Automated Theorem Proving

Scott Sanner, Guest Lecture
Topics in Automated Reasoning
Thursday, Jan. 19, 2006

Introduction

- Def. Automated Theorem Proving:
 Proof of mathematical theorems by a computer program.

- Depending on underlying logic, task varies from trivial to impossible:
 - Simple description logic: Poly-time
 - Propositional logic: NP-Complete (3-SAT)
 - First-order logic w/ arithmetic: Impossible
Applications

- Proofs of Mathematical Conjectures
 - Graph theory: Four color theorem
 - Boolean algebra: Robbins conjecture

- Hardware and Software Verification
 - Verification: Arithmetic circuits
 - Program correctness: Invariants, safety

- Query Answering
 - Build domain-specific knowledge bases, use theorem proving to answer queries

Basic Task Structure

- Given:
 - Set of axioms (KB encoded as axioms)
 - Conjecture (assumptions + consequence)

- Inference:
 - Search through space of valid inferences

- Output:
 - Proof (if found, a sequence of steps deriving conjecture consequence from axioms and assumptions)
Many Logics / Many Theorem Proving Techniques

Focus on theorem proving for logics with a model-theoretic semantics (TBD)

- Logics:
 - Propositional, and first-order logic
 - Modal, temporal, and description logic

- Theorem Proving Techniques:
 - Resolution, tableaux, sequent, inverse
 - Best technique depends on logic and app.

Example of Propositional Logic Sequent Proof

- Given:
 - Axioms: None
 - Conjecture: \(A \lor \neg A \) ?

- Inference:
 - Gentzen Sequent Calculus

- Direct Proof:
 - (I) \(A \lor \neg A \)
 - (¬R) \(\neg A, A \)
 - (∨R2) \(\neg A, A \)
 - (PR) \(A, \neg A \)
 - (∨R1) \(\neg A, A \)
 - (CR) \(\neg A \lor A \)

\[\begin{array}{c}
A \lor \neg A \\
\neg A, A \\
\neg A, A \\
A, \neg A \\
\neg A, A \\
\neg A \lor A \\
\end{array} \]
Example of First-order Logic Resolution Proof

- **Given:**
 - **Axioms:**
 \[\forall x \text{ Man}(x) \Rightarrow \text{Mortal}(x) \]
 \[\text{Man}(\text{Socrates}) \]
 - **Conjecture:**
 \[\exists y \text{ Mortal}(y) \]

- **Inference:**
 - **Refutation Resolution**

- **CNF:**
 \[\neg \text{Man}(x) \lor \text{Mortal}(x) \]
 \[\neg \text{Mortal}(y) \quad \text{[Neg. conj.]} \]

- **Proof:**
 1. \(\neg \text{Mortal}(y) \quad \text{[Neg. conj.]} \)
 2. \(\neg \text{Man}(x) \lor \text{Mortal}(x) \quad \text{[Given]} \)
 3. \(\text{Man}(\text{Socrates}) \quad \text{[Given]} \)
 4. \(\text{Mortal}(\text{Socrates}) \quad \text{[Res. 2, 3]} \)
 5. \(\bot \quad \text{[Res. 1, 4]} \)

 Contradiction \(\Rightarrow \) Conj. is true

Example of Description Logic Tableaux Proof

- **Given:**
 - **Axioms:** None
 - **Conjecture:**
 \[\neg \exists \text{ Child.} \neg \text{Male} \Rightarrow \forall \text{ Child.Male} \]

- **Inference:**
 - **Tableaux**

- **Proof:**

 Check unsatisfiability of
 \[\exists \text{Child.} \neg \text{Male} \quad \forall \text{ Child.Male} \]

 \(x: \exists \text{Child.} \neg \text{Male} \quad \forall \text{ Child.Male} \)
 \(x: \forall \text{ Child.Male} \quad \text{[} \exists -\text{rule } \]
 \(x: \exists \text{Child.} \neg \text{Male} \quad \text{[} \forall -\text{rule } \]
 \(x: \text{ Child} \neg \text{ Male} \quad \text{[} \exists -\text{rule } \]
 \(y: \neg \text{ Male} \quad \text{[} \forall -\text{rule } \]
 \(y: \text{ Male} \quad \text{[} \exists -\text{rule } \]
 <\text{CLASH}>

 Contradiction \(\Rightarrow \) Conj. is true
Lecture Outline

- Common Definitions
 - Soundness, completeness, decidability

- Propositional and first-order logic
 - Syntax and semantics
 - Tableaux theorem proving
 - Resolution theorem proving
 - Strategies, orderings, redundancy, saturation optimizations, & extensions

