
1

Automated
Theorem Proving

Scott Sanner, Guest Lecture
Topics in Automated Reasoning
Thursday, Jan. 19, 2006

Introduction

• Def. Automated Theorem Proving:
Proof of mathematical theorems by a 
computer program.

• Depending on underlying logic, task 
varies from trivial to impossible:
– Simple description logic: Poly-time
– Propositional logic: NP-Complete (3-SAT)
– First-order logic w/ arithmetic: Impossible



2

Applications

• Proofs of Mathematical Conjectures
– Graph theory: Four color theorem
– Boolean algebra: Robbins conjecture

• Hardware and Software Verification
– Verification: Arithmetic circuits
– Program correctness: Invariants, safety

• Query Answering
– Build domain-specific knowledge bases, 

use theorem proving to answer queries

Basic Task Structure

• Given:
– Set of axioms (KB encoded as axioms)
– Conjecture (assumptions + consequence)

• Inference:
– Search through space of valid inferences

• Output:
– Proof (if found, a sequence of steps 

deriving conjecture consequence from 
axioms and assumptions)



3

Many Logics / Many Theorem 
Proving Techniques

• Logics:
– Propositional, and first-order logic
– Modal, temporal, and description logic

• Theorem Proving Techniques:
– Resolution, tableaux, sequent, inverse
– Best technique depends on logic and app.

Focus on theorem proving for logics 
with a model-theoretic semantics (TBD)

Example of Propositional 
Logic Sequent Proof

• Given:
– Axioms: 

NoneNoneNoneNone
– Conjecture: 
A ∨∨∨∨ ¬¬¬¬A ?

• Inference:
– Gentzen

Sequent
Calculus

• Direct Proof:
(I)

A |- A
(¬R)

|- ¬A, A
(∨∨∨∨ R2)

|- A∨∨∨∨ ¬A, A
(PR)

|- A, A∨∨∨∨ ¬A
(∨∨∨∨ R1)

|- A∨∨∨∨ ¬A, A∨∨∨∨ ¬A
(CR)

|- A∨∨∨∨ ¬A



4

• Given:
– Axioms:

∀∀∀∀ x Man(x) ⇒⇒⇒⇒ Mortal(x)
Man(Socrates)

– Conjecture: 
∃∃∃∃ y Mortal(y) ?

• Inference:
– Refutation

Resolution

Example of First-order Logic
Resolution Proof

• CNF:
¬Man(x) ∨∨∨∨ Mortal(x)
Man(Socrates)
¬Mortal(y)   [Neg. conj.]

• Proof:
1. ¬Mortal(y) [Neg. conj.]
2. ¬Man(x) ∨∨∨∨ Mortal(x) [Given]
3. Man(Socrates) [Given]
4. Mortal(Socrates) [Res. 2,3]
5. ⊥⊥⊥⊥ [Res. 1,4]
Contradiction ⇒⇒⇒⇒ Conj. is true

Example of Description Logic 
Tableaux Proof

• Given:
– Axioms:

None

– Conjecture: 
¬∃∃∃∃ Child.¬Male ⇒⇒⇒⇒

∀∀∀∀ Child.Male ?

• Inference:
– Tableaux

• Proof:
Check unsatisfiability of 
∃∃∃∃ Child.¬Male  ∀∀∀∀ Child.Male

x: ∃∃∃∃ Child.¬Male  ∀∀∀∀ Child.Male
x: ∀∀∀∀ Child.Male   [  -rule ]
x: ∃∃∃∃ Child.¬Male   [  -rule ]
x: Child y         [ ∃∃∃∃ -rule ]
y: ¬Male           [ ∃∃∃∃ -rule ]
y: Male            [ ∀∀∀∀ -rule ]
<CLASH>

Contradiction ⇒⇒⇒⇒ Conj. is true



5

Lecture Outline

• Common Definitions
– Soundness, completeness, decidability

• Propositional and first-order logic
– Syntax and semantics
– Tableaux theorem proving
– Resolution theorem proving

• Strategies, orderings, redundancy, saturation
optimizations, & extensions

• Modal, temporal, & description logics
– Quick overview of logics / TP techniques

