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AutomatedAutomated
Theorem ProvingTheorem Proving

Scott Sanner, Guest LectureScott Sanner, Guest Lecture
Topics in Automated ReasoningTopics in Automated Reasoning
Thursday, Jan. 19, 2006Thursday, Jan. 19, 2006

IntroductionIntroduction

•• Def. Automated Theorem Proving:Def. Automated Theorem Proving:
Proof of mathematical theorems by a Proof of mathematical theorems by a 
computer program.computer program.

•• Depending on underlying logic, task Depending on underlying logic, task 
varies from trivial to impossible:varies from trivial to impossible:
–– Simple description logic: Simple description logic: PolyPoly--timetime
–– Propositional logic: Propositional logic: NPNP--Complete (3Complete (3--SAT)SAT)
–– FirstFirst--order logic w/ arithmetic: order logic w/ arithmetic: ImpossibleImpossible
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ApplicationsApplications

•• Proofs of Mathematical ConjecturesProofs of Mathematical Conjectures
–– Graph theory: Graph theory: Four color theoremFour color theorem
–– Boolean algebra: Boolean algebra: Robbins conjectureRobbins conjecture

•• Hardware and Software VerificationHardware and Software Verification
–– Verification: Verification: Arithmetic circuitsArithmetic circuits
–– Program correctness: Program correctness: Invariants, safetyInvariants, safety

•• Query AnsweringQuery Answering
–– Build domainBuild domain--specific knowledge bases, specific knowledge bases, 

use theorem proving to answer queriesuse theorem proving to answer queries

Basic Task StructureBasic Task Structure

•• Given:Given:
–– Set of axioms Set of axioms (KB encoded as axioms)(KB encoded as axioms)
–– Conjecture Conjecture (assumptions + consequence)(assumptions + consequence)

•• Inference:Inference:
–– SearchSearch through space of valid inferencesthrough space of valid inferences

•• Output:Output:
–– Proof Proof (if found, a sequence of steps (if found, a sequence of steps 

deriving conjecture consequence from deriving conjecture consequence from 
axioms and assumptions)axioms and assumptions)
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Many Logics / Many Theorem Many Logics / Many Theorem 
Proving TechniquesProving Techniques

•• Logics:Logics:
–– Propositional, and firstPropositional, and first--order logicorder logic
–– Modal, temporal, and description logicModal, temporal, and description logic

•• Theorem Proving Techniques:Theorem Proving Techniques:
–– Resolution, tableaux, sequent, inverseResolution, tableaux, sequent, inverse
–– Best technique depends on logic and app.Best technique depends on logic and app.

Focus on theorem proving for logics Focus on theorem proving for logics 
with a modelwith a model--theoretic semantics (TBD)theoretic semantics (TBD)

Example of Propositional Example of Propositional 
LogicLogic SSequent Proofequent Proof

•• Given:Given:
–– Axioms: Axioms: 

NoneNoneNoneNoneNoneNoneNoneNone
–– Conjecture: Conjecture: 
A A ∨∨∨∨∨∨∨∨ ¬¬¬¬¬¬¬¬A ?A ?

•• Inference:Inference:
–– GentzenGentzen

SequentSequent
CalculusCalculus

•• Direct Direct Proof:Proof:
(I)(I)

A |A |-- AA
(¬R)(¬R)

||-- ¬A, A¬A, A
((∨∨∨∨∨∨∨∨ R2)R2)

||-- AA∨∨∨∨∨∨∨∨ ¬A, A¬A, A
(PR)(PR)

||-- A, AA, A∨∨∨∨∨∨∨∨ ¬A¬A
((∨∨∨∨∨∨∨∨ R1)R1)

||-- AA∨∨∨∨∨∨∨∨ ¬A, A¬A, A∨∨∨∨∨∨∨∨ ¬A¬A
(CR)(CR)

||-- AA∨∨∨∨∨∨∨∨ ¬A¬A
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•• Given:Given:
–– Axioms:Axioms:

∀∀∀∀∀∀∀∀ x Man(x)x Man(x) ⇒⇒⇒⇒⇒⇒⇒⇒ Mortal(x)Mortal(x)
Man(Socrates)Man(Socrates)

–– Conjecture: Conjecture: 
∃∃∃∃∃∃∃∃ y Mortal(y) ?y Mortal(y) ?

•• Inference:Inference:
–– RefutationRefutation

ResolutionResolution

Example of FirstExample of First--order Logicorder Logic
Resolution ProofResolution Proof

•• CNF:CNF:
¬¬Man(x)Man(x) ∨∨∨∨∨∨∨∨ Mortal(x)Mortal(x)
Man(Socrates)Man(Socrates)
¬¬Mortal(y)   Mortal(y)   [Neg. conj.][Neg. conj.]

•• Proof:Proof:
1. ¬1. ¬Mortal(y) Mortal(y) [Neg. conj.][Neg. conj.]
2. ¬2. ¬Man(x)Man(x) ∨∨∨∨∨∨∨∨ Mortal(x)Mortal(x) [Given][Given]
3. 3. Man(Socrates) Man(Socrates) [Given][Given]
4. 4. Mortal(Socrates)Mortal(Socrates) [Res. 2,3][Res. 2,3]
5. 5. ⊥⊥⊥⊥⊥⊥⊥⊥ [Res. 1,4][Res. 1,4]
Contradiction Contradiction ⇒⇒⇒⇒⇒⇒⇒⇒ Conj. is trueConj. is true

Example of Description Logic Example of Description Logic 
Tableaux ProofTableaux Proof

•• Given:Given:
–– Axioms:Axioms:

NoneNone

–– Conjecture: Conjecture: 
¬¬∃∃∃∃∃∃∃∃ Child.Child.¬¬Male Male ⇒⇒⇒⇒⇒⇒⇒⇒

∀∀∀∀∀∀∀∀ Child.Male ?Child.Male ?

•• Inference:Inference:
–– TableauxTableaux

•• Proof:Proof:
CheckCheck unsatisfiabilityunsatisfiability of of 
∃∃∃∃∃∃∃∃ Child.Child.¬¬Male Male  ∀∀∀∀∀∀∀∀ Child.MaleChild.Male

x: x: ∃∃∃∃∃∃∃∃ Child.Child.¬¬Male Male  ∀∀∀∀∀∀∀∀ Child.MaleChild.Male
x: x: ∀∀∀∀∀∀∀∀ Child.Male   Child.Male   [ [  --rule ]rule ]
x: x: ∃∃∃∃∃∃∃∃ Child.Child.¬¬Male   Male   [ [  --rule ]rule ]
x: Child y         x: Child y         [ [ ∃∃∃∃∃∃∃∃ --rule ]rule ]
y: y: ¬¬Male           Male           [ [ ∃∃∃∃∃∃∃∃ --rule ]rule ]
y: Male            y: Male            [ [ ∀∀∀∀∀∀∀∀ --rule ]rule ]
<CLASH><CLASH>

Contradiction Contradiction ⇒⇒⇒⇒⇒⇒⇒⇒ Conj. is trueConj. is true



5

Lecture OutlineLecture Outline

•• Common DefinitionsCommon Definitions
–– Soundness, completeness, Soundness, completeness, decidabilitydecidability

•• Propositional and firstPropositional and first--order logicorder logic
–– Syntax and semanticsSyntax and semantics
–– Tableaux theorem provingTableaux theorem proving
–– Resolution theorem provingResolution theorem proving

•• Strategies, orderings, redundancy, saturationStrategies, orderings, redundancy, saturation
optimizations, & extensionsoptimizations, & extensions

•• Modal, temporal, & description logicsModal, temporal, & description logics
–– Quick overview of logics / TP techniquesQuick overview of logics / TP techniques

Entailment vs. TruthEntailment vs. Truth

•• For each logic and theorem proving For each logic and theorem proving 
approach, we’ll specify:approach, we’ll specify:
–– Syntax and semanticsSyntax and semantics
–– Foundational axioms Foundational axioms (if any)(if any)
–– Rules of inferenceRules of inference

•• Entailment vs. TruthEntailment vs. Truth
–– Let Let KB KB be the be the conjunctionconjunction of of axiomsaxioms
–– Let Let FF be a be a formula formula (possibly a conjecture)(possibly a conjecture)
–– We say We say KB |KB |-- FF (read: (read: KB entails FKB entails F) if ) if FF can be can be 

derived from derived from KBKB through rules of inferencethrough rules of inference
–– We say We say KB |= FKB |= F (read: (read: KB models FKB models F) if semantics ) if semantics 

hold that hold that FF is is truetrue whenever whenever KBKB is is truetrue
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ModelModel--theoretic semanticstheoretic semantics