- Modal, temporal, & description logics
 - Quick overview of logics / TP techniques

Entailment vs. Truth

- For each logic and theorem proving approach, we’ll specify:
 - Syntax and semantics
 - Foundational axioms (if any)
 - Rules of inference

- Entailment vs. Truth
 - Let KB be the conjunction of axioms
 - Let F be a formula (possibly a conjecture)
 - We say $KB \models F$ (read: KB entails F) if F can be derived from KB through rules of inference
 - We say $KB \models F$ (read: KB models F) if semantics hold that F is true whenever KB is true
Model-theoretic semantics

- Model-theoretic semantics for logics
 - An interpretation is a truth assignment to atomic elements of a KB: $I(C,D) = \{\langle F,F \rangle, \langle F,T \rangle, \langle T,F \rangle, \langle T,T \rangle\}$
 - A model of a formula is an interpretation where it is true: $I(C,D) = \langle F,T \rangle$ models $C \lor D, C \Rightarrow D$, but not $C \land D$
 - Two properties of a formula F w.r.t. axioms of KB:
 - Validity: F is true in all models of KB
 - Satisfiability: F is true in ≥ 1 model of KB

- Think of truth in a set-theoretic manner

\[
\begin{align*}
\text{KB} & \models C & C & \subseteq \text{Models of KB} \\
& & & \text{Models of KB}
\end{align*}
\]

Soundness, Completeness, and Decidability

- Two properties of ATP inference systems:
 - Soundness: If $\text{KB} \vdash C$ then $\text{KB} \models C$
 - Completeness: If $\text{KB} \models C$ then $\text{KB} \vdash C$

- For a given logic, an ATP decision procedure returns true or false for $\text{KB} \vdash C$

- For a logic, a sound and complete decision procedure has one of following properties:
 - Decidable: Decision procedure guaranteed to terminate in finite time
 - Semidecidable: Decision procedure guaranteed to terminate for either true or false, but not both
 - Undecidable: No termination guarantee
Prop. Logic Syntax

- Propositional variables: p, rain, sunny
- Connectives: \(\Rightarrow, \Leftrightarrow, \neg, \land, \lor\)
- Inductive definition of well-formed formula (wff):
 - Base: All propositional vars are wffs
 - Inductive 1: If A is a wff then \(\neg A\) is a wff
 - Inductive 2: If A and B are wffs then
 \(A \land B, A \lor B, A \Rightarrow B, A \Leftrightarrow B\) are wffs
- Examples:
 - \(\text{rain, rain} \Rightarrow \neg \text{sunny}\)
 - \((\text{rain} \Rightarrow \neg \text{sunny}) \Leftrightarrow (\text{sunny} \Rightarrow \neg \text{rain})\)

Prop. Logic Semantics

- For a formula F, the truth \(I(F)\) under interpretation \(I\) is recursively defined:
 - Base:
 - F is prop var A then \(I(F)=\text{true}\) iff \(I(A)=\text{true}\)
 - Recursive:
 - \(F = \neg C\) then \(I(F)=\text{true}\) iff \(I(C)=\text{false}\)
 - \(F = C \land D\) then \(I(F)=\text{true}\) iff \(I(C)=\text{true} \land I(D)=\text{true}\)
 - \(F = C \lor D\) then \(I(F)=\text{true}\) iff \(I(C)=\text{true} \lor I(D)=\text{true}\)
 - \(F = C \Rightarrow D\) then \(I(F)=\text{true}\) iff \(I(\neg C \lor D)=\text{true}\)
 - \(F = C \Leftrightarrow D\) then \(I(F)=\text{true}\) iff \(I(C \Rightarrow D)=\text{true} \land I(D \Rightarrow C)=\text{true}\)
 - Truth defined recursively from ground up!
CNF Normalization

- Many prop. theorem proving techniques req. KB to be in clausal normal form (CNF):
 - Rewrite all \(C \iff D \) as \(C \implies D \land D \implies C \)
 - Rewrite all \(C \implies D \) as \(\neg C \lor D \)
 - Push negation through connectives:
 - Rewrite \(\neg(C \land D) \) as \(\neg C \lor \neg D \)
 - Rewrite \(\neg(C \lor D) \) as \(\neg C \land \neg D \)
 - Rewrite double negation \(\neg\neg C \) as \(C \)
 - Now NNF, to get CNF, distribute \(\lor \) over \(\land \):
 - Rewrite \((C \land D) \lor E \) as \((C \lor E) \land (D \lor E) \)
- A clause is a disj. of literals (pos/neg vars)
- Can express KB as conj. of a set of clauses

