F logi d and | decisi
procedure has one of following properties:

— Decidable: Decision procedure guaranteed to
terminate in finite time

— Semidecidable: Decision procedure guaranteed
Ih to terminate for either true or false, but not both

— Undecidable: No termihation guarantee

.

i
l

I Prop. Logic Syntax
al

Jh » Propositional variables: p, rain, sunny
| s Connectives: = - - 0[O

Jh * Inductive definition of well-formed
| formula (wiff):

— Base: All propositional vars are wifs
— Inductive 1: If A is a wff then -A is a wff
— Inductive 2: If A and B are wffs then
| ACB,A0B,A= B, A - B are wffs
o Examples:
- rain, rain = - sunny
— (rain = - sunny) = (sunny = -rain)

)|

X
I Prop. Logic Semantics
al

Jh o For a formula F, the truth I(F) under
interpretation |l is recursively defined:

- Base:
e F is prop var A then I(F)=true iff I(A)=true

- Recursive:
e F is - C then I(F)=true iff I(C)=false
o F is C [D then I(F)=true iff I(C)=true & I(D)=true
o F is C [/ D then I(F)=true iff I(C)=true or I(D)=true
e F is C — D then I(F)=true iff I(-=C [l D)=true

<| ° Fis C -~ D then I(F)=true iff I(C — D)=true &
I(D — C)=true

«

P Jh s Truth defined recursively from ground up!

.

<Hh

0 CNF Normalization
al

J s Many prop- theorem proving techniques req-.
P KB to be in clausal normal form (CNF):

— Rewrite allC - DasC=D[D=C
— Rewrite allC = D as -C (0D

— Push negation through connectives:
e Rewrite -(C (ID) as -C [1-D
e Rewrite -(C [ID) as -C [1-D

- Rewrite double negation - - Cas C
— Now NNF, to get CNF, distribute [over [&
* Rewrite (C (/D) [JE as (C [IE) [I (D [E)
» A clause is a disj. of literals (pos/neg vars)
i e Can express KB as conj. of a set of clauses

H“ CNF Normalization Example
|

J e Given KB with single formula:
| — = (rain = wet) = (inside [warm)
J * Rewrite allC — D as -C D
_ — = = (- rain [wet) [(inside [I warm)
s Push negation through connectives:
— (- = - rain = - wet) Ll (inside [warm)
| *» Rewrite double negation - - €C as C
_ — (- rain [wet) [(inside [I warm)
] * Distribute [over [t
J — (-rain Owet [Jinside) [(-rain [lwet [Jwarm)

2|

P o CNF KB: {-rain wet [inside, -rain [Iwet [iwarm}

.

[
«(

§ Prop. Theorem Proving
<

Iy ° A = B iff A -B is unsatisfiable

| e Decision procedure for propositional
logic is decidable, but NP-complete
(reduction to 3-SAT)

o State-of-the-art prop. unsatisfiability
methods are DPLL-based

Instantiate prop vars

A

true false

— until all clauses falsified,
B B

backtrack and do for all
true/ \false true/ \false instantiations = unsat!

* Many optimizations, more next week

«l
““ Prop. Tableaux Methods
«l

Given negated query F (in NNF), use rules to
«l recursively break down:
— o-Rule: Given AB add A and B
— B-Rule: Given ALB branch on A and B
— (Clash): If A and - A occur on same branch
— Clash on all branches indicates unsat!

All-A0-B0OB

A [0 = A B-Rule =B [0 B B-Rule
A a-Rule =B a-Rule
A a-Rule B a-Rule
(Clash) (Clash)

Note: Inverse method is inverse of tableaux - bottom up

.

<Hh

““ Propositional Resolution
al

Jh s One rule:

Rule: Example application:

«|

J A OB =B [OE -precip H=freezing Msnow =snow, Hslipperny

A [LC s|precipr Hi=freezing Eslippery.

s Simple strategy is to make all
“_ possible resolution inferences

e Refutation resolution is sound and
complete

X
I Resolution Strategies
a

J Need strategies to restrict search:
— Unit resolution:
o Only resolve with unit clauses
s Complete for, Horn KB
o Intuition: Decrease clause size
— Set of support:
s SOS starts with query clauses

o Only resolve SOS clauses with non-SOS clauses
and| put resolvents in SOS

o Intuition: KB should be satisfiable so refutation
should derive from query

— Input resolution:
s At each step resolve only with input (KB or query)
s |.e., don’t resolve non-input clauses
s Linear input: also allow ancestor — complete