•• ModelModel--theoretic semantics for logicstheoretic semantics for logics
–– An An interpretationinterpretation is a is a truth assignmenttruth assignment to atomic to atomic 

elements of a elements of a KBKB:: IIIIIIII〈〈〈〈〈〈〈〈C,DC,D〉〉〉〉〉〉〉〉 = = = = = = = = {{{{{{{{ 〈〈〈〈〈〈〈〈F,FF,FF,FF,FF,FF,FF,FF,F〉〉〉〉〉〉〉〉, , , , , , , , 〈〈〈〈〈〈〈〈F,TF,TF,TF,TF,TF,TF,TF,T〉〉〉〉〉〉〉〉, , , , , , , , 〈〈〈〈〈〈〈〈T,FT,FT,FT,FT,FT,FT,FT,F〉〉〉〉〉〉〉〉, , , , , , , , 〈〈〈〈〈〈〈〈T,TT,TT,TT,TT,TT,TT,TT,T〉〉〉〉〉〉〉〉}}}}}}}}
–– A A modelmodel of a formula is an of a formula is an interpretationinterpretation where where 

it is true:it is true: IIIIIIII〈〈〈〈〈〈〈〈C,DC,D〉〉〉〉〉〉〉〉 = = = = = = = = 〈〈〈〈〈〈〈〈F,TF,TF,TF,TF,TF,TF,TF,T〉〉〉〉〉〉〉〉 modelsmodels CC∨∨∨∨∨∨∨∨ DD,,,,,,,,CC⇒⇒⇒⇒⇒⇒⇒⇒D, but not CD, but not C∧∧∧∧∧∧∧∧ DD
–– Two properties of a formula Two properties of a formula FF w.r.t. axioms of w.r.t. axioms of KBKB::

•• Validity:Validity: F is true in all models of KBF is true in all models of KB
•• SatisfiabilitySatisfiability:: F is true in F is true in ≥≥11 model of KBmodel of KB

•• Think of truth in a setThink of truth in a set--theoretic mannertheoretic manner

KB |= CKB |= C CC KBKB
Models of KBModels of KB
⊆⊆⊆⊆⊆⊆⊆⊆ Models of CModels of C

Soundness, Completeness, Soundness, Completeness, 
and and DecidabilityDecidability

•• Two properties of ATP inference systems:Two properties of ATP inference systems:
–– Soundness: Soundness: If KB |If KB |-- C then KB |= CC then KB |= C
–– Completeness: Completeness: If KB |= C then KB |If KB |= C then KB |-- CC

•• For a given logic, an ATP For a given logic, an ATP decision decision 
procedureprocedure returns returns truetrue oror false false for for KB |KB |-- CC

•• For a logic, a For a logic, a sound sound and and complete decision complete decision 
procedureprocedure has one of following properties:has one of following properties:
–– Decidable: Decidable: Decision procedure guaranteed to Decision procedure guaranteed to 

terminate in finite timeterminate in finite time
–– SemidecidableSemidecidable: : Decision procedure guaranteed Decision procedure guaranteed 

to terminate for either true or false, but not bothto terminate for either true or false, but not both
–– UndecidableUndecidable:: No termination guaranteeNo termination guarantee
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Prop. Logic SyntaxProp. Logic Syntax
•• Propositional variables: Propositional variables: p, rain, sunnyp, rain, sunny
•• Connectives: Connectives: ⇒⇒⇒⇒⇒⇒⇒⇒ ⇔⇔⇔⇔⇔⇔⇔⇔ ¬¬¬¬¬¬¬¬ ∧∧∧∧∧∧∧∧ ∨∨∨∨∨∨∨∨
•• Inductive definition of wellInductive definition of well--formed formed 

formula (formula (wffwff):):
–– Base: Base: All All propositional propositional varsvars are are wffswffs
–– Inductive 1: Inductive 1: If If AA is a is a wffwff then then ¬¬¬¬¬¬¬¬ AA is a is a wffwff
–– Inductive 2: Inductive 2: If If AA and and BB are are wffswffs then then 

A A ∧∧∧∧∧∧∧∧ BB, , A A ∨∨∨∨∨∨∨∨ BB, , A A ⇒⇒⇒⇒⇒⇒⇒⇒ BB, , A A ⇔⇔⇔⇔⇔⇔⇔⇔ BB are are wffswffs
•• Examples: Examples: 

–– rain, rain rain, rain ⇒⇒⇒⇒⇒⇒⇒⇒ ¬¬¬¬¬¬¬¬ sunnysunny
–– (rain (rain ⇒⇒⇒⇒⇒⇒⇒⇒ ¬¬¬¬¬¬¬¬ sunny) sunny) ⇔⇔⇔⇔⇔⇔⇔⇔ (sunny (sunny ⇒⇒⇒⇒⇒⇒⇒⇒ ¬¬¬¬¬¬¬¬ rain) rain) 

Prop. Logic SemanticsProp. Logic Semantics

•• For a formula F, the truth I(F) under For a formula F, the truth I(F) under 
interpretation I is recursively defined:interpretation I is recursively defined:
–– Base:Base:

•• FF is prop is prop varvar AA then then I(F)=trueI(F)=true iffiff I(A)=trueI(A)=true
–– Recursive:Recursive:

•• FF is is ¬¬ CC then then I(F)=trueI(F)=true iffiff I(C)=falseI(C)=false
•• FF is is C C ∧∧ DD then then I(F)=trueI(F)=true iffiff I(C)=true & I(D)=trueI(C)=true & I(D)=true
•• FF is is C C ∨∨ DD then then I(F)=trueI(F)=true iffiff I(C)=true or I(D)=trueI(C)=true or I(D)=true
•• FF is is C C ⇒⇒ DD then then I(F)=trueI(F)=true iffiff I(I(¬¬ C C ∨∨ D)=trueD)=true
•• FF is is C C ⇔⇔ DD then then I(F)=trueI(F)=true iffiff I(I(C C ⇒⇒ D)=true & D)=true & 

I(I(D D ⇒⇒ CC)=true)=true

•• Truth defined recursively from ground up!Truth defined recursively from ground up!
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CNF NormalizationCNF Normalization
•• Many prop. theorem proving techniques req. Many prop. theorem proving techniques req. 

KBKB to be in to be in clausal normal form (CNF):clausal normal form (CNF):
–– Rewrite all Rewrite all C C ⇔⇔ DD as as C C ⇒⇒ DD ∧∧ D D ⇒⇒ CC
–– Rewrite all Rewrite all C C ⇒⇒ DD as as ¬¬ C C ∨∨ DD
–– Push negation through connectives:Push negation through connectives:

•• Rewrite Rewrite ¬¬ ((C C ∧∧ D)D) as as ¬¬ C C ∨∨ ¬¬ DD
•• Rewrite Rewrite ¬¬ ((C C ∨∨ D)D) as as ¬¬ C C ∧∧ ¬¬ DD

–– Rewrite double negation Rewrite double negation ¬¬ ¬¬ C C asas CC
–– Now NNF, to get CNF, distribute Now NNF, to get CNF, distribute ∨∨ over over ∧∧ ::

•• Rewrite Rewrite ((C C ∧∧ D) D) ∨∨ EE as as ((C C ∨∨ EE) ) ∧∧ ((D D ∨∨ E)E)
•• A A clauseclause is a is a disjdisj. of . of literalsliterals (pos/(pos/neg varsneg vars))
•• Can express Can express KBKB as as conj. of a set of clausesconj. of a set of clauses

CNF Normalization ExampleCNF Normalization Example

•• Given KB with single formula:Given KB with single formula:
–– ¬¬¬¬¬¬¬¬ (rain (rain ⇒⇒⇒⇒⇒⇒⇒⇒ wet)wet) ⇒⇒⇒⇒⇒⇒⇒⇒ ((((((((inside inside ∧∧ warmwarm))

•• Rewrite all Rewrite all C C ⇒⇒ DD as as ¬¬ C C ∨∨ DD
–– ¬¬¬¬¬¬¬¬ ¬¬¬¬¬¬¬¬ ((((((((¬¬¬¬¬¬¬¬ rain rain ∨∨ wet) wet) ∨∨ ((((((((inside inside ∧∧ warmwarm))

•• Push negation through connectives:Push negation through connectives:
–– ((((((((¬¬¬¬¬¬¬¬ ¬¬¬¬¬¬¬¬ ¬¬¬¬¬¬¬¬ rain rain ∨∨ ¬¬¬¬¬¬¬¬ ¬¬¬¬¬¬¬¬ wet) wet) ∨∨ ((((((((inside inside ∧∧ warmwarm))