Entailment vs. Truth

• For each logic and theorem proving 
approach, we’ll specify:
– Syntax and semantics
– Foundational axioms (if any)
– Rules of inference

• Entailment vs. Truth
– Let KB be the conjunction of axioms
– Let F be a formula (possibly a conjecture)
– We say KB |- F (read: KB entails F) if F can be 

derived from KB through rules of inference
– We say KB |= F (read: KB models F) if semantics 

hold that F is true whenever KB is true



6

Model-theoretic semantics

• Model-theoretic semantics for logics
– An interpretation is a truth assignment to atomic 

elements of a KB: IIII〈〈〈〈C,D〉〉〉〉 = = = = {{{{ 〈〈〈〈F,FF,FF,FF,F〉〉〉〉, , , , 〈〈〈〈F,TF,TF,TF,T〉〉〉〉, , , , 〈〈〈〈T,FT,FT,FT,F〉〉〉〉, , , , 〈〈〈〈T,TT,TT,TT,T〉〉〉〉}}}}
– A model of a formula is an interpretation where 

it is true: IIII〈〈〈〈C,D〉〉〉〉 = = = = 〈〈〈〈F,TF,TF,TF,T〉〉〉〉 models C∨∨∨∨ D,,,,C⇒⇒⇒⇒D, but not C∧∧∧∧ D
– Two properties of a formula F w.r.t. axioms of KB:

• Validity: F is true in all models of KB
• Satisfiability: F is true in ≥1 model of KB

• Think of truth in a set-theoretic manner

KB |= C C KB
Models of KB
⊆⊆⊆⊆ Models of C

Soundness, Completeness, 
and Decidability

• Two properties of ATP inference systems:
– Soundness: If KB |- C then KB |= C
– Completeness: If KB |= C then KB |- C

• For a given logic, an ATP decision 
procedure returns true or false for KB |- C

• For a logic, a sound and complete decision 
procedure has one of following properties:
– Decidable: Decision procedure guaranteed to 

terminate in finite time
– Semidecidable: Decision procedure guaranteed 

to terminate for either true or false, but not both
– Undecidable: No termination guarantee



7

Prop. Logic Syntax
• Propositional variables: p, rain, sunny
• Connectives: ⇒⇒⇒⇒ ⇔⇔⇔⇔ ¬¬¬¬ ∧∧∧∧ ∨ ∨∨∨
• Inductive definition of well-formed 

formula (wff):
– Base: All propositional vars are wffs
– Inductive 1: If A is a wff then ¬¬¬¬A is a wff
– Inductive 2: If A and B are wffs then 

A ∧∧∧∧ B, A ∨∨∨∨ B, A ⇒⇒⇒⇒ B, A ⇔⇔⇔⇔ B are wffs
• Examples: 

– rain, rain ⇒⇒⇒⇒ ¬¬¬¬ sunny
– (rain ⇒⇒⇒⇒ ¬¬¬¬ sunny) ⇔⇔⇔⇔ (sunny ⇒⇒⇒⇒ ¬¬¬¬ rain) 

Prop. Logic Semantics

• For a formula F, the truth I(F) under 
interpretation I is recursively defined:
– Base:

• F is prop var A then I(F)=true iff I(A)=true
– Recursive:

• F is ¬C then I(F)=true iff I(C)=false
• F is C ∧ D then I(F)=true iff I(C)=true & I(D)=true
• F is C ∨ D then I(F)=true iff I(C)=true or I(D)=true
• F is C ⇒ D then I(F)=true iff I(¬C ∨ D)=true
• F is C ⇔ D then I(F)=true iff I(C ⇒ D)=true & 

I(D ⇒ C)=true

• Truth defined recursively from ground up!



8

CNF Normalization
• Many prop. theorem proving techniques req. 