CNF Normalization Example

- Given KB with single formula:
 - \(\neg (\neg (\neg \neg \neg \neg \text{rain} \implies \text{wet}) \implies (\text{inside} \land \text{warm}) \)
- Rewrite all \(C \implies D \) as \(\neg C \lor D \)
- \(\neg \neg (\neg \neg \neg \neg \text{rain} \lor \neg \neg \neg \neg \text{wet}) \lor (\text{inside} \land \text{warm}) \)
- Push negation through connectives:
 - \((\neg \neg \neg \neg \neg \text{rain} \lor \neg \neg \neg \neg \text{wet}) \lor (\text{inside} \land \text{warm}) \)
- Rewrite double negation \(\neg\neg C \) as \(C \)
- \((\neg \text{rain} \lor \neg \text{wet}) \lor (\text{inside} \land \text{warm}) \)
- Distribute \(\lor \) over \(\land \):
 - \((\neg \text{rain} \lor \text{wet} \lor \text{inside}) \land (\neg \text{rain} \lor \text{wet} \lor \text{warm}) \)
- CNF KB: \(\{\neg \text{rain} \lor \text{wet} \lor \text{inside}, \neg \text{rain} \lor \text{wet} \lor \text{warm}\} \)
Prop. Theorem Proving

- \(A \implies B \) iff \(A \land \neg B \) is unsatisfiable
- Decision procedure for propositional logic is decidable, but NP-complete (reduction to 3-SAT)
- State-of-the-art prop. unsatisfiability methods are DPLL-based

\[
\begin{align*}
\text{true} & \quad A \quad \text{false} \\
\text{true} & \quad B \quad \text{false} \\
\text{false} & \quad B \quad \text{false}
\end{align*}
\]

- Many optimizations, more next week

Prop. Tableaux Methods

Given negated query \(F \) (in NNF), use rules to recursively break down:
- \(\alpha\)-Rule: Given \(A \land B \) add \(A \) and \(B \)
- \(\beta\)-Rule: Given \(A \lor B \) branch on \(A \) and \(B \)
- \langle Clash\rangle: If \(A \) and \(\neg A \) occur on same branch
- Clash on all branches indicates unsat!

Note: Inverse method is inverse of tableaux - bottom up
One rule:

\[A \lor B \quad \neg B \lor C \]

\[A \lor C \]

Example application:

\[\neg \text{precip} \lor \neg \text{freezing} \lor \text{snow} \quad \neg \text{snow} \lor \text{slippery} \]

\[\neg \text{precip} \lor \neg \text{freezing} \lor \text{slippery} \]

Simple strategy is to make all possible resolution inferences

Refutation resolution is sound and complete

Resolution Strategies

Need strategies to restrict search:

- **Unit resolution:**
 - Only resolve with unit clauses
 - Complete for Horn KB
 - Intuition: Decrease clause size

- **Set of support:**
 - SOS starts with query clauses
 - Only resolve SOS clauses with non-SOS clauses and put resolvents in SOS
 - Intuition: KB should be satisfiable so refutation should derive from query

- **Input resolution:**
 - At each step resolve only with input (KB or query)
 - I.e., don't resolve non-input clauses
 - Linear input: also allow ancestor \(\Rightarrow \) complete
Ordering Strategies

- Refutation of a clause requires refutation of all literals
- Enforce an ordering on proposition elimination to restrict search
 - Example order: p then r then q
 - General idea behind Davis-Putnam (DP) & directional resolution (Dechter & Rish)
- Effective, but does not work with all resolution strategies, e.g. SOS + ordered resolution is incomplete

Prop. Inference Software

- Mainly DPLL SAT algorithms
 - zChaff – highly optimized & documented DPLL solver, source available
 - siege – best performing DPLL solver, source not available
 - 2clseq – DPLL solver with constraint propagation (balance search / reasoning)
- For some applications: BDDs
 - BDDs maintain all possible models in a canonical data structure
 - CUDD ADD/BDD Package – very efficient
First-order logic