•• Rewrite double negation Rewrite double negation ¬¬ ¬¬ CC as as CC
–– ((((((((¬¬¬¬¬¬¬¬ rain rain ∨∨ wet) wet) ∨∨ ((((((((inside inside ∧∧ warmwarm))

•• Distribute Distribute ∨∨ over over ∧∧ ::
–– ((((((((¬¬¬¬¬¬¬¬ rainrain ∨∨ wetwet ∨∨ insideinside) ) ∧∧ ((((((((¬¬¬¬¬¬¬¬ rainrain ∨∨ wetwet ∨∨ warmwarm))

•• CNF KB:CNF KB: {{¬¬¬¬¬¬¬¬ rainrain ∨∨ wetwet ∨∨ insideinside, , ¬¬¬¬¬¬¬¬ rainrain ∨∨ wetwet ∨∨ warm}warm}
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•• A A ⇒⇒⇒⇒⇒⇒⇒⇒ BB iffiff A A ∧∧ ¬¬ BB is is unsatisfiableunsatisfiable
•• Decision procedureDecision procedure for for propositional propositional 

logiclogic is is decidabledecidable, but , but NPNP--completecomplete
(reduction to 3(reduction to 3--SAT)SAT)

•• StateState--ofof--thethe--artart prop.prop. unsatisfiabilityunsatisfiability
methods are methods are DPLLDPLL--basedbased

•• Many optimizationsMany optimizations, more next week, more next week

Prop. Theorem ProvingProp. Theorem Proving

A

B B

true false

true false true false

Instantiate prop vars
until all clauses falsified, 
backtrack and do for all 
instantiations ⇒⇒⇒⇒ unsat!

Prop. Tableaux MethodsProp. Tableaux Methods

AA ∧∧ ¬¬ A A ∨∨ ¬¬ B B ∧∧ B B 

A ∧∧ ¬¬ A A ββββββββ--RuleRule
A A αααααααα--RuleRule
¬¬ A        A        αααααααα--RuleRule
〈〈〈〈〈〈〈〈ClashClash〉〉〉〉〉〉〉〉

¬¬ B B ∧∧ B B ββββββββ--RuleRule
¬¬ B      B      αααααααα--RuleRule

B         B         αααααααα--RuleRule
〈〈〈〈〈〈〈〈ClashClash〉〉〉〉〉〉〉〉

Given negated query Given negated query F F (in NNF)(in NNF), use rules to , use rules to 
recursively break down:recursively break down:

–– αααααααα--Rule:Rule: GivenGiven AA∧∧ B B addadd AA andand B B 
–– ββββββββ--Rule:Rule: GivenGiven AA∨∨ B B branch onbranch on A A andand B B 
–– 〈〈〈〈〈〈〈〈ClashClash〉〉〉〉〉〉〉〉:: IfIf AA andand ¬¬ AA occur on same branchoccur on same branch
–– Clash on all branches indicatesClash on all branches indicates unsatunsat!!

Note: Inverse method is inverse of tableaux Note: Inverse method is inverse of tableaux -- bottom upbottom up
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•• One rule:One rule:

•• Simple strategy is to make all Simple strategy is to make all 
possible resolution inferencespossible resolution inferences

•• Refutation resolutionRefutation resolution is is sound and sound and 
completecomplete

Propositional ResolutionPropositional Resolution

A A ∨∨∨∨∨∨∨∨ B   B   ¬¬¬¬¬¬¬¬ B B ∨∨∨∨∨∨∨∨ CC

AA ∨∨∨∨∨∨∨∨ CC

¬¬¬¬¬¬¬¬ precipprecip ∨∨∨∨∨∨∨∨ ¬¬¬¬¬¬¬¬ freezing freezing ∨∨∨∨∨∨∨∨ snow     snow     ¬¬¬¬¬¬¬¬ snow snow ∨∨∨∨∨∨∨∨ slipperyslippery

¬¬¬¬¬¬¬¬ precipprecip ∨∨∨∨∨∨∨∨ ¬¬¬¬¬¬¬¬ freezing freezing ∨∨∨∨∨∨∨∨ slipperyslippery

Example application:Example application:Rule:Rule:

Resolution StrategiesResolution Strategies

Need strategies to restrict search:Need strategies to restrict search:
–– Unit resolution: Unit resolution: 

•• Only resolve with unit clauses Only resolve with unit clauses 
•• Complete for Horn KBComplete for Horn KB
•• Intuition: Decrease clause sizeIntuition: Decrease clause size

–– Set of support:Set of support:
•• SOS starts with query clausesSOS starts with query clauses
•• Only resolve SOS clauses with nonOnly resolve SOS clauses with non--SOS clauses SOS clauses 

and put and put resolventsresolvents in SOS in SOS 
•• Intuition: KB should be Intuition: KB should be satisfiablesatisfiable so refutation so refutation 

should derive from queryshould derive from query
–– Input resolution:Input resolution:

•• At each step resolve only with input (KB or query)At each step resolve only with input (KB or query)
•• I.e., don’t resolve nonI.e., don’t resolve non--input clausesinput clauses
•• Linear input: also allow ancestor Linear input: also allow ancestor ⇒⇒ completecomplete
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Ordering StrategiesOrdering Strategies

•• Refutation of a clauseRefutation of a clause requires requires 
refutation of all literalsrefutation of all literals

•• EnforceEnforce an an orderingordering on proposition on proposition 
elimination to restrict searchelimination to restrict search
–– Example order: Example order: p p then then rr then then qq
–– General idea behind DavisGeneral idea behind Davis--Putnam (DP) & Putnam (DP) & 

directional resolution (directional resolution (DechterDechter & & RishRish))

•• Effective, but Effective, but does not work with all does not work with all 
resolution strategiesresolution strategies, e.g. SOS + , e.g. SOS + 
ordered resolution is incompleteordered resolution is incomplete

Prop. Inference SoftwareProp. Inference Software

•• Mainly DPLL SAT algorithmsMainly DPLL SAT algorithms
–– zChaffzChaff –– highly optimized & documented highly optimized & documented 

DPLL solver, source availableDPLL solver, source available
–– siegesiege –– best performing DPLL solver, best performing DPLL solver, 

source not availablesource not available
–– 2clseq2clseq –– DPLL solver with constraint DPLL solver with constraint 

propagation (balance search / reasoning)propagation (balance search / reasoning)

•• For some applications: For some applications: BDDsBDDs
–– BDDsBDDs maintain all possible models in a maintain all possible models in a 

canonical data structurecanonical data structure
–– CUDD ADD/BDD Package CUDD ADD/BDD Package –– very efficientvery efficient



12

FirstFirst--order logicorder logic

•• Refer to Refer to objectsobjects and and relationsrelations b/w themb/w them
•• Propositional logicPropositional logic requires all requires all 

relationsrelations to be to be propositionalizedpropositionalized
–– ScottScott--atat--home, Scotthome, Scott--atat--work, work, 

JimJim--atat--subway, etc…subway, etc…
•• Really want a compact relational form:Really want a compact relational form:

–– at(Scott, home), at(Scott, work), at(Scott, home), at(Scott, work), 
at(Jim, subway), etc…at(Jim, subway), etc…

•• Then can use Then can use variablesvariables and and quantifyquantify
over all objects:over all objects:
–– ∀∀∀∀∀∀∀∀ x person(x) x person(x) ⇒⇒⇒⇒⇒⇒⇒⇒ ∃∃∃∃∃∃∃∃ y at(x,y) ^ place(y)y at(x,y) ^ place(y)

FirstFirst--order Logic Syntaxorder Logic Syntax
•• Terms Terms (technical definition is inductive b/c of fns)(technical definition is inductive b/c of fns)

–– Variables:Variables: ww,, xx,, yy,, zz
–– Constants:Constants: aa,, bb,, cc,, dd
–– Functions over terms:Functions over terms: f(a)f(a),, f(x,y)f(x,y),, f(x,c,f(f(z)))f(x,c,f(f(z)))

•• Predicates: Predicates: P(x)P(x),, Q(f(x,y))Q(f(x,y)),, R(x, f(x,f(c,z),c))R(x, f(x,f(c,z),c))
•• Connectives: Connectives: ⇒⇒⇒⇒⇒⇒⇒⇒ ⇔⇔⇔⇔⇔⇔⇔⇔ ¬¬¬¬¬¬¬¬ ∧∧∧∧∧∧∧∧ ∨∨∨∨∨∨∨∨
•• Quantifiers: Quantifiers: ∀∀∀∀∀∀∀∀ ∃∃∃∃∃∃∃∃
•• Inductive Inductive wff wff definition:definition:

–– Same as prop. but with following modifications…Same as prop. but with following modifications…
–– Base: Base: All All predicates over termspredicates over terms areare wffswffs
–– Inductive: Inductive: If If AA is ais a wffwff and and xx is a is a variable termvariable term

then then ∀∀∀∀∀∀∀∀ xx AA & & ∃∃∃∃∃∃∃∃ xx AA are are wffswffs
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FirstFirst--order Logic Semanticsorder Logic Semantics

•• Interpretation Interpretation II = (= (∆∆∆∆∆∆∆∆II,,,,,,,,•••••••• II))
–– ∆∆∆∆∆∆∆∆II is a nonis a non--empty domainempty domain
–– •••••••• II maps from predicate symbols maps from predicate symbols PP of of arity arity nn

into a subset of into a subset of ××××××××11……nn ∆∆∆∆∆∆∆∆II (where P is true)(where P is true)
•• ExampleExample

–– ∆∆∆∆∆∆∆∆II is is {Scott, Jim}{Scott, Jim}
–– •••••••• II maps maps at(at(•• ,,•• )) into into { { 〈〈〈〈〈〈〈〈Scott, loc(Scott)Scott, loc(Scott)〉〉〉〉〉〉〉〉, , , , , , , , 

〈〈〈〈〈〈〈〈JimJimJimJimJimJimJimJim, loc(Jim), loc(Jim)〉〉〉〉〉〉〉〉 }}
–– All other ground predicates are false in All other ground predicates are false in II, , 

e.g. e.g. at(Scott, loc(Jim)), at(Scott, Scott)at(Scott, loc(Jim)), at(Scott, Scott)
•• NB: FOL has NB: FOL has ∞∞∞∞∞∞∞∞ interpretationsinterpretations//models!models!

Substitution and UnificationSubstitution and Unification

•• SubstitutionSubstitution
–– A substitution list A substitution list θθθθθθθθ is a list of variableis a list of variable--term pairsterm pairs

•• e.g.,e.g., θθθθθθθθ={x/3,y/f(z)}={x/3,y/f(z)}
–– When When θθθθθθθθ is applied to an FOL formula, every free is applied to an FOL formula, every free 

occurrence of a variable in the list is replaced occurrence of a variable in the list is replaced 
with the given termwith the given term

•• e.g. e.g. (P(x,y) ^ (P(x,y) ^ ∃∃ xx P(x,y))P(x,y))θθ = P(3,f(z)) ^ = P(3,f(z)) ^ ∃∃ xx P(x,f(z)) P(x,f(z)) 

•• Unification / Most General UnifierUnification / Most General Unifier
–– The unifier UNIF(x,y) of two predicates/terms is a The unifier UNIF(x,y) of two predicates/terms is a 

substitution that makes both arguments identicalsubstitution that makes both arguments identical
•• e.g. e.g. UnifUnif( P(x,f(x)), P(y, f(f(z))) ) = {x/f(1), y/f(1), z/1}( P(x,f(x)), P(y, f(f(z))) ) = {x/f(1), y/f(1), z/1}

–– The most general unifier MGU(x,y) is just that… The most general unifier MGU(x,y) is just that… 
all other unifiers can be obtained from the MGU all other unifiers can be obtained from the MGU 
by additional by additional substsubst. (MGU exists for . (MGU exists for unifiable argsunifiable args))

•• e.g. MGU( P(x,f(x)), P(y, f(f(z))) ) = {x/f(z), y/f(z)}e.g. MGU( P(x,f(x)), P(y, f(f(z))) ) = {x/f(z), y/f(z)}
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SkolemizationSkolemization

•• SkolemizationSkolemization is the process of getting rid is the process of getting rid 
of all of all ∃∃ quantifiers from a formula while quantifiers from a formula while 
preserving (un)preserving (un)satisfiabilitysatisfiability::
–– If If ∃∃ xx quantifier is the outermost quantifier, quantifier is the outermost quantifier, 

remove the remove the ∃∃ quantifier and substitute a new quantifier and substitute a new 
constant forconstant for xx

–– If If ∃∃ xx quantifier occurs inside of quantifier occurs inside of ∀∀ quantifiers, quantifiers, 
remove theremove the ∃∃ quantifier and substitute a new quantifier and substitute a new 
function of all function of all ∀∀ quantified variables for quantified variables for xx

•• Examples:Examples:
–– SkolemizeSkolemize( ( ∃∃ w w ∃∃ x x ∀∀ y y ∀∀ z P(w,x,y,z)z P(w,x,y,z) ) = ) = 

∀∀ y y ∀∀ z P(c,d,y,z)z P(c,d,y,z)
–– SkolemizeSkolemize( ( ∀∀ w w ∃∃ x x ∀∀ y y ∃∃ z P(w,x,y,z)z P(w,x,y,z) ) = ) = 

∀∀ w w ∀∀ y P(w,f(w),y,f(x,y))y P(w,f(w),y,f(x,y))

CNF ConversionCNF Conversion

CNF conversion is the same as the CNF conversion is the same as the 
propositional case up to NNF, then dopropositional case up to NNF, then do::

–– Standardize apart variables (all quantified Standardize apart variables (all quantified 
variables should have different names)variables should have different names)
•• e.g.e.g. ∀∀∀∀∀∀∀∀ x x AA(x)(x) ∧∧ ∃∃∃∃∃∃∃∃ x x ¬¬ AA(x)  (x)  becomes becomes ∀∀∀∀∀∀∀∀ x x AA(x)(x) ∧∧ ∃∃∃∃∃∃∃∃ y y ¬¬ AA(y)(y)

–– SkolemizeSkolemize formulaformula
•• e.g.e.g. ∀∀∀∀∀∀∀∀ x x AA(x)(x) ∧∧ ∃∃∃∃∃∃∃∃ y y ¬¬ AA(y)  (y)  becomes becomes ∀∀∀∀∀∀∀∀ x x AA(x)(x) ∧∧ ¬¬ AA(c)(c)

–– Drop universalsDrop universals
•• e.g.e.g. ∀∀∀∀∀∀∀∀ x x AA(x)(x) ∧∧ ¬¬ AA(c)  (c)  becomes becomes AA(x)(x) ∧∧ ¬¬ AA(c)(c)

–– Distribute Distribute ∨∨ over over ∧∧
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FirstFirst--order Theorem Provingorder Theorem Proving

•• Tableaux methods Tableaux methods 
–– Preferred for some types of reasoning and for Preferred for some types of reasoning and for 

subsets of FOL subsets of FOL (guarded fragment, set theory)(guarded fragment, set theory)
–– Highly successful for description and modal Highly successful for description and modal 

logics which conform to guarded fragment of FOLlogics which conform to guarded fragment of FOL
•• Resolution MethodsResolution Methods

–– Most successful technique for a variety of Most successful technique for a variety of KBsKBs
–– But… search space grows very quicklyBut… search space grows very quickly
–– Need a variety of optimizations in practiceNeed a variety of optimizations in practice

•• strategies, ordering, redundancy eliminationstrategies, ordering, redundancy elimination

•• FOL TP complete FOL TP complete ☺☺☺☺☺☺☺☺, but , but semidecidable semidecidable ��������
–– Will return in finite time if formula entailedWill return in finite time if formula entailed
–– May run forever if not entailedMay run forever if not entailed

FirstFirst--order Tableauxorder Tableaux

∀∀∀∀∀∀∀∀ x x AA(x)(x) ∧∧ ∃∃∃∃∃∃∃∃ x x ¬¬ AA(x)(x) ∨∨ ∃∃∃∃∃∃∃∃ x,y x,y ¬¬ BB(x,y)(x,y) ∧∧ ∀∀∀∀∀∀∀∀ x,y x,y BB(x,y)(x,y)

∀∀∀∀∀∀∀∀ x x AA(x)(x) ∧∧ ∃∃∃∃∃∃∃∃ x x ¬¬ AA(x)(x) ββββββββ--RuleRule
AA(?y)(?y) αααααααα //////// γγγγγγγγ --RuleRule
¬¬ AA(c)(c) αααααααα //////// δδδδδδδδ --RuleRule
〈〈〈〈〈〈〈〈ClashClash〉〉〉〉〉〉〉〉