.

i
o

0 Ordering Strategies
a

}_ e Refutation of a clause requires
| refutation of all literals

Ih o Enforce an ordering on proposition
elimination to restrict search
- Example order: p then r then q

- General idea behind Davis-Putham (DP) &
directional resolution (Dechter & Rish)

o Effective, but does not work with all
resolution strategies, e.g. SOS +
ordered resolution is incomplete

|. Prop. Inference Software
|

W) - Mainly DPLL SAT algorithms
|

— zChaff - highly optimized & documented
Ih DPLL solver, source available

- siege - best performing DPLL solver,
source not available

)
|. — 2clseq - DPLL solver with constraint
| propagation (balance search / reasoning)

|. » For some applications: BDDs

< - BDDs maintain all possible models in a
canonical data structure

o - CUDD ADD/BDD Package - very efficient

.

11

<Hh

I First-order logic
al

J » Refer to objects and relations b/w them
4 " . Propositional logic requires all

Jh relations to be propositionalized
)

- Scott-at-home, Scott-at-work,
Jim-at-subway, etc...

“_- Really want a compact relational form:

- at(Scott, home), at(Scott, work),
H“ at(Jim, subway), etc...

* Then can use variables and quantify
over all objects:
- [Ox person(x) = [y at(x,y) * place(y)

al
§ First-order Logic Syntax
a

J“ » Terms (technical definition is inductive b/c of fns)
- Variables: w, x, y, z

J — Constants: a, b, c, d

_ — Functions over terms: f(a), f(>.y), f(x,c.f(f(z)))

< * Predicates: P(x), Q(f(x,y)), R(x, f(x,f(c,z),c))

“ e Connectives: —> - - [0

| * Quantifiers: [/ [0

H“ » Inductive wiff definition:
— Same as prop: but with following modifications...

Jh — Base: All predicates over terms are wiffs

«

|

— Inductive: If A is a wff and x is a variable term
<| then Ox A & [x A are wffs

.

<Hh

M“ First-order Logic Semantics
«]

Jh s Interpretation | = (A',s')
« - A'is a non-empty domain

Jh - «'maps from predicate symbols P of arity n
P into a subset of x, A A' (where P is true)

“_ s Example
- Al is {Scott, Jim}
- «'maps at(-,*) into { (Scott, loc(Scott)),
(Jim, loc(Jim)) }
— All other ground predicates are false in |,
e.g. at(Scott, loc(Jim)), at(Scott, Scott)

o NB: FOL has «x interpretations/models!

M“ Substitution and Unification
«|

i ° Substitution
— A substitution list 8is a list of variable-term pairs
° e.g., 0={x/3,y/f(z)}
— When 6 is applied to an FOL formula, every free

occurrence of a variable in the list is replaced
with the given term

* e.g. (POy) " [x P(x,y))6 = P(3,f(z)) * [x P(x,f(z))
* Unification / Most General Unifier
— The unifier UNIF(x,y) of two predicates/terms is a
substitution that makes both arguments identical
* e.g. Unif(P(x.f(x)), P(y; f(f(z)))) = {x/f(1), y/f(1), z/1}
— The most general unifier MGU(x,y) is just that...

all other unifiers can be obtained from the MIGU
<| by additional subst. (MGU exists for unifiable args)

* e.g. MGU(P(xf(x)), P(y; f(f(2)))) = {x/f(2), y/f(z)}

.

13

[

o
0 Skolemization
a

Jh s Skolemization is the process of getting rid
| of all [iquantifiers from a formula while
preserving (un)satisfiability:
— If ix quantifier is the outermost quantifier,

remove the [quantifier and substitute a new
constant for x

— If ix quantifier occurs inside of [quantifiers,
remove the [quantifier and substitute a new
function of all [quantified variables for x

Examples:
— Skolemize(bw [x [y [z P(w,x,y,z)) =
by 0z P(c,d,y,z)
— Skolemize([w [x [y [z P(w,x,y,z)) =
bw [y P(w,f(w),y,f(x,y))

X
I CNF Conversion
a

Jh CNF conversion is the same as the
propositional case up to NNF, then do:

«

o Jh - Standardize apart variables (all quantified
variables should have different names)
“ e e.g. [x A(x) [1[x -A(x) becomes [Ix A(x) [l Ly —A(y)
— Skolemize formula
e e.g. [x A(x) [[y -~A(y) becomes [Ix A(x) [I-A(c)
— Drop universals
° e.g. [x A(x) [I=A(c) becomes A(x) [I-A(c)
— Distribute [over [

)

.