KB to be in clausal normal form (CNF):
– Rewrite all C ⇔ D as C ⇒ D ∧ D ⇒ C
– Rewrite all C ⇒ D as ¬C ∨ D
– Push negation through connectives:

• Rewrite ¬ (C ∧ D) as ¬C ∨ ¬ D
• Rewrite ¬ (C ∨ D) as ¬C ∧ ¬ D

– Rewrite double negation ¬ ¬ C as C
– Now NNF, to get CNF, distribute ∨ over ∧ :

• Rewrite (C ∧ D) ∨ E as (C ∨ E) ∧ (D ∨ E)
• A clause is a disj. of literals (pos/neg vars)
• Can express KB as conj. of a set of clauses

CNF Normalization Example

• Given KB with single formula:
– ¬¬¬¬ (rain ⇒⇒⇒⇒ wet) ⇒⇒⇒⇒ ((((inside ∧ warm)

• Rewrite all C ⇒ D as ¬C ∨ D
– ¬¬¬¬ ¬¬¬¬ ((((¬¬¬¬ rain ∨ wet) ∨ ((((inside ∧ warm)

• Push negation through connectives:
– ((((¬¬¬¬ ¬¬¬¬ ¬¬¬¬ rain ∨ ¬¬¬¬ ¬¬¬¬ wet) ∨ ((((inside ∧ warm)

• Rewrite double negation ¬ ¬ C as C
– ((((¬¬¬¬ rain ∨ wet) ∨ ((((inside ∧ warm)

• Distribute ∨ over ∧ :
– ((((¬¬¬¬ rain ∨ wet ∨ inside) ∧ ((((¬¬¬¬ rain ∨ wet ∨ warm)

• CNF KB: {¬¬¬¬ rain ∨ wet ∨ inside, ¬¬¬¬ rain ∨ wet ∨ warm}



9

• A ⇒⇒⇒⇒ B iff A ∧ ¬ B is unsatisfiable
• Decision procedure for propositional 

logic is decidable, but NP-complete
(reduction to 3-SAT)

• State-of-the-art prop. unsatisfiability
methods are DPLL-based

• Many optimizations, more next week

Prop. Theorem Proving

A

B B

true false

true false true false

Instantiate prop vars
until all clauses falsified, 
backtrack and do for all 
instantiations ⇒⇒⇒⇒ unsat!

Prop. Tableaux Methods

A ∧ ¬ A ∨ ¬ B ∧ B 

A ∧ ¬ A ββββ-Rule
A αααα-Rule
¬A        αααα-Rule
〈〈〈〈Clash〉〉〉〉

¬B ∧ B ββββ-Rule
¬B      αααα-Rule

B         αααα-Rule
〈〈〈〈Clash〉〉〉〉

Given negated query F (in NNF), use rules to 
recursively break down:

– αααα-Rule: Given A∧ B add A and B 
– ββββ-Rule: Given A∨ B branch on A and B 
– 〈〈〈〈Clash〉〉〉〉: If A and ¬A occur on same branch
– Clash on all branches indicates unsat!

Note: Inverse method is inverse of tableaux - bottom up



10

• One rule:

• Simple strategy is to make all 
possible resolution inferences

• Refutation resolution is sound and 
complete

Propositional Resolution

A ∨∨∨∨ B   ¬¬¬¬B ∨∨∨∨ C

A ∨∨∨∨ C

¬¬¬¬precip ∨∨∨∨ ¬¬¬¬ freezing ∨∨∨∨ snow     ¬¬¬¬snow ∨∨∨∨ slippery

¬¬¬¬precip ∨∨∨∨ ¬¬¬¬ freezing ∨∨∨∨ slippery

Example application:Rule:

Resolution Strategies

Need strategies to restrict search:
– Unit resolution: 

• Only resolve with unit clauses 
• Complete for Horn KB
• Intuition: Decrease clause size

– Set of support:
• SOS starts with query clauses
• Only resolve SOS clauses with non-SOS clauses 

and put resolvents in SOS 
• Intuition: KB should be satisfiable so refutation 

should derive from query
– Input resolution:

• At each step resolve only with input (KB or query)
• I.e., don’t resolve non-input clauses
• Linear input: also allow ancestor ⇒ complete



11

Ordering Strategies

• Refutation of a clause requires 
refutation of all literals

• Enforce an ordering on proposition 
elimination to restrict search
– Example order: p then r then q
– General idea behind Davis-Putnam (DP) & 

directional resolution (Dechter & Rish)