- Refer to objects and relations b/w them
- Propositional logic requires all relations to be propositionalized
 - Scott-at-home, Scott-at-work, Jim-at-subway, etc...
- Really want a compact relational form:
 - at(Scott, home), at(Scott, work), at(Jim, subway), etc...
- Then can use variables and quantify over all objects:
 - $\forall x\ person(x) \Rightarrow \exists y\ at(x,y) \land place(y)$

First-order Logic Syntax

- **Terms** (technical definition is inductive b/c of fns)
 - Variables: w, x, y, z
 - Constants: a, b, c, d
 - Functions over terms: $f(a), f(x,y), f(x,c,f(f(z)))$
- **Predicates:** $P(x), Q(f(x,y)), R(x, f(x,f(c,z),c))$
- **Connectives:** $\Rightarrow \leftrightarrow \neg \land \lor$
- **Quantifiers:** $\forall \exists$
- **Inductive wff definition:**
 - Same as prop. but with following modifications...
 - Base: All predicates over terms are wffs
 - Inductive: If A is a wff and x is a variable term
 then $\forall x\ A$ & $\exists x\ A$ are wffs
First-order Logic Semantics

- **Interpretation** $I = (\Delta_I, \cdot_I)$
 - Δ_I is a non-empty domain
 - \cdot_I maps from predicate symbols P of arity n into a subset of $\times_{1 \ldots n} \Delta_I$ (where P is true)
- **Example**
 - Δ_I is \{Scott, Jim\}
 - \cdot_I maps at(•,•) into \{ ⟨Scott, loc(Scott)⟩, ⟨Jim, loc(Jim)⟩ \}
 - All other ground predicates are false in I, e.g. at(Scott, loc(Jim)), at(Scott, Scott)
- **NB**: FOL has ∞ interpretations/models!

Substitution and Unification

- **Substitution**
 - A substitution list θ is a list of variable-term pairs
 - e.g., θ={x/3,y/f(z)}
 - When θ is applied to an FOL formula, every free occurrence of a variable in the list is replaced with the given term
 - e.g. $(P(x,y) \land \exists x P(x,y))\theta = P(3,f(z)) \land \exists x P(x,f(z))$
- **Unification / Most General Unifier**
 - The unifier $\text{UNIF}(x,y)$ of two predicates/terms is a substitution that makes both arguments identical
 - e.g. $\text{Unif}(P(x,f(x)), P(y, f(f(z)))) = \{x/f(1), y/f(1), z/1\}$
 - The most general unifier $\text{MGU}(x,y)$ is just that... all other unifiers can be obtained from the MGU by additional subst. (MGU exists for unifiable args)
 - e.g. $\text{MGU}(P(x,f(x)), P(y, f(f(z)))) = \{x/f(z), y/f(z)\}$
Skolemization

- Skolemization is the process of getting rid of all \exists quantifiers from a formula while preserving (un)satisfiability:
 - If $\exists x$ quantifier is the outermost quantifier, remove the \exists quantifier and substitute a new constant for x
 - If $\exists x$ quantifier occurs inside of \forall quantifiers, remove the \exists quantifier and substitute a new function of all \forall quantified variables for x

- Examples:
 - Skolemize($\exists w \exists x \forall y \forall z P(w,x,y,z)$) = $\forall y \forall z P(c,d,y,z)$
 - Skolemize($\forall w \exists x \forall y \exists z P(w,x,y,z)$) = $\forall w \forall y P(w,f(w),y,f(x,y))$

CNF Conversion

CNF conversion is the same as the propositional case up to NNF, then do:

- Standardize apart variables (all quantified variables should have different names)
 - e.g. $\forall x A(x) \land \exists y \neg A(x)$ becomes $\forall x A(x) \land \exists y \neg A(y)$
- Skolemize formula
 - e.g. $\forall x A(x) \land \exists y \neg A(y)$ becomes $\forall x A(x) \land \neg A(c)$
- Drop universals
 - e.g. $\forall x A(x) \land \neg A(c)$ becomes $A(x) \land \neg A(c)$
- Distribute \lor over \land
First-order Theorem Proving

- **Tableaux methods**
 - Preferred for some types of reasoning and for subsets of FOL (guarded fragment, set theory)
 - Highly successful for description and modal logics which conform to guarded fragment of FOL

- **Resolution Methods**
 - Most successful technique for a variety of KBs
 - But... search space grows very quickly
 - Need a variety of optimizations in practice
 - strategies, ordering, redundancy elimination

- **FOL TP complete ☺☺☺☺, but semidecidable ☹☹☹☹**
 - Will return in finite time if formula entailed
 - May run forever if not entailed