<Hh

N“ First-order Theorem Proving
«l

Jh o Tableaux methods

- Preferred for some types of reasoning and for
subsets of FOL (guarded fragment, set theory)

— Highly successful for description and modal
logics which conform to guarded fragment of FOL

* Resolution Methods
— Most successful technique for a variety of KBs
— But... search space grows very quickly

- Need a variety of optimizations in practice
o strategies, ordering, redundancy elimination

* FOL TP complete ©, but semidecidable ®
— Will return in finite time if formula entailed
— May run forever if not entailed

H“ First-order Tableaux
|

Given negated query F (in NNF), use rules to
recursively break down:
— 0-Rule, B-Rule: Same as for prop tableaux
— y-Rule: Given [x A(x) add A(?v) for variable ?v
— &-Rule: Given [ix A(x) add A(f) for Skolem function f
— (Clash): If unifiable A and - A occur on same branch

[O>c A(¢) O e —A(X) O ey —B(x,y) O Ox,y B(>,y)

Ox A(x) 0Ox -A(x) B-Rule || Dx,y -B(x,y) 0 Ox,y B(x,y) B-Rule
A(?y) aly-Rule ||-B(c,d) a/5/5 -Rule
-A(c) a /o -Rule | | B(?y,?2) a/yly-Rule
(Clash) (Clash)

.

[

al
““ First-order Resolution
al

Jh » Binary Resolution Rule

<| Rule: Exampleapplication:

Jh COD -EOF P(3)LQf))R(Y) ~ Q)
| ——————— 6-MGU(DE) —mmm8 ———
| (C TF)P P(3) HR(()

d = « Factoring Rule

“_ Rule: Example application:

C ED LE P(Z) HQ(3) HQ(2)
Jh ———— B=MGU(C,D) s —————
COE R(3)I H Q(3)

«|

)

.

| “_ Example of First-order Logic

M“ Resolution Proof

«(
Jh o Given: » CNF:

=sVian () [E Morrtal(x)

Man(Socrates)
sMortal(y) [Neg. conj-|

< — Axioms:
[Hx: Man(>x)r = Morrtal(x)
Man(Secrates)

— Conjecture: s Proof:

Ly Mortal(y) 2 . =Mortal(y) [Neg. conj.]

1
2. =Man(x) OiMortal (<) [Given]
“_ s Inference: 3. Man(Soecrates) [Given]
4. Mortal(Socrates) [Res. 2,3]
5. O [Res. 1,4]
Contradiction = Conjl. IS true

— Refutation
Resolution

.

16

<Hh

I Importance of Factoring
a

e Without the factoring rule, binary
resolution is incomplete

For example, take the following
refutable clause set:

— { A(w) v A(2), ~A(y) v ~A(2) }

All binary resolutions yield clauses
of the same form

Clause set is only refutable if one of
the clauses is first factored

X
I Search Control
a

Additional refinements of prop strategies
l yield goal-directed / bottom-up search:

— SLD Resolution
* KB of definite clauses (i.e. Horn rules), e.qg.
Uncle(?x,?y) := Father(?x,?z) [Brother(?x,?y)
o Resolution backward chains from goal of rules
o With negation-as-failure semantics, SLD-
resolution is logic programming, i.e. Prolog
— Negative and Positive Hyperresolution

e All negative (positive) literals in nucleus clause
are simultaneously resolved with completely
J positive (hegative) satellite clauses
_ o Positive hyperres yields backward chaining

<| » Negative hyperres yields forward chaining

.

17

<Hh

““ Database-style Inference
«

Naive approaches to resolution perform one
inference per step

For SLD or neg. hyperres and KBs w/ large
numbers of constants / functions, can store
clause terms and perform DB-like res, e.g.
— CNF KB = { R(a,b), R(b,a), R(b,c), R(c,b),
_'R(X,Y) [m "R(Y!z) [m R(X,Z) }

— Use DB join/project during SLD or neg. hyperres:

R(x.v) R(v.2) R(x.7)

{@b) (pa), X {(ab)da) = {(aa) @c) bb)

(b.c), (c.b)} (b.c), (c.b)} {c.c), (c.a) (c.c)}

Can cache inferences for reuse (tabling)
Huge improvement for instance-heavy KBs

l
I Term Indexing
«l

Jh s Term indexing is another general technique
for fast retrieval of sets of terms / clauses
matching criteria