• Effective, but does not work with all 
resolution strategies, e.g. SOS + 
ordered resolution is incomplete

Prop. Inference Software

• Mainly DPLL SAT algorithms
– zChaff – highly optimized & documented 

DPLL solver, source available
– siege – best performing DPLL solver, 

source not available
– 2clseq – DPLL solver with constraint 

propagation (balance search / reasoning)

• For some applications: BDDs
– BDDs maintain all possible models in a 

canonical data structure
– CUDD ADD/BDD Package – very efficient



12

First-order logic

• Refer to objects and relations b/w them
• Propositional logic requires all 

relations to be propositionalized
– Scott-at-home, Scott-at-work, 

Jim-at-subway, etc…
• Really want a compact relational form:

– at(Scott, home), at(Scott, work), 
at(Jim, subway), etc…

• Then can use variables and quantify
over all objects:
– ∀∀∀∀ x person(x) ⇒⇒⇒⇒ ∃∃∃∃ y at(x,y) ^ place(y)

First-order Logic Syntax
• Terms (technical definition is inductive b/c of fns)

– Variables: w, x, y, z
– Constants: a, b, c, d
– Functions over terms: f(a), f(x,y), f(x,c,f(f(z)))

• Predicates: P(x), Q(f(x,y)), R(x, f(x,f(c,z),c))
• Connectives: ⇒⇒⇒⇒ ⇔⇔⇔⇔ ¬¬¬¬ ∧∧∧∧ ∨ ∨∨∨
• Quantifiers: ∀∀∀∀ ∃ ∃∃∃
• Inductive wff definition:

– Same as prop. but with following modifications…
– Base: All predicates over terms are wffs
– Inductive: If A is a wff and x is a variable term

then ∀∀∀∀ x A & ∃∃∃∃ x A are wffs



13

First-order Logic Semantics

• Interpretation I = (∆∆∆∆I,,,,•••• I)
– ∆∆∆∆I is a non-empty domain
– •••• I maps from predicate symbols P of arity n

into a subset of ××××1…n ∆∆∆∆I (where P is true)
• Example

– ∆∆∆∆I is {Scott, Jim}
– •••• I maps at(• ,•) into { 〈〈〈〈Scott, loc(Scott)〉〉〉〉, , , , 

〈〈〈〈JimJimJimJim, loc(Jim)〉〉〉〉 }
– All other ground predicates are false in I, 

e.g. at(Scott, loc(Jim)), at(Scott, Scott)
• NB: FOL has ∞∞∞∞ interpretations/models!

Substitution and Unification

• Substitution
– A substitution list θθθθ is a list of variable-term pairs

• e.g., θθθθ={x/3,y/f(z)}
– When θθθθ is applied to an FOL formula, every free 

occurrence of a variable in the list is replaced 
with the given term

• e.g. (P(x,y) ^ ∃ x P(x,y))θ = P(3,f(z)) ^ ∃ x P(x,f(z)) 
• Unification / Most General Unifier

– The unifier UNIF(x,y) of two predicates/terms is a 
substitution that makes both arguments identical

• e.g. Unif( P(x,f(x)), P(y, f(f(z))) ) = {x/f(1), y/f(1), z/1}
– The most general unifier MGU(x,y) is just that… 

all other unifiers can be obtained from the MGU 
by additional subst. (MGU exists for unifiable args)

• e.g. MGU( P(x,f(x)), P(y, f(f(z))) ) = {x/f(z), y/f(z)}



14

Skolemization

• Skolemization is the process of getting rid 
of all ∃ quantifiers from a formula while 
preserving (un)satisfiability:
– If ∃ x quantifier is the outermost quantifier, 

remove the ∃ quantifier and substitute a new 
constant for x

– If ∃ x quantifier occurs inside of ∀ quantifiers, 
remove the ∃ quantifier and substitute a new 
function of all ∀ quantified variables for x

• Examples:
– Skolemize( ∃ w ∃ x ∀ y ∀ z P(w,x,y,z) ) = 

∀ y ∀ z P(c,d,y,z)
– Skolemize( ∀ w ∃ x ∀ y ∃ z P(w,x,y,z) ) = 

∀ w ∀ y P(w,f(w),y,f(x,y))