First-order Tableaux

Given negated query F (in NNF), use rules to recursively break down:

- α-Rule, β-Rule: Same as for prop tableaux
- γ-Rule: Given $\forall x A(x)$ add $A(?v)$ for variable $?v$
- δ-Rule: Given $\exists x A(x)$ add $A(f)$ for Skolem function f
- $\langle\text{Clash}\rangle$: If unifiable A and $\neg A$ occur on same branch

\[
\forall x A(x) \land \exists x \neg A(x) \lor \exists x,y \neg B(x,y) \land \forall x,y B(x,y)
\]
First-order Resolution

Binary Resolution Rule

Rule:

\[
(C \lor D) \quad \neg E \lor F \quad (C \lor F)\theta \quad \theta = \text{MGU}(D, E)
\]

Example application:

\[
P(3) \lor Q(f(x)) \lor R(y) \quad \neg Q(y) \quad P(3) \lor R(f(x))
\]

Factoring Rule

Rule:

\[
C \lor D \lor E \quad \theta = \text{MGU}(C, D)
\]

Example application:

\[
P(z) \lor Q(3) \lor Q(z) \quad P(3) \lor Q(3)
\]

Example of First-order Logic Resolution Proof

Given:

- **Axioms:**
 - $\forall x \; \text{Man}(x) \Rightarrow \text{Mortal}(x)$
 - $\text{Man}(\text{Socrates})$
- **Conjecture:**
 - $\exists y \; \text{Mortal}(y)$?

Inference:

- **Refutation Resolution**

CNF:

- $\neg \text{Man}(x) \lor \text{Mortal}(x)$
- $\text{Man}(\text{Socrates})$
- $\neg \text{Mortal}(y)$ [Neg. conj.]

Proof:

1. $\neg \text{Mortal}(y)$ [Neg. conj.]
2. $\neg \text{Man}(x) \lor \text{Mortal}(x)$ [Given]
3. $\text{Man}(\text{Socrates})$ [Given]
4. $\text{Mortal}(\text{Socrates})$ [Res. 2, 3]
5. \bot [Res. 1, 4]

Contradiction \Rightarrow Conj. is true
Importance of Factoring

- Without the factoring rule, binary resolution is incomplete
- For example, take the following refutable clause set:
 - \{ A(w) \lor A(z), \lnot A(y) \lor \lnot A(z) \}\n- All binary resolutions yield clauses of the same form
- Clause set is only refutable if one of the clauses is first factored

Search Control

Additional refinements of prop strategies yield goal-directed / bottom-up search:
- SLD Resolution
 - KB of definite clauses (i.e. Horn rules), e.g.
 Uncle(?x,?y) := Father(?x,?z) ∧ Brother(?x,?y)
 - Resolution backward chains from goal of rules
 - With negation-as-failure semantics, SLD-resolution is logic programming, i.e. Prolog
- Negative and Positive Hyperresolution
 - All negative (positive) literals in nucleus clause are simultaneously resolved with completely positive (negative) satellite clauses
 - Positive hyperres yields backward chaining
 - Negative hyperres yields forward chaining
Database-style Inference

- Naïve approaches to resolution perform one inference per step
- For SLD or neg. hyperres and KBs w/ large numbers of constants / functions, can store clause terms and perform DB-like res, e.g.
 - CNF KB = { R(a,b), R(b,a), R(b,c), R(c,b), ¬R(x,y) ∨ ¬R(y,z) ∨ R(x,z) }
 - Use DB join/project during SLD or neg. hyperres:
 - R(x,y)
 - (a,b), (b,a),
 - (b,c), (c,b)
 - R(y,z)
 - (a,b), (b,a), (b,c), (c,b)
 - R(x,z)
 - (a,a), (a,c), (b,b), (c,c)

- Can cache inferences for reuse (tabling)
- Huge improvement for instance-heavy KBs

Term Indexing

- Term indexing is another general technique for fast retrieval of sets of terms / clauses matching criteria
- Common uses in modern theorem provers:
 - Term q is unifiable with term t, i.e., ∃θ s.t. qθ = tθ
 - Term t is an instance of q, i.e., ∃θ s.t. qθ = t
 - Term t is a generalization of q, i.e., ∃θ s.t. q = tθ
 - Clause q subsumes clause t, i.e., ∃θ s.t. qθ ⊆ t
 - Clause q is subsumed by clause t, i.e., ∃θ s.t. tθ ⊆ q
- Techniques: (Google for “term indexing”)
 - Path indexing
 - Code, context, & discrimination trees
Age-weight Ratio

- During a resolution strategy, have two sets:
 - Active: Set of active clauses for resolving with
 - Frontier: Candidate clauses to resolve with Active

- **Idea**: Store the frontier in two queues
 - Age queue: Standard FIFO queue
 - Weight queue: Priority queue where clause priority determined by heuristic measure:
 - Number of literals, number of terms, etc...