∃∃∃∃∃∃∃∃ x,y x,y ¬¬ BB(x,y)(x,y) ∧∧ ∀∀∀∀∀∀∀∀ x,y x,y BB(x,y)(x,y) ββββββββ--RuleRule
¬¬ BB(c,d)(c,d) αααααααα //////// δδδδδδδδ //////// δδδδδδδδ --RuleRule
BB(?y,?z)(?y,?z) αααααααα //////// γγγγγγγγ //////// γγγγγγγγ --RuleRule
〈〈〈〈〈〈〈〈ClashClash〉〉〉〉〉〉〉〉

Given negated query Given negated query F F (in NNF)(in NNF), use rules to , use rules to 
recursively break down:recursively break down:

–– αααααααα--Rule, Rule, ββββββββ--Rule: Rule: Same as for prop tableauxSame as for prop tableaux
–– γγγγγγγγ--Rule:Rule: GivenGiven ∀∀∀∀∀∀∀∀ x x AA(x)(x) add add A(?v)A(?v) for variable for variable ?v?v
–– δδδδδδδδ--Rule:Rule: GivenGiven ∃∃∃∃∃∃∃∃ x x AA(x)(x) add add A(f)A(f) forfor SkolemSkolem function function ff
–– 〈〈〈〈〈〈〈〈ClashClash〉〉〉〉〉〉〉〉:: IfIf unifiableunifiable AA andand ¬¬ AA occur on same branchoccur on same branch
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•• Binary Resolution RuleBinary Resolution Rule

•• Factoring RuleFactoring Rule

FirstFirst--order Resolutionorder Resolution

C C ∨∨ D    D    ¬¬ E E ∨∨ F F 

(C (C ∨∨ F)F)θθ
θθ=MGU(D,E)=MGU(D,E)

P(3)P(3)∨∨ Q(f(x))Q(f(x))∨∨ R(y)  R(y)  ¬¬ Q(y)Q(y)

P(3) P(3) ∨∨ R(f(x))R(f(x))

Example application:Example application:Rule:Rule:

P(z) P(z) ∨∨ Q(3) Q(3) ∨∨ Q(z)Q(z)

P(3) P(3) ∨∨ Q(3)Q(3)

Example application:Example application:

C C ∨∨ D D ∨∨ EE

CCθθ ∨∨ EE
θθ=MGU(C,D)=MGU(C,D)

Rule:Rule:

•• Given:Given:
–– Axioms:Axioms:

∀∀∀∀∀∀∀∀ x Man(x)x Man(x) ⇒⇒⇒⇒⇒⇒⇒⇒ Mortal(x)Mortal(x)
Man(Socrates)Man(Socrates)

–– Conjecture: Conjecture: 
∃∃∃∃∃∃∃∃ y Mortal(y) ?y Mortal(y) ?

•• Inference:Inference:
–– RefutationRefutation

ResolutionResolution

Example of FirstExample of First--order Logicorder Logic
Resolution ProofResolution Proof

•• CNF:CNF:
¬¬Man(x)Man(x) ∨∨∨∨∨∨∨∨ Mortal(x)Mortal(x)
Man(Socrates)Man(Socrates)
¬¬Mortal(y)   Mortal(y)   [Neg. conj.][Neg. conj.]

•• Proof:Proof:
1. ¬1. ¬Mortal(y) Mortal(y) [Neg. conj.][Neg. conj.]
2. ¬2. ¬Man(x)Man(x) ∨∨∨∨∨∨∨∨ Mortal(x)Mortal(x) [Given][Given]
3. 3. Man(Socrates) Man(Socrates) [Given][Given]
4. 4. Mortal(Socrates)Mortal(Socrates) [Res. 2,3][Res. 2,3]
5. 5. ⊥⊥⊥⊥⊥⊥⊥⊥ [Res. 1,4][Res. 1,4]
Contradiction Contradiction ⇒⇒⇒⇒⇒⇒⇒⇒ Conj. is trueConj. is true
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Importance of FactoringImportance of Factoring

•• WithoutWithout the the factoring rulefactoring rule, , binary binary 
resolutionresolution is is incompleteincomplete

•• For For exampleexample, take the following , take the following 
refutable clause set: refutable clause set: 
–– { A(w) v A(z), ~A(y) v ~A(z) }{ A(w) v A(z), ~A(y) v ~A(z) }

•• All binary resolutionsAll binary resolutions yield clauses yield clauses 
of the of the same formsame form

•• Clause set is Clause set is only refutableonly refutable if one of if one of 
the clauses is the clauses is first factoredfirst factored

Search ControlSearch Control
Additional refinements of prop strategies Additional refinements of prop strategies 
yield goalyield goal--directed / bottomdirected / bottom--up search:up search:
–– SLD ResolutionSLD Resolution

•• KB of definite clauses (i.e. Horn rules), e.g.KB of definite clauses (i.e. Horn rules), e.g.
Uncle(?x,?y) := Father(?x,?z) Uncle(?x,?y) := Father(?x,?z) ∧∧∧∧∧∧∧∧ Brother(?x,?y)Brother(?x,?y)

•• Resolution Resolution backward chainsbackward chains from from goalgoal ofof rulesrules
•• With With negationnegation--asas--failurefailure semantics, SLDsemantics, SLD--

resolution is resolution is logic programminglogic programming, i.e. , i.e. PrologProlog
–– Negative and PositiveNegative and Positive HyperresolutionHyperresolution

•• All negative (positive) literals in nucleus clause All negative (positive) literals in nucleus clause 
are are simultaneouslysimultaneously resolved with completely resolved with completely 
positive (negative) satellite clausespositive (negative) satellite clauses

•• PositivePositive hyperreshyperres yields yields backward chainingbackward chaining
•• Negative Negative hyperreshyperres yields yields forward chainingforward chaining
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•• Naïve approaches to resolution perform one Naïve approaches to resolution perform one 
inference per stepinference per step

•• For For SLD or neg.SLD or neg. hyperreshyperres and and KBsKBs w/w/ large large 
numbers of constants / functionsnumbers of constants / functions, can store , can store 
clause terms and perform clause terms and perform DBDB--likelike resres, e.g., e.g.
–– CNF KB = {CNF KB = { R(a,b)R(a,b),, R(b,a)R(b,a),, R(b,c)R(b,c),, R(c,b)R(c,b),,

¬¬¬¬¬¬¬¬ R(x,y) R(x,y) ∨∨∨∨∨∨∨∨ ¬¬¬¬¬¬¬¬ R(y,z) R(y,z) ∨∨∨∨∨∨∨∨ R(x,z)R(x,z) }}
–– Use DB join/project during SLD or neg. Use DB join/project during SLD or neg. hyperreshyperres::

•• Can cache inferences for reuse (tabling)Can cache inferences for reuse (tabling)
•• Huge improvement for instanceHuge improvement for instance--heavyheavy KBsKBs

DatabaseDatabase--style Inferencestyle Inference

R(x,y)R(x,y)
{ { 〈〈〈〈〈〈〈〈a,ba,b〉〉〉〉〉〉〉〉,, 〈〈〈〈〈〈〈〈bb,a,a〉〉〉〉〉〉〉〉,,
〈〈〈〈〈〈〈〈bb,c,c〉〉〉〉〉〉〉〉, , 〈〈〈〈〈〈〈〈cc,b,b〉〉〉〉〉〉〉〉 }}

R(y,z)R(y,z)
{ { 〈〈〈〈〈〈〈〈a,ba,b〉〉〉〉〉〉〉〉,, 〈〈〈〈〈〈〈〈bb,a,a〉〉〉〉〉〉〉〉,,
〈〈〈〈〈〈〈〈bb,c,c〉〉〉〉〉〉〉〉, , 〈〈〈〈〈〈〈〈cc,b,b〉〉〉〉〉〉〉〉 }}

R(x,z)R(x,z)
{ { 〈〈〈〈〈〈〈〈a,aa,a〉〉〉〉〉〉〉〉,, 〈〈〈〈〈〈〈〈a,ca,c〉〉〉〉〉〉〉〉,, 〈〈〈〈〈〈〈〈bb,b,b〉〉〉〉〉〉〉〉,,
〈〈〈〈〈〈〈〈cc,c,c〉〉〉〉〉〉〉〉, , 〈〈〈〈〈〈〈〈c,ac,a〉〉〉〉〉〉〉〉, , 〈〈〈〈〈〈〈〈cc,c,c〉〉〉〉〉〉〉〉 }}

×××××××× ⇒⇒⇒⇒⇒⇒⇒⇒

•• Term indexingTerm indexing is another general technique is another general technique 
for for fast retrievalfast retrieval of of sets of terms / clausessets of terms / clauses
matching criteriamatching criteria