CNF Conversion

CNF conversion is the same as the 
propositional case up to NNF, then do:

– Standardize apart variables (all quantified 
variables should have different names)

• e.g. ∀∀∀∀ x A(x) ∧ ∃ ∃∃∃ x ¬A(x)  becomes ∀∀∀∀ x A(x) ∧ ∃ ∃∃∃ y ¬A(y)
– Skolemize formula

• e.g. ∀∀∀∀ x A(x) ∧ ∃ ∃∃∃ y ¬A(y)  becomes ∀∀∀∀ x A(x) ∧ ¬ A(c)
– Drop universals

• e.g. ∀∀∀∀ x A(x) ∧ ¬ A(c)  becomes A(x) ∧ ¬ A(c)
– Distribute ∨ over ∧



15

First-order Theorem Proving

• Tableaux methods 
– Preferred for some types of reasoning and for 

subsets of FOL (guarded fragment, set theory)
– Highly successful for description and modal 

logics which conform to guarded fragment of FOL
• Resolution Methods

– Most successful technique for a variety of KBs
– But… search space grows very quickly
– Need a variety of optimizations in practice

• strategies, ordering, redundancy elimination
• FOL TP complete ☺☺☺☺, but semidecidable ����

– Will return in finite time if formula entailed
– May run forever if not entailed

First-order Tableaux

∀∀∀∀ x A(x) ∧ ∃∃∃∃ x ¬A(x) ∨ ∃∃∃∃ x,y ¬B(x,y) ∧ ∀∀∀∀ x,y B(x,y)

∀∀∀∀ x A(x) ∧ ∃∃∃∃ x ¬A(x) ββββ-Rule
A(?y) αααα //// γγγγ -Rule
¬A(c) αααα //// δδδδ -Rule
〈〈〈〈Clash〉〉〉〉

∃∃∃∃ x,y ¬B(x,y) ∧ ∀∀∀∀ x,y B(x,y) ββββ-Rule
¬B(c,d) αααα //// δδδδ //// δδδδ -Rule
B(?y,?z) αααα //// γγγγ //// γγγγ -Rule
〈〈〈〈Clash〉〉〉〉

Given negated query F (in NNF), use rules to 
recursively break down:

– αααα-Rule, ββββ-Rule: Same as for prop tableaux
– γγγγ-Rule: Given ∀∀∀∀ x A(x) add A(?v) for variable ?v
– δδδδ-Rule: Given ∃∃∃∃ x A(x) add A(f) for Skolem function f
– 〈〈〈〈Clash〉〉〉〉: If unifiable A and ¬A occur on same branch



16

• Binary Resolution Rule

• Factoring Rule

First-order Resolution

C ∨ D    ¬E ∨ F 

(C ∨ F)θ
θ=MGU(D,E)

P(3)∨ Q(f(x))∨ R(y)  ¬Q(y)

P(3) ∨ R(f(x))

Example application:Rule:

P(z) ∨ Q(3) ∨ Q(z)

P(3) ∨ Q(3)

Example application:

C ∨ D ∨ E

Cθ ∨ E
θ=MGU(C,D)

Rule:

• Given:
– Axioms:

∀∀∀∀ x Man(x) ⇒⇒⇒⇒ Mortal(x)
Man(Socrates)

– Conjecture: 
∃∃∃∃ y Mortal(y) ?

• Inference:
– Refutation

Resolution

Example of First-order Logic
Resolution Proof

• CNF:
¬Man(x) ∨∨∨∨ Mortal(x)
Man(Socrates)
¬Mortal(y)   [Neg. conj.]