- **A:W ratio**: Choose A clauses from age queue for every W chosen from weight queue
 - Retains completeness of strategy if A is non-zero
 - I.e., fair b/c all clauses eventually selected
 - Can speed up inference by orders of magnitude!

Redundancy Control

- **Redundancy of clauses is a huge problem in FOL resolution**
 - For clauses C & D, C is redundant if ∃θ s.t. Cθ ⊆ D as a multiset, a.k.a. θ-subsumption
 - If true, D is redundant and can be removed
 - Intuition: If D used in a refutation, Cθ could be substituted leading to even shorter refutation

- **Two types of subsumption where N is a new resolvent and A ∈ Active:**
 - Forward subsumption: A θ-subsumes N, delete N
 - Backward subsumption: N θ-subsumes A, delete A

- **Forward/backward subsumption expensive but saves many redundant inferences**
Saturation Theorem Proving

- Given a set of clauses S:
 - S is saturated if all possible inferences from clauses in S generate forward subsumed clauses
 - Thus, all new inferences can be deleted without sacrificing completeness
 - If S does not contain the empty clause then S is satisfiable
- Saturation implies no proof possible!
- Usually need ordering restrictions to reach saturation (if possible)...

Simplification Orderings

For complete ordered resolution in FOL, must use term simplification orderings:

- Well-founded (Noetherian): If there is no infinitely decreasing chain of terms s.t.
 $t_0 \succ t_1 \succ t_2 \succ ... \succ t_\infty$
- Monotonic: If $s \succ t$ then $f[s] \succ f[t]$ (if $f[s]$ and $f[t]$ are identical except for [term])
- Stable under Subst.: If $s \succ t$ then $s \theta \succ t \theta$

Examples: (Google for following keywords)
- Knuth-Bendix ordering
- Lexicographic path ordering
Literal Ordering & Selection

- Can extend term ordering to literals \succ_{lit}:
 - If literals equal but opposite sign, then negative literal \succ_{lit} positive literal
 - Otherwise, treat literals as terms (modulo sign) and literal ordering \succ_{lit} is just term ordering \succ

- A selection function selects literals, and must adhere to following rules:
 - At least one literal must be selected
 - Either a negative literal is among the selection, or all maximal positive literals w.r.t. \succ_{lit} are selected

- Show selected literals by underscore
 - e.g., \{ $A \lor \neg B \lor \neg C$, $D \lor E \lor \neg F$, $\neg G \lor H \lor I$ \}

Ordered Resolution w/ Selection

- Binary Ordered Res w/ Selection
 Rule:
 \[
 \frac{C \lor D \quad \neg E \lor F}{(C \lor F) \theta} \quad \theta = \text{MGU}(D, E)
 \]
 Example application:
 \[
 \frac{P(3) \lor Q(f(x)) \lor R(y) \quad \neg Q(y)}{P(3) \lor R(f(x))}
 \]

- Ordered Factoring w/ Selection
 Rule:
 \[
 \frac{C \lor D \lor E}{C \theta \lor E} \quad \theta = \text{MGU}(C, D)
 \]
 Example application:
 \[
 \frac{P(z) \lor Q(3) \lor Q(z)}{P(3) \lor Q(3)}
 \]
Clause Orderings & Redundancy

- Must define specialized redundancy criterion for forward and backward subsumption / deletion when using ordered resolution:
 - Define bag (clause) extension of literal ordering:
 - \(\{x, y_1, \ldots, y_m\} \supseteq_{bag} \{x_1, \ldots, x_n, y_1, \ldots, y_m\} \) if \(\forall i \ x \supseteq_{lit} x_i \)
 - Can define redundancy w.r.t. bag ordering:
 - Clause \(C \) is redundant w.r.t. set of clauses \(S \), if \(\exists C_1, \ldots, C_n \in S, n \geq 0, \) s.t. \(\forall i \ C_i \supseteq_{bag} C \) and \(C_1, \ldots, C_n \models C \)
 - Under ordered res, even if \(C \ominus \)-subsumes \(D \), \(D \) is not redundant (and can't be deleted) unless \(C \leftarrow_{bag} D \)

- NB: Search restrictions of ordered res far outweigh weakened notion of redundancy
- Ordered res is effective saturation strategy!