«

s Common uses in modern theorem provers:
— Term) g is unifiable with term t, i.e., [s.t. g6 = tO
- Term t is an instance of g, i.e., (B s.t. g8 = t
Term t is a generalization of g, i.e., [® s.t. g = tO
Clause g subsumes clause t, i.e., [® s.t. g8 [] t

Clause g is subsumed by clause t, i.e., [0 s.t. t0 [g

o Techniques: (Google for “term indexing”)
- Path indexing
<| — Code, context, & discrimination trees

.

x L
I Age-weight Ratio
al

} s During a resolution strategy, have two sets:
<| — Active: Set of active clauses for resolving with
— Frontier: Candidate clauses to resolve with Active

< Ih s |dea: Store the frontier in two queues
— Age queue: Standard FIFO queue

|. — Weight queue: Priority queue where clause priority
4 determined by heuristic measure:

s Number of literals, number of terms, etc...

|. » A:W ratio: Choose A clauses from age queue
« for every W chosen from weight queue
I“ — Retains completeness of strategy if A is non-zero
* l.e., fair b/c all clauses eventually selected
4‘ — Can speed up inference by orders of magnitude!

.

i
X

I Redundancy Control
a

Redundancy of clauses is a huge problem in
FOL resolution

— For clauses C & D, C is redundant if [s.t. CO60 D
as a multiset, a.k.a. 6-subsumption

— If true, D is redundant and can be removed

o Intuition: If D used in a refutation, C6O could/ be
substituted leading to even shorter refutation

Two types of subsumption where N is a new
resolvent and A [Active:

- Forward subsumption: A 6-subsumes N, delete N

— Backward subsumption: N 6-subsumes A, delete A

Forward/backward subsumption expensive
but saves many redundant inferences

.

19

|

by

|. Saturation Theorem Proving
«

}_ e Given a set of clauses S:

«(— S is saturated if all possible inferences
I from clauses in S generate forward
_ subsumed clauses

< - Thus, all new inferences can be deleted
|. without sacrificing completeness
)

- If S does not contain the empty clause
then S is satisfiable

. o Saturation implies no proof possible!

Ih s Usually need ordering restrictions to
reach saturation (if possible)...

«l
I Simplification Orderings
Xl

Ih For complete ordered resolution in FOL,
« must use term simplification orderings:

— Well-founded (Noetherian): If there is no
o infinitely decreasing chain of terms s.t.
to-t -t ... >t

| — Monotonic: If s > t then f[s] > f [t] (f[s] and
| f[t] are identical except for [term])

| — Stable under Subst.: If s ~ t then s0 ~ t0

| Examples: (Google for following keywords)
Ih — Knuth-Bendix ordering
a - Lexicographic path ordering

.

<Hh

M“ Literal Ordering & Selection
|

J e Can extend term ordering to literals ;-

- If literals equal but opposite signh, then
negative literal >, positive literal

- Otherwise, treat literals as terms (modulo sign)
and literal ordering >, is just term ordering >

s A selection function selects literals, and
must adhere to following rules:
— At least one literal must be selected

— Either a negative literal is among the selection,
or all maximal positive literals w.r.t. >~ are
selected

J“ s Show selected literals by underscore
- e.g, {AD-BO-C,DOEO-F,-GOHDOI}

H“ Ordered Resolution w/ Selection
«]

p Jh » Binary Ordered Res w/ Selection
Rule: Example application:

Wcip c0F P(@)HO(AIR(Y) =0
4" ——— 6 VeGUDE) ———————
| (€ OIF)8 P(3) D R(f(%)

2| s Ordered Factoring w/ Selection

| “_ Rule: Example application:

< CODOE P(2) HIQE) 0@
Iy ———— 6-MGU(C D) -
< COOE P(3) 0Q@3)

.

|
by

H“ Clause Orderings & Redundancy
«]

Must define specialized redundancy criterion
for forward and backward subsumption /
deletion when using ordered resolution:
— Define bag (clause) extension of literal ordering:

* DGY sV by D€ 53X 5V g9mm3Y i} iF O X >0 X
— Can define redundancy w.r.t. ~ bag ordering:

e Clause C is redundant w.r.t. set of clauses S, if
0C4.-.5C, 08, n20,s.t. (i C; <,,, Cand C,,...,C, [=C
- Under ordered res, even if C 6-subsumes D; D is not

redundant (and can’t be deleted) unless C <, D

NB: Search restrictions of ordered res far
outweigh weakened notion of redundancy

Ordered res is effective saturation strategy!