• Proof:
1. ¬Mortal(y) [Neg. conj.]
2. ¬Man(x) ∨∨∨∨ Mortal(x) [Given]
3. Man(Socrates) [Given]
4. Mortal(Socrates) [Res. 2,3]
5. ⊥⊥⊥⊥ [Res. 1,4]
Contradiction ⇒⇒⇒⇒ Conj. is true



17

Importance of Factoring

• Without the factoring rule, binary 
resolution is incomplete

• For example, take the following 
refutable clause set: 
– { A(w) v A(z), ~A(y) v ~A(z) }

• All binary resolutions yield clauses 
of the same form

• Clause set is only refutable if one of 
the clauses is first factored

Search Control
Additional refinements of prop strategies 
yield goal-directed / bottom-up search:
– SLD Resolution

• KB of definite clauses (i.e. Horn rules), e.g.
Uncle(?x,?y) := Father(?x,?z) ∧∧∧∧ Brother(?x,?y)

• Resolution backward chains from goal of rules
• With negation-as-failure semantics, SLD-

resolution is logic programming, i.e. Prolog
– Negative and Positive Hyperresolution

• All negative (positive) literals in nucleus clause 
are simultaneously resolved with completely 
positive (negative) satellite clauses

• Positive hyperres yields backward chaining
• Negative hyperres yields forward chaining



18

• Naïve approaches to resolution perform one 
inference per step

• For SLD or neg. hyperres and KBs w/ large 
numbers of constants / functions, can store 
clause terms and perform DB-like res, e.g.
– CNF KB = { R(a,b), R(b,a), R(b,c), R(c,b),

¬¬¬¬R(x,y) ∨∨∨∨ ¬¬¬¬R(y,z) ∨∨∨∨ R(x,z) }
– Use DB join/project during SLD or neg. hyperres:

• Can cache inferences for reuse (tabling)
• Huge improvement for instance-heavy KBs

Database-style Inference

R(x,y)
{ 〈〈〈〈a,b〉〉〉〉, 〈〈〈〈b,a〉〉〉〉,
〈〈〈〈b,c〉〉〉〉, 〈〈〈〈c,b〉〉〉〉 }

R(y,z)
{ 〈〈〈〈a,b〉〉〉〉, 〈〈〈〈b,a〉〉〉〉,
〈〈〈〈b,c〉〉〉〉, 〈〈〈〈c,b〉〉〉〉 }

R(x,z)
{ 〈〈〈〈a,a〉〉〉〉, 〈〈〈〈a,c〉〉〉〉, 〈〈〈〈b,b〉〉〉〉,
〈〈〈〈c,c〉〉〉〉, 〈〈〈〈c,a〉〉〉〉, 〈〈〈〈c,c〉〉〉〉 }

×××× ⇒⇒⇒⇒

• Term indexing is another general technique 
for fast retrieval of sets of terms / clauses
matching criteria

• Common uses in modern theorem provers:
– Term q is unifiable with term t, i.e., ∃ θ s.t. qθ = tθ 
– Term t is an instance of q, i.e., ∃ θ s.t. qθ = t
– Term t is a generalization of q, i.e., ∃ θ s.t. q = tθ
– Clause q subsumes clause t, i.e., ∃ θ s.t. qθ ⊆⊆⊆⊆ t

– Clause q is subsumed by clause t, i.e., ∃ θ s.t. tθ ⊆⊆⊆⊆ q

• Techniques:  (Google for “term indexing”)
– Path indexing
– Code, context, & discrimination trees

Term Indexing



19

Age-weight Ratio
• During a resolution strategy, have two sets:

– Active: Set of active clauses for resolving with
– Frontier: Candidate clauses to resolve with Active

• Idea: Store the frontier in two queues
– Age queue: Standard FIFO queue
– Weight queue: Priority queue where clause priority 

determined by heuristic measure:
• Number of literals, number of terms, etc…

• A:W ratio: Choose A clauses from age queue 
for every W chosen from weight queue
– Retains completeness of strategy if A is non-zero 

• I.e., fair b/c all clauses eventually selected
– Can speed up inference by orders of magnitude!