Equality

- A predicate w/ special interpretation
- Could axiomatize:
 - \(x = x \) (reflexive)
 - \(x = y \implies y = x \) (symmetric)
 - \(x = y \land y = z \implies x = z \) (transitive)
 - For each function \(f \):
 - \(x_1 = y_1 \land \ldots \land x_n = y_n \implies f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n) \)
 - For each predicate \(P \):
 - \(x_1 = y_1 \land \ldots \land x_n = y_n \land P(x_1, \ldots, x_n) \implies P(y_1, \ldots, y_n) \)
- Too many axioms... better to reason about equality in inference rules
Inference
Rules for Equality

- **Demodulation (incomplete)**

 Rule: \[\frac{x=y \quad \text{L}[z] \lor D}{\text{L}[y\theta] \lor D} \quad \theta = \text{MGU}(x,z) \]

 Example application:

 \[\frac{x=f(x) \quad P(3) \lor Q}{P(f(3)) \lor Q} \quad \theta = \{x/3\} \]

- **Paramodulation (complete)**

 Rule: \[\frac{x=y \lor C \quad \text{L}[z] \lor D}{(L[y] \lor C \lor D)\theta} \quad \theta = \text{MGU}(x,z) \]

 Example application:

 \[\frac{x=f(x) \lor C \quad P(3) \lor Q}{P(f(3)) \lor C \lor Q} \quad \theta = \{x/3\} \]

Equational Programming

- Used extensively for algebraic group theory proofs
- All axioms and conjectures are unit equality predicates with arithmetic functions on the LHS and RHS, e.g.
 - \(a^*(x+y) = a^*x + a^*y \)?
- In this case, associative-commutative (AC) unification (Stickel) important for efficiency, e.g.
 - \(\text{MGU}(x+3*y*y, z^3*z+1) = \{x/1, y/z\} \)
First-order theorem proving software

Many highly optimized first-order theorem proving implementations:

- Vampire (1st place for many years in CADE TP competition)
- Otter (Foundation for modern TP, still very good, usually 2nd place in CADE)
- SPASS (Specialized for sort reasoning)
- SETHEO (Connection tableaux calculus)
- EQP (Equational theorem proving system, proved Robbins conjecture)

First-order TP Progress

- Ever since the 1970s I at various times investigated using automated theorem-proving systems. But it always seemed that extensive human input--typically from the creators of the system--was needed to make such systems actually find non-trivial proofs.

- In the late 1990s, however, I decided to try the latest systems and was surprised to find that some of them could routinely produce proofs hundreds of steps long with little or no guidance. … the overall ability to do proofs--at least in pure operator systems--seemed vastly to exceed that of any human.

--Steven Wolfram, “A New Kind of Science”
On the other hand...

- Success of modern theorem provers relies largely on heuristic tuning
- Input KBs are analyzed for properties which determine strategies and various parameters of inference
- Still an art as much as a science, much room for more principled tuning of parameters, e.g.
 - Automatic partitioning of KBs to induce good literal orderings (McIlraith and Amir)

Gödel’s Incompleteness Theorem

- FOL inference is complete (Gödel)
- So what is Gödel’s incompleteness theorem (GIT) about?
- GIT: Inference in FOL with arithmetic (+,*,exp) is incomplete b/c set of axioms for arithmetic is not recursively enumerable.
- Read: Inference rules are sound and complete, but no way to generate all axioms required for arithmetic!
Modal Logic

• Logic of knowledge and/or belief, e.g.
 – English: Scott knows that you know that Scott knows this lecture is boring
 – Modal Logic K_n (n agents): $K_{Scott}K_{you}K_{Scott}$ LIB

• Possible worlds (Kripke) semantics
 – Each modal operator K_i corresponds to a set of possible interpretations (i.e., possible worlds)
 – Different axioms ($T,D,4,5,...$) correspond to relations b/w worlds, Axiom 4: $K_i\phi \Rightarrow K_iK_i\phi$
 – Semantics: $K_i\phi$ iff ϕ is true in all worlds agent i considers possible according to axioms & KB

• Postpone reasoning until DL...