•• Common uses in modern theorem Common uses in modern theorem proversprovers::
–– Term Term qq isis unifiableunifiable with term with term tt, i.e., , i.e., ∃∃ θ s.t. θ s.t. qqθθ == ttθ θ 
–– Term Term tt is an is an instanceinstance of of qq, i.e., , i.e., ∃∃ θ s.t.θ s.t. qqθθ = = tt
–– Term Term tt is a is a generalizationgeneralization of of qq, i.e., , i.e., ∃∃ θ s.t. θ s.t. qq == ttθθ
–– Clause Clause qq subsumessubsumes clause clause tt, i.e., , i.e., ∃∃ θ s.t.θ s.t. qqθθ ⊆⊆⊆⊆⊆⊆⊆⊆ tt

–– Clause Clause qq is is subsumed bysubsumed by clause clause tt, i.e., , i.e., ∃∃ θ s.t.θ s.t. ttθθ ⊆⊆⊆⊆⊆⊆⊆⊆ qq

•• Techniques:  Techniques:  (Google for “term indexing”)(Google for “term indexing”)
–– Path indexingPath indexing
–– Code, context, & discrimination treesCode, context, & discrimination trees

Term IndexingTerm Indexing
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AgeAge--weight Ratioweight Ratio
•• During a resolution strategy, have two sets:During a resolution strategy, have two sets:

–– Active: Active: Set of active clauses for resolving withSet of active clauses for resolving with
–– Frontier: Frontier: Candidate clauses to resolve with Candidate clauses to resolve with ActiveActive

•• Idea: Store the frontier in two queuesIdea: Store the frontier in two queues
–– Age queue: Age queue: Standard FIFO queueStandard FIFO queue
–– Weight queue: Weight queue: Priority queue where clause priority Priority queue where clause priority 

determined by heuristic measure:determined by heuristic measure:
•• Number of literals, number of terms, etc…Number of literals, number of terms, etc…

•• A:W ratio:A:W ratio: Choose Choose AA clauses from age queue clauses from age queue 
for every for every WW chosen from weight queuechosen from weight queue
–– Retains completeness of strategy if Retains completeness of strategy if AA is nonis non--zero zero 

•• I.e., fair b/c all clauses eventually selectedI.e., fair b/c all clauses eventually selected
–– Can speed up inference by orders of magnitude!Can speed up inference by orders of magnitude!

Redundancy ControlRedundancy Control

•• Redundancy of clauses is a huge problem in Redundancy of clauses is a huge problem in 
FOL resolutionFOL resolution
–– For clauses For clauses CC & & DD, , CC is redundant if is redundant if ∃θ∃θ∃θ∃θ∃θ∃θ∃θ∃θ s.t. s.t. CCθθθθθθθθ ⊆⊆⊆⊆⊆⊆⊆⊆ DD

as a as a multisetmultiset, a.k.a. , a.k.a. θθθθθθθθ--subsumptionsubsumption
–– If true, If true, DD is redundant and can be removedis redundant and can be removed

•• Intuition: If Intuition: If DD used in a refutation, used in a refutation, CCθθθθθθθθ could be could be 
substituted leading to even shorter refutationsubstituted leading to even shorter refutation

•• Two types of subsumption where N is a new Two types of subsumption where N is a new 
resolvent resolvent and A and A ∈∈∈∈∈∈∈∈ Active:Active:Active:Active:Active:Active:Active:Active:
–– Forward subsumption: Forward subsumption: A A θθθθθθθθ--subsumes N, delete Nsubsumes N, delete N
–– Backward subsumption: Backward subsumption: N N θθθθθθθθ--subsumes A, delete Asubsumes A, delete A

•• ForwardForward // backward subsumption expensive backward subsumption expensive 
but saves many redundant inferencesbut saves many redundant inferences
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Saturation Theorem ProvingSaturation Theorem Proving

•• Given a set of clauses Given a set of clauses SS::
–– SS is is saturatedsaturated ifif allall possible possible inferencesinferences

from clauses in from clauses in SS generate generate forward forward 
subsumed clausessubsumed clauses

–– Thus, Thus, all new inferencesall new inferences can be can be deleteddeleted
without sacrificing completenesswithout sacrificing completeness

–– If If SS does not contain the empty clause does not contain the empty clause 
then then SS is is satisfiablesatisfiable

•• Saturation implies no proof possible!Saturation implies no proof possible!
•• Usually need ordering restrictions to Usually need ordering restrictions to 

reach saturation (if possible)…reach saturation (if possible)…

Simplification OrderingsSimplification Orderings

For complete ordered resolution in FOL, For complete ordered resolution in FOL, 
must use term simplification orderings:must use term simplification orderings:
–– WellWell--founded (founded (NoetherianNoetherian): ): If there is no If there is no 

infinitely decreasing chain of terms s.t.infinitely decreasing chain of terms s.t.
tt00 �������� tt11 �������� tt2 2 �������� …………………… �������� tt∞∞∞∞∞∞∞∞

–– Monotonic: Monotonic: If s If s �������� t then ft then f[[[[[[[[ss]]]]]]]] �������� f f [[[[[[[[tt]]]]]]]] (f(f[[[[[[[[ss]]]]]]]] and and 
ff[[[[[[[[tt]]]]]]]] are identical except for are identical except for [[[[[[[[termterm]]]]]]]]))

–– Stable under Stable under SubstSubst.: .: If s If s �������� t then st then sθθ �������� ttθθ

Examples:  Examples:  (Google for following keywords)(Google for following keywords)
–– KnuthKnuth--Bendix Bendix orderingordering
–– Lexicographic path orderingLexicographic path ordering
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Literal Ordering & SelectionLiteral Ordering & Selection

•• Can extend term ordering to literals Can extend term ordering to literals ��������litlit::
–– If literals equal but opposite sign, then If literals equal but opposite sign, then 

negative literal negative literal ��������litlit positivepositive literalliteral
–– Otherwise, treat literals as terms (modulo sign) Otherwise, treat literals as terms (modulo sign) 

and literal ordering and literal ordering ��������litlit is just term ordering is just term ordering ��������

•• A selection function selects literals, and A selection function selects literals, and 
must adhere to following rules:must adhere to following rules:
–– At least one literal must be selectedAt least one literal must be selected
–– Either a negative literal is among the selection, Either a negative literal is among the selection, 

or all maximal positive literals w.r.t. or all maximal positive literals w.r.t. ��������litlit are are 
selectedselected

•• Show selected literals by underscoreShow selected literals by underscore
–– e.g., { e.g., { A A ∨∨∨∨∨∨∨∨ ¬¬¬¬¬¬¬¬ BB ∨∨∨∨∨∨∨∨ ¬¬¬¬¬¬¬¬ CC , , DD ∨∨∨∨∨∨∨∨ E E ∨∨∨∨∨∨∨∨ ¬¬¬¬¬¬¬¬ FF, , ¬¬¬¬¬¬¬¬ G G ∨∨∨∨∨∨∨∨ HH ∨∨∨∨∨∨∨∨ II }}

Ordered Resolution w/ SelectionOrdered Resolution w/ Selection

•• Binary Ordered Binary Ordered ResRes w/ Selectionw/ Selection

•• Ordered Factoring w/ SelectionOrdered Factoring w/ Selection

C C ∨∨ DD ¬¬ EE ∨∨ F F 

(C (C ∨∨ F)F)θθ
θθ=MGU(D,E)=MGU(D,E)

P(3)P(3)∨∨ Q(f(x))Q(f(x))∨∨ R(y)  R(y)  ¬¬ Q(y)Q(y)

P(3) P(3) ∨∨ R(f(x))R(f(x))

Example application:Example application:Rule:Rule:

P(z) P(z) ∨∨ Q(3)Q(3) ∨∨ Q(z)Q(z)

P(3) P(3) ∨∨ Q(3)Q(3)

Example application:Example application:

CC ∨∨ DD ∨∨ EE

CCθθ ∨∨ EE
θθ=MGU(C,D)=MGU(C,D)

Rule:Rule:
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Clause Orderings & RedundancyClause Orderings & Redundancy

•• Must define Must define specialized redundancy criterionspecialized redundancy criterion
for forward and backward subsumption / for forward and backward subsumption / 
deletion when using deletion when using ordered resolution:ordered resolution:
–– Define bag (clause) extension of literal ordering:Define bag (clause) extension of literal ordering:

•• {x,y{x,y11,…,,…,yymm} } ��������bagbag {x{x11,…,,…,xxnn,y,y11,…,,…,yymm} if } if ∀∀∀∀∀∀∀∀ i x i x ��������litlit xxii

–– Can define redundancy w.r.t. Can define redundancy w.r.t. �������� bag ordering:bag ordering:
•• Clause C is redundant w.r.t. set of clauses S, if Clause C is redundant w.r.t. set of clauses S, if 

∃∃ CC11,,……,,CCnn ∈∈ S, n S, n ≥≥ 0, s.t. 0, s.t. ∀∀ i i CCii ��bagbag C and CC and C11,,……,,CCnn |= C|= C
–– Under ordered Under ordered resres, even if , even if C C θθθθθθθθ--subsumes Dsubsumes D, , DD is not is not 

redundant (and canredundant (and can’’t be deleted) unless t be deleted) unless C C ��bagbag DD

•• NB: Search restrictions of ordered NB: Search restrictions of ordered resres far far 
outweigh weakened notion of redundancyoutweigh weakened notion of redundancy

•• Ordered Ordered res res is effective saturation strategy!is effective saturation strategy!