Redundancy Control
• Redundancy of clauses is a huge problem in 

FOL resolution
– For clauses C & D, C is redundant if ∃θ∃θ∃θ∃θ s.t. Cθθθθ ⊆⊆⊆⊆ D

as a multiset, a.k.a. θθθθ-subsumption
– If true, D is redundant and can be removed

• Intuition: If D used in a refutation, Cθθθθ could be 
substituted leading to even shorter refutation

• Two types of subsumption where N is a new 
resolvent and A ∈∈∈∈ Active:Active:Active:Active:
– Forward subsumption: A θθθθ-subsumes N, delete N
– Backward subsumption: N θθθθ-subsumes A, delete A

• Forward /backward subsumption expensive 
but saves many redundant inferences



20

Saturation Theorem Proving

• Given a set of clauses S:
– S is saturated if all possible inferences

from clauses in S generate forward 
subsumed clauses

– Thus, all new inferences can be deleted
without sacrificing completeness

– If S does not contain the empty clause 
then S is satisfiable

• Saturation implies no proof possible!
• Usually need ordering restrictions to 

reach saturation (if possible)…

Simplification Orderings

For complete ordered resolution in FOL, 
must use term simplification orderings:
– Well-founded (Noetherian): If there is no 

infinitely decreasing chain of terms s.t.
t0 ���� t1 ���� t2 ���� ………… ���� t∞∞∞∞

– Monotonic: If s ���� t then f[[[[s]]]] ���� f [[[[t]]]] (f[[[[s]]]] and 
f[[[[t]]]] are identical except for [[[[term]]]])

– Stable under Subst.: If s ���� t then sθ ���� tθ

Examples:  (Google for following keywords)
– Knuth-Bendix ordering
– Lexicographic path ordering



21

Literal Ordering & Selection

• Can extend term ordering to literals ����lit:
– If literals equal but opposite sign, then 

negative literal ����lit positive literal
– Otherwise, treat literals as terms (modulo sign) 

and literal ordering ����lit is just term ordering ����

• A selection function selects literals, and 
must adhere to following rules:
– At least one literal must be selected
– Either a negative literal is among the selection, 

or all maximal positive literals w.r.t. ����lit are 
selected

• Show selected literals by underscore
– e.g., { A ∨∨∨∨ ¬¬¬¬B ∨∨∨∨ ¬¬¬¬C , D ∨∨∨∨ E ∨∨∨∨ ¬¬¬¬F, ¬¬¬¬G ∨∨∨∨ H ∨∨∨∨ I }

Ordered Resolution w/ Selection

• Binary Ordered Res w/ Selection

• Ordered Factoring w/ Selection

C ∨ D ¬E ∨ F 

(C ∨ F)θ
θ=MGU(D,E)

P(3)∨ Q(f(x))∨ R(y)  ¬Q(y)

P(3) ∨ R(f(x))

Example application:Rule:

P(z) ∨ Q(3) ∨ Q(z)

P(3) ∨ Q(3)

Example application:

C ∨ D ∨ E

Cθ ∨ E
θ=MGU(C,D)

Rule:



22

Clause Orderings & Redundancy

• Must define specialized redundancy criterion
for forward and backward subsumption / 
deletion when using ordered resolution:
– Define bag (clause) extension of literal ordering:

• {x,y1,…,ym} ����bag {x1,…,xn,y1,…,ym} if ∀∀∀∀ i x ����lit xi

– Can define redundancy w.r.t. ���� bag ordering:
• Clause C is redundant w.r.t. set of clauses S, if 

∃ C1,…,Cn ∈ S, n ≥ 0, s.t. ∀ i Ci �bag C and C1,…,Cn |= C
– Under ordered res, even if C θθθθ-subsumes D, D is not 

redundant (and can’t be deleted) unless C �bag D

• NB: Search restrictions of ordered res far 
outweigh weakened notion of redundancy

• Ordered res is effective saturation strategy!

Equality

• A predicate w/ special interpretation
• Could axiomatize:

– x=x (reflexive)
– x=y ⇒ y=x (symmetric)
– x=y ∧ y=z ⇒ x=z (transitive)
– For each function f:

• x1=y1 ∧ … ∧ xn=yn ⇒ f(x1,…,xn)=f(y1,…,yn) 
– For each predicate P:

• x1=y1 ∧ … ∧ xn=yn ∧ P(x1,…,xn) ⇒ P(y1,…,yn) 

• Too many axioms… better to reason 
about equality in inference rules



23

• Demodulation (incomplete)

• Paramodulation (complete)