Temporal Logic

• A modal logic where the possible worlds are linked by time:
 – LTL: Linear temporal logic
 • World states evolve deterministically
 • State can involve action
 – CTL: Computation tree logic
 • World states can evolve non-deterministically

• Temporal operators specify conditions on world evolution
• Used for verification, safety checks
LTL Temporal Operators

- **G f**: always f
- **F f**: eventually f
- **X f**: next state
- f U r: until
- f R r: releases

Temporal Logic Inference

- Because time evolves infinitely, propositional SAT methods won’t work for LTL/CTL verification (will branch infinitely)
- However, LTL/CTL inference is monotonic!
 - To check condition, start with set of all worlds
 - Evolve world one step, remove states not satisfying condition
 - Continue evolution until set does not change... this is set of all states for which condition holds
- For propositional temporal logic, number of worlds is finite \(\Rightarrow \) termination \(\Rightarrow \) decidable!
- BDD data structure used to compactly encode sets of worlds and evolve worlds.
Description Logic

• A concept oriented logic:

<table>
<thead>
<tr>
<th>English</th>
<th>FOL</th>
<th>DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog with a Spot (DWS)</td>
<td>DWS(x) ⇔ Dog(x) ^ (∃y.has(x,y) ^ Spot(y))</td>
<td>DWS ⇔ Dog ♦ has.Spot</td>
</tr>
<tr>
<td>Large Dog with a Dark Spot (LDWDS)</td>
<td>LDWDS(x) ⇔ (Dog(x) ^ Large(x)) ^ (∃y.has(x,y) ^ (Spot(y) ^ Dark(y)))</td>
<td>LDWDS ⇔ Dog ♦ Large ♦ has.(Spot ♦ Dark)</td>
</tr>
</tbody>
</table>

• Guarded fragment subset of FOL

Description Logic (DL)
Inference

• Natural correspondence between ALC DL and modal logic (Schild):
 - Modal propositions are concepts that hold in possible worlds w, e.g. lecture is boring: LIB(w)
 - Modal operators K_i are DL roles that link possible worlds: $K_{scott}(w_1, w_2)$
 - If Scott knows that the lecture-is-boring then $\forall w_2 K_{scott}(w_1, w_2) \Rightarrow LIB(w_2)$ (w_1 is a free variable)
 - Or in DL notation $\forall K_{scott} LIB$
• Since decidable tableaux methods known for modal logics, these were imported into DL and later extended to expressive DLs
• Benefit of DL: Decidable subset of FOL that is ideal for conceptual ontology reasoning!
Example of Description Logic Tableaux Proof

• Given:
 – Axioms: None

• Inference:
 – Tableaux

• Proof:
 Check unsatisfiability of
 ∃Child.¬Male ∨ ∀ Child. Male

 x: ∃Child.¬Male ∨ ∀ Child. Male
 x: ∀ Child. Male [∨ -rule]
 x: ∃Child.¬Male [∨ -rule]
 x: Child y [∃-rule]
 y: ¬Male [∃-rule]
 y: Male [∀-rule]
 <CLASH>

 Contradiction ⇒ Conj. is true

DL Reasoner Output (FaCT++)

Taxonomy encodes all ⇒ relations
Modal, Verification, and DL Inference Software

- **Modal logic**
 - MSPASS (converts modal formula to FOL)
 - By correspondence, also DL reasoners
- **Verification** (temporal and non-temporal)
 - PVS (interactive TP for HW/SW verification)
 - ALLOY (first-order HW/SW model checker)
 - NuSMV (BDD-based LTL/CTL HW/SW verif.)
- **DL Reasoning**
 - Classic (limited DL, poly-time inference)
 - Racer (expressive DL, highly optimized)
 - FaCT++ (very expr. DL, highly optimized)

Repositories of TP Problems

Many repositories of theorem proving knowledge bases:
- **TPTP**: Thousands of Problems for TPs
 - Algebraic group theory, geometry, set theory, topology, software verification, NLP KBs
- **SATLIB**: Library of Prop. SAT problems
 - Hardware verification, industrial planning problems, hard randomized problems
- **Open/ResearchCyc**: Public version of Cyc
 - Large common-sense repository expressed in higher-order logic
- **Semantic Web**: DL ontologies in OWL
 - The web is the limit!
Concluding Thoughts

- Many logics, inference techniques, and computational guarantees
- Have to balance expressivity and computational tradeoffs with task-specific needs (Brachman & Levesque, 1985)
- Woods (1987): Don’t blame the tool!
 - A poor craftsman blames the tool when their efforts fail
 - An experienced craftsman uses the right tool for the job