«l
I Equality
Xl

J s A predicate w/ special interpretation

s Could axiomatize:
- X=X (reflexive)
- X=y — y=X (symmetric)
x=y [ly=z — x=z (transitive)
For each function f:
© x1=Y1 D e D xn=Yn = f(x1!“'!xn)=f(y1!“'!yn)
- For each predicate P:
© x1=Y1 D e D xn=Yn D P(x1!“'!xn) = P(y1!'“!Yn)
Jh » Too many axioms... better to reason
about equality in inference rules

)

.

22

< N Inference
0 Rules for Equality
2

Jh * Demodulation (ihncomplete)
«|

Rule: /Literal containing z Example application:

Jh x=y L[z] OD x=1(x) P(3) I ®
— 0=MGU(X%2) ———————
| Ly®] U'D R(f(3)) HQ

d = « Paramodulation (complete)

“_ Rule: X Literal containingz Example application:

< x=y 0C L[z OD X=1(X)EC P(3)=Q
J“ —— 0=MGU(x,2) ————— 6={x/3
P (Ly]i&iC [E'D)6 P(i(3))ECLQ

.

i
X

I Equational Programming
al

Jh » Used extensively for algebraic group

l theory proofs

Jh e All axioms and conjectures are unit
equality predicates with arithmetic
functions on the LHS and RHS, e.g.

— a“*(x+y) = a*x+a’y ?

* In this case, associative-
commutative (AC) unification
Jh (Stickel) important for efficiency, e.g.

P - MGU(x+3*y*y, z*3*z+1) = {x/1, y/z}

.

23

< N First-order theorem
0 proving software
a

«|

)

}_ Many highly optimized first-order

.

theorem proving implementations:

— Vampire (15t place for many years in
CADE TP competition)

— Otter (Foundation for modern TP, still
very good, usually 2"d place in CADE)

— SPASS (Specialized for sort reasoning)
- SETHEO (Connection tableaux calculus)

- EQP (Equational theorem proving
system, proved Robbins conjecture)

Ever since the 1970s, Il at various times investigated
using autemated theorem-proving systems. But it
always seemed that extensive human input--typically.
from the creators ofi the system--was needed to make
such systems actually find non-trivial proofs.

In the late 1990s, however, | decided to try the latest
systems and was surprised to find that seme of them
could routinely produce proofs hundreds of steps/long
with little or no guidance. ... the overalliability te do
proofs--at least in pure eperator systems--seemed vastly,
to exceed that off any human.

--Steven Wolfiram; “A New Kindlof' Science™

24

i
o

0 On the other hand...
a

}_ » Success of modern theorem provers
| relies largely on heuristic tuning

Ih * Input KBs are analyzed for properties
which determine strategies and
|. various parameters of inference

< e Still an art as much as a science,
much room for more principled tuning
(| of parameters, e.g.

]_ - Automatic partitioning of KBs to induce
4‘ good literal orderings (Mcliraith and Amir)

.

< N Godel’s Incompleteness
I Theorem
al

Ih *» FOL inference is complete (Godel)

4 » So what is Godel’s incompleteness
p Ih theorem (GIT) about?

s GIT: Inference in FOL with arithmetic
|. (+,*,exp) is incomplete b/c set of
< axioms for arithmetic is not
| recursively enumerable.

< » Read: Inference rules are sound and
]_ complete, but no way to generate all
axioms required for arithmetic!

)

.

25

Al L
I Modal Logic
a

Jh * Logic of knowledge and/or belief, e.g.

— English: Scott knows that you know that Scott
knows this lecture is boring

- Modal Logic K, (n agents): K;_ K K. . LIB

you

» Possible worlds (Kripke) semantics

— Each modal operator K, corresponds to a set of
possible interpretations (i.e., possible worlds)

— Different axioms (T,D,4,5....) correspond to
relations b/w worlds, Axiom 4: K.0 => K.K.0

— Semantics: K.0 iff ¢ is true in all worlds agent i
considers possible according to axioms & KB

< J“ o Postpone reasoning until DL...

.