EqualityEquality

•• A predicate w/ special interpretationA predicate w/ special interpretation
•• Could Could axiomatizeaxiomatize::

–– x=xx=x (reflexive)(reflexive)
–– x=y x=y ⇒⇒ y=xy=x (symmetric)(symmetric)
–– x=y x=y ∧∧ y=z y=z ⇒⇒ x=zx=z (transitive)(transitive)
–– For each function f:For each function f:

•• xx11=y=y1 1 ∧∧ … … ∧∧ xxnn==yynn ⇒⇒ f(xf(x11,…,,…,xxnn))==f(yf(y11,…,,…,yynn) ) 
–– For each predicate P:For each predicate P:

•• xx11=y=y1 1 ∧∧ … … ∧∧ xxnn==yynn ∧∧ P(xP(x11,…,,…,xxnn) ) ⇒⇒ P(yP(y11,…,,…,yynn) ) 

•• Too many axioms… better to reason Too many axioms… better to reason 
about equality in inference rulesabout equality in inference rules
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•• Demodulation (incomplete)Demodulation (incomplete)

•• ParamodulationParamodulation (complete)(complete)

Inference Inference 
Rules for EqualityRules for Equality

x=y     L[z] x=y     L[z] ∨∨ DD

L[yL[yθθ] ] ∨∨ DD
θθ=MGU(x,z)=MGU(x,z)

x=f(x)   P(3) x=f(x)   P(3) ∨∨ QQ

P(f(3))P(f(3)) ∨∨ QQ
θθ=={{ x/3x/3}}

Literal containing zLiteral containing z Example application:Example application:Rule:Rule:

x=y x=y ∨∨ C C L[z] L[z] ∨∨ DD

(L[y(L[y] ] ∨∨ CC ∨∨ D)D)θθ
θθ=MGU(x,z)=MGU(x,z)

x=f(x)x=f(x)∨∨ C  P(3)C  P(3)∨∨ QQ

P(f(3))P(f(3))∨∨ CC∨∨ QQ
θθ=={{ x/3x/3}}

Literal containing zLiteral containing z Example application:Example application:Rule:Rule:

Equational Equational ProgrammingProgramming
•• Used extensively for Used extensively for algebraic group algebraic group 

theorytheory proofsproofs

•• All All axiomsaxioms and and conjecturesconjectures are are unit unit 
equality predicatesequality predicates with with arithmetic arithmetic 
functionsfunctions on the LHS and RHS, e.g.on the LHS and RHS, e.g.
–– a*(x+y) = a*x+a*y ?a*(x+y) = a*x+a*y ?

•• In this case, In this case, associativeassociative--
commutative (AC) unificationcommutative (AC) unification
((StickelStickel) important for efficiency, e.g.) important for efficiency, e.g.
–– MGU(x+3*y*y, z*3*z+1) = {x/1, y/z}MGU(x+3*y*y, z*3*z+1) = {x/1, y/z}
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FirstFirst--order theorem order theorem 
proving softwareproving software

–– VampireVampire (1(1stst place for many years in place for many years in 
CADE TP competition)CADE TP competition)

–– OtterOtter (Foundation for modern TP, still (Foundation for modern TP, still 
very good, usually 2very good, usually 2ndnd place in CADE)place in CADE)

–– SPASSSPASS (Specialized for sort reasoning)(Specialized for sort reasoning)
–– SETHEOSETHEO (Connection tableaux calculus)(Connection tableaux calculus)
–– EQPEQP ((EquationalEquational theorem proving theorem proving 

system, proved Robbins conjecture)system, proved Robbins conjecture)

Many highly optimized firstMany highly optimized first--order order 
theorem proving implementations:theorem proving implementations:

FirstFirst--order TP Progressorder TP Progress

•• Ever since the Ever since the 1970s 1970s I at various times investigated I at various times investigated 
using automated theoremusing automated theorem--proving systems. But it proving systems. But it 
always seemed that always seemed that extensive human inputextensive human input----typically typically 
from the creators of the systemfrom the creators of the system----was needed to make was needed to make 
such systems actually find nonsuch systems actually find non--trivial proofs.trivial proofs.

•• In the late In the late 1990s1990s, however, I decided to try the latest , however, I decided to try the latest 
systems and was surprised to find that some of them systems and was surprised to find that some of them 
could could routinely produce proofs hundreds of steps longroutinely produce proofs hundreds of steps long
with little or no guidancewith little or no guidance. . …… the overall the overall ability to do ability to do 
proofsproofs----at least in pure operator systemsat least in pure operator systems----seemed vastly seemed vastly 
to exceed that of any humanto exceed that of any human..
----Steven Wolfram, Steven Wolfram, ““A New Kind of ScienceA New Kind of Science””
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On the other hand…On the other hand…

•• SuccessSuccess of modern theorem of modern theorem provers provers 
relies largely on relies largely on heuristic tuningheuristic tuning

•• Input Input KBsKBs are are analyzed analyzed for for propertiesproperties
which which determinedetermine strategiesstrategies and and 
various various parametersparameters of inferenceof inference

•• Still an Still an art as much as a scienceart as much as a science, , 
much room for more much room for more principled tuningprincipled tuning
of of parametersparameters, e.g., e.g.
–– Automatic partitioning of Automatic partitioning of KBsKBs to induce to induce 

good literal orderings (good literal orderings (McIlraithMcIlraith and Amir)and Amir)

Gödel’sGödel’s Incompleteness Incompleteness 
TheoremTheorem

•• FOL inferenceFOL inference is is completecomplete ((GödelGödel))
•• So what is So what is Gödel’sGödel’s incompleteness incompleteness 

theorem (GIT)theorem (GIT) about?about?
•• GIT: Inference in GIT: Inference in FOLFOL with arithmeticwith arithmetic

(+,*,exp)(+,*,exp) is is incompleteincomplete b/c b/c set of set of 
axioms for arithmeticaxioms for arithmetic is is not not 
recursively enumerablerecursively enumerable..

•• Read:Read: Inference rulesInference rules are are soundsound and and 
completecomplete, but , but no way to generate all no way to generate all 
axiomsaxioms required for arithmetic!required for arithmetic!
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Modal LogicModal Logic

•• Logic of Logic of knowledgeknowledge and/or and/or beliefbelief, e.g., e.g.
–– English:English: Scott knows that you know that Scott Scott knows that you know that Scott 

knows this lecture is boringknows this lecture is boring
–– Modal Logic Modal Logic KKnn (n agents):(n agents): KKScottScottKKyouyouKKScottScott LIBLIB

•• Possible worlds (Possible worlds (KripkeKripke) semantics) semantics
–– Each modal operator Each modal operator KKii corresponds to a set of corresponds to a set of 

possible interpretations possible interpretations (i.e., possible worlds)(i.e., possible worlds)
–– Different axioms Different axioms (T,D,4,5,…)(T,D,4,5,…) correspond to correspond to 

relations b/w worlds, relations b/w worlds, Axiom 4: KAxiom 4: Kiiϕϕ => => KKiiKKiiϕϕ
–– Semantics:Semantics: KKiiϕϕ iffiff ϕϕ is true in all worlds agent is true in all worlds agent ii

considers possible according to axioms & KBconsiders possible according to axioms & KB

•• Postpone reasoning until DL…Postpone reasoning until DL…

•• A modal logic where the possible A modal logic where the possible 
worlds are linked by time:worlds are linked by time:
–– LTL: Linear temporal logicLTL: Linear temporal logic

•• World states evolveWorld states evolve
deterministically deterministically 

•• State can involve actionState can involve action
–– CTL: Computation tree logicCTL: Computation tree logic

•• World states can evolveWorld states can evolve
nonnon--deterministicallydeterministically

•• Temporal operators specify Temporal operators specify 
conditions on world evolutionconditions on world evolution

•• Used for verification, safety checksUsed for verification, safety checks

Temporal LogicTemporal Logic

w1 w2 w3

w2

w3

w1

w4

w5

w6

w7
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LTL Temporal OperatorsLTL Temporal Operators

•• GGGGGGGG f: f: always falways f

•• FFFFFFFF f:f: eventually feventually f

•• XXXXXXXX f:f: next statenext state

•• f f UUUUUUUU r: r: untiluntil

•• f f RRRRRRRR r: r: releasesreleases

f f f f f f

f f

fXf

ff f f r

r r,frr

Temporal Logic InferenceTemporal Logic Inference

•• Because Because time evolves infinitelytime evolves infinitely, , 
propositional SATpropositional SAT methods methods won’t workwon’t work for for 
LTL/CTL verificationLTL/CTL verification (will branch infinitely)(will branch infinitely)

•• However, LTL/CTL inference is monotonic!However, LTL/CTL inference is monotonic!
–– To check condition, start with set of all worldsTo check condition, start with set of all worlds
–– Evolve world one step, remove states not Evolve world one step, remove states not 

satisfying conditionsatisfying condition
–– Continue evolution until set does not change… Continue evolution until set does not change… 

this is set of all states for which condition holdsthis is set of all states for which condition holds
•• For propositional temporal logic, number of For propositional temporal logic, number of 

worlds is worlds is finite finite ⇒⇒ termination termination ⇒⇒ decidable!decidable!
•• BDD data structureBDD data structure used to used to compactly compactly 

encode sets of worldsencode sets of worlds and and evolve worlds.evolve worlds.
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•• A concept oriented logic:A concept oriented logic:

•• Guarded fragment subset of FOLGuarded fragment subset of FOL

Description LogicDescription Logic

LDWDSLDWDS ⇔⇔
Dog Dog  Large Large 
∃∃ has.(Spot has.(Spot  Dark)Dark)

LDWDS(x) LDWDS(x) ⇔⇔
(Dog(x) ^ Large(x)) ^(Dog(x) ^ Large(x)) ^
((∃∃ y.has(x,y)y.has(x,y)

^ (Spot(y) ^ Dark(y))^ (Spot(y) ^ Dark(y))

Large Dog Large Dog 
with a Dark with a Dark 
SpotSpot
(LDWDS)(LDWDS)

DWSDWS ⇔⇔
Dog Dog  ∃∃ has.Spothas.Spot

DWS(x)  DWS(x)  ⇔⇔
Dog(x) ^ (Dog(x) ^ (∃∃ y.has(x,y)y.has(x,y)

^ Spot(y))^ Spot(y))

Dog with a Dog with a 
Spot Spot 
(DWS)(DWS)

DLDLDLDLDLDLDLDLFOLFOLFOLFOLFOLFOLFOLFOLEnglishEnglishEnglishEnglishEnglishEnglishEnglishEnglish

Description Logic (DL) Description Logic (DL) 
InferenceInference
•• Natural correspondence between ALC DL Natural correspondence between ALC DL 

and modal logic (and modal logic (SchildSchild):):
–– Modal propositions are concepts that hold in Modal propositions are concepts that hold in 

possible worlds possible worlds ww, e.g. lecture is boring: , e.g. lecture is boring: LIB(w)LIB(w)
–– Modal operators Modal operators KKii are are DL rolesDL roles that link possible that link possible 

worlds:  worlds:  KKscottscott(w(w11, w, w22))
–– If Scott knows that the lectureIf Scott knows that the lecture--isis--boring then boring then 

∀∀ ww22 KKscottscott(w(w11, w, w22))⇒⇒LIB(wLIB(w22)) ((ww11 is a free variable)is a free variable)
–– Or in Or in DLDL notation notation ∀∀ KKscottscott..LIBLIB

•• Since Since decidable tableaux methodsdecidable tableaux methods known known 
for for modal logicsmodal logics, these were , these were importedimported into into 
DL and later DL and later extendedextended to to expressive expressive DLsDLs

•• Benefit of DL:Benefit of DL: Decidable subset of FOL that Decidable subset of FOL that 
is ideal for conceptual ontology reasoning!is ideal for conceptual ontology reasoning!
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Example of Description Logic Example of Description Logic 
Tableaux ProofTableaux Proof

•• Given:Given:
–– Axioms:Axioms:

NoneNone

–– Conjecture: Conjecture: 
¬¬∃∃∃∃∃∃∃∃ Child.Child.¬¬Male Male ⇒⇒⇒⇒⇒⇒⇒⇒

∀∀∀∀∀∀∀∀ Child.Male ?Child.Male ?

•• Inference:Inference:
–– TableauxTableaux

•• Proof:Proof:
CheckCheck unsatisfiabilityunsatisfiability of of 
∃∃∃∃∃∃∃∃ Child.Child.¬¬Male Male  ∀∀∀∀∀∀∀∀ Child.MaleChild.Male

x: x: ∃∃∃∃∃∃∃∃ Child.Child.¬¬Male Male  ∀∀∀∀∀∀∀∀ Child.MaleChild.Male
x: x: ∀∀∀∀∀∀∀∀ Child.Male   Child.Male   [ [  --rule ]rule ]
x: x: ∃∃∃∃∃∃∃∃ Child.Child.¬¬Male   Male   [ [  --rule ]rule ]
x: Child y         x: Child y         [ [ ∃∃∃∃∃∃∃∃ --rule ]rule ]
y: y: ¬¬Male           Male           [ [ ∃∃∃∃∃∃∃∃ --rule ]rule ]
y: Male            y: Male            [ [ ∀∀∀∀∀∀∀∀ --rule ]rule ]
<CLASH><CLASH>

Contradiction Contradiction ⇒⇒⇒⇒⇒⇒⇒⇒ Conj. is trueConj. is true

DL Reasoner DL Reasoner 
Output (Output (FaCTFaCT++)++)

Taxonomy encodes all Taxonomy encodes all ⇒⇒ relationsrelations
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Modal, Verification, and Modal, Verification, and 
DL Inference SoftwareDL Inference Software

•• Modal logicModal logic
–– MSPASS MSPASS (converts modal formula to FOL)(converts modal formula to FOL)
–– By correspondence, also DL reasonersBy correspondence, also DL reasoners

•• Verification Verification (temporal and non(temporal and non--temporal)temporal)
–– PVS PVS (interactive TP for HW/SW verification)(interactive TP for HW/SW verification)
–– ALLOY ALLOY (first(first--order HW/SW model checker)order HW/SW model checker)
–– NuSMV NuSMV (BDD(BDD--based LTL/CTL HW/SW based LTL/CTL HW/SW verifverif.).)

•• DL ReasoningDL Reasoning
–– Classic Classic (limited DL, poly(limited DL, poly--time inference)time inference)
–– Racer Racer (expressive DL, highly optimized)(expressive DL, highly optimized)
–– FaCTFaCT++ ++ (very (very exprexpr. DL, highly optimized). DL, highly optimized)

Repositories of TP ProblemsRepositories of TP Problems

–– TPTP:TPTP: Thousands of Problems for Thousands of Problems for TPsTPs
•• Algebraic group theory, geometry, set theory, Algebraic group theory, geometry, set theory, 

topology, software verification, NLP topology, software verification, NLP KBsKBs
–– SATLIB:SATLIB: Library of Prop. SAT problemsLibrary of Prop. SAT problems

•• Hardware verification, industrial planning Hardware verification, industrial planning 
problems, hard randomized problemsproblems, hard randomized problems

–– Open/Open/ResearchCycResearchCyc:: Public version of Public version of CycCyc
•• Large commonLarge common--sense repository expressed in sense repository expressed in 

higherhigher--order logicorder logic
–– Semantic Web:Semantic Web: DL DL ontologies ontologies in OWLin OWL

•• The web is the limit!The web is the limit!

Many repositories of theorem proving Many repositories of theorem proving 
knowledge bases:knowledge bases:
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Concluding ThoughtsConcluding Thoughts

•• Many logics, inference techniques, Many logics, inference techniques, 
and computational guarantees and computational guarantees 

•• Have to Have to balance expressivity balance expressivity and and 
computational tradeoffscomputational tradeoffs with with tasktask--
specific needs specific needs ((BrachmanBrachman & Levesque, 1985)& Levesque, 1985)

•• Woods (1987): Woods (1987): Don’t blame the tool!Don’t blame the tool!
–– A poor craftsman blames the tool when A poor craftsman blames the tool when 

their efforts failtheir efforts fail
–– An experienced craftsman uses the right An experienced craftsman uses the right 

tool for the jobtool for the job