I Temporal Logic
Xl

Jh s A modal logic where the possible
worlds are linked by time:

— LTL: Linear temporal logic ((3—@—O
o World states evolve
deterministically /@
s State can involve action

— CTL: Computation tree logic

s World states can evolve
non-deterministically

s Tlemporal operators specify
Jh conditions on world evolution

» Used for verification, safety checks

.

26

i
l

0 LTL Temporal Operators
al

Nocraneer ©-0-0-0-0-0-
- F f: eventually f mm
2
“ * X f: next state ‘—»‘—»@—»ﬂ—»‘—»‘—»
.
N
J“ * fRr: releases W“’“’

<

)

« L
““ Temporal Logic Inference
«

Because time evolves infinitely,
propositional SAT methods won’t work for
LTL/CTL verification (will branch infinitely)

However, LTL/CTL inference is monotonic!

— To check condition, start with set of all worlds

— Evolve world one step, remove states not
satisfying condition

— Continue evolution until set does not change...
this is set of all states for which condition holds

For propositional temporal logic, number of

worlds is finite — termination — decidable!

BDD data structure used to compactly
encode sets of worlds and evolve worlds.

)

.

<Hh

I Description Logic

_ » A concept oriented logic:

«|

Dog with a DWS(x) -
Spot Dog(x) * (y-has(x,y) Dog || thas.Spot
(02) * Spot(y))

Large Dog LDWDS(x) -

with a Dark (Dog(x) » Large(x)) * Dog| | Large [|
Tyt (B2 EE AT [has.(Spot || | Dark)
(EOHDS) 2 (Spot(y) » Dark(y))

< J“ » Guarded fragment subset of FOL

.

il Description Logic (DL)
I Inference

o Natural correspondence between ALC DL
l and modal logic (Schild):

— Modal propositions are concepts that hold in
possible worlds w, e.g. lecture is boring: LIB(w)

Modal operators K. are DL roles that link possible
worlds: K, (W;; W)

If Scott knows that the lecture-is-boring then
Ow, K, o w(w,, wy)=LIB(w,) (w, is a free variable)

Or in DL notation LK, __...LIB
» Since decidable tableaux methods known
for modall logics, these were imported into
DL and Iater extended to expressive DLs

» Benefit of DL: Decidable subset of FOL that
is ideal for conceptual ontology reasoning!

.

28

> “_ Example of Description Logic
M“ Tableaux Proof
(|

Jh s Given: * Proof:

<| = . Check unsatisiiability: of
= ﬁxwms. [Child.~Male [] O Child.Male
one

— Conjecture:
= Child:=Male =
I Child-Male 2

x: Mehild.=Male [] @ Child.Male
x: O child.Male [[Tl -rule]
x: child.=Male [[=rule]
x: Child vy I E-rule |
y: =Male [E:-rule |

“_ o Inference: y: Male [O=rule]
! <CLASH>

— Tableaux
Contradiction = Conj- Is true

< ““ DL Reasoner
I Output (FaCT++)
al

Jh Taxonomy encodes all — relations
<| = : o~

[

.

)

< [Modal, Verification, and
|. DL Inference Software
“

}_ e Modal logic

| — MSPASS (converts modal formula to FOL)
_ - By correspondence, also DL reasoners

)

o Verification (temporal and non-temporal)
|. — PVS (interactive TP for HW/SW verification)
< — ALLOY (first-order HW/SW model checker)
— NuSMV (BDD-based LTL/CTL HW/SW verif.)

|. * DL Reasoning
< - Classic (limited DL, poly-time inference)
— Racer (expressive DL, highly optimized)
— FaCT++ (very expr. DL, highly optimized)

|. Repositories of TP Problems
<

Ih Many repositories of theorem proving
«l knowledge bases:

Ih — TPTP: Thousands of Problems for TPs
|

s Algebraic group theory, geometry, set theory,
topology, software verification, NLP KBs

|. — SATLIB: Library of Prop. SAT problems
|

s Hardware verification, industrial planning
problems, hard randomized problems

|. — Open/ResearchCyc: Public version of Cyc
|

o Large common-sense repository expressed in
higher-order logic

— Semantic Web: DL ontologies in OWL

e The web is the limit!

«

.

i
o

0 Concluding Thoughts
a

Many logics, inference techniques,
and computational guarantees

Have to balance expressivity and
computational tradeoffs with task-
specific needs (Brachman & Levesque; 1985)

Woods (1987): Don’t blame the tool!

— A poor craftsman blames the tool when
their efforts fail

— An experienced craftsman uses the right
tool for the job

31