Inference 
Rules for Equality

x=y     L[z] ∨ D

L[yθ] ∨ D
θ=MGU(x,z)

x=f(x)   P(3) ∨ Q

P(f(3)) ∨ Q
θ={ x/3}

Literal containing z Example application:Rule:

x=y ∨ C L[z] ∨ D

(L[y] ∨ C ∨ D)θ
θ=MGU(x,z)

x=f(x)∨ C  P(3)∨ Q

P(f(3))∨ C∨ Q
θ={ x/3}

Literal containing z Example application:Rule:

Equational Programming
• Used extensively for algebraic group 

theory proofs

• All axioms and conjectures are unit 
equality predicates with arithmetic 
functions on the LHS and RHS, e.g.
– a*(x+y) = a*x+a*y ?

• In this case, associative-
commutative (AC) unification
(Stickel) important for efficiency, e.g.
– MGU(x+3*y*y, z*3*z+1) = {x/1, y/z}



24

First-order theorem 
proving software

– Vampire (1st place for many years in 
CADE TP competition)

– Otter (Foundation for modern TP, still 
very good, usually 2nd place in CADE)

– SPASS (Specialized for sort reasoning)
– SETHEO (Connection tableaux calculus)
– EQP (Equational theorem proving 

system, proved Robbins conjecture)

Many highly optimized first-order 
theorem proving implementations:

First-order TP Progress

• Ever since the 1970s I at various times investigated 
using automated theorem-proving systems. But it 
always seemed that extensive human input--typically 
from the creators of the system--was needed to make 
such systems actually find non-trivial proofs.

• In the late 1990s, however, I decided to try the latest 
systems and was surprised to find that some of them 
could routinely produce proofs hundreds of steps long
with little or no guidance. … the overall ability to do 
proofs--at least in pure operator systems--seemed vastly 
to exceed that of any human.
--Steven Wolfram, “A New Kind of Science”



25

On the other hand…

• Success of modern theorem provers 
relies largely on heuristic tuning

• Input KBs are analyzed for properties
which determine strategies and 
various parameters of inference

• Still an art as much as a science, 
much room for more principled tuning
of parameters, e.g.
– Automatic partitioning of KBs to induce 

good literal orderings (McIlraith and Amir)

Gödel’s Incompleteness 
Theorem

• FOL inference is complete (Gödel)
• So what is Gödel’s incompleteness 

theorem (GIT) about?
• GIT: Inference in FOL with arithmetic

(+,*,exp) is incomplete b/c set of 
axioms for arithmetic is not 
recursively enumerable.

• Read: Inference rules are sound and 
complete, but no way to generate all 
axioms required for arithmetic!



26

Modal Logic

• Logic of knowledge and/or belief, e.g.
– English: Scott knows that you know that Scott 

knows this lecture is boring
– Modal Logic Kn (n agents): KScottKyouKScott LIB

• Possible worlds (Kripke) semantics
– Each modal operator Ki corresponds to a set of 

possible interpretations (i.e., possible worlds)
– Different axioms (T,D,4,5,…) correspond to 

relations b/w worlds, Axiom 4: Kiϕ => KiKiϕ
– Semantics: Kiϕ iff ϕ is true in all worlds agent i

considers possible according to axioms & KB

• Postpone reasoning until DL…

• A modal logic where the possible 
worlds are linked by time:
– LTL: Linear temporal logic

• World states evolve
deterministically 

• State can involve action
– CTL: Computation tree logic

• World states can evolve
non-deterministically

• Temporal operators specify 
conditions on world evolution

• Used for verification, safety checks

Temporal Logic

w1 w2 w3

w2

w3

w1

w4

w5

w6

w7



27

LTL Temporal Operators

• GGGG f: always f

• FFFF f: eventually f

• XXXX f: next state

• f UUUU r: until

• f RRRR r: releases

f f f f f f

f f

fXf

ff f f r

r r,frr

Temporal Logic Inference

• Because time evolves infinitely, 
propositional SAT methods won’t work for 
LTL/CTL verification (will branch infinitely)

• However, LTL/CTL inference is monotonic!
– To check condition, start with set of all worlds
– Evolve world one step, remove states not 

satisfying condition
– Continue evolution until set does not change… 

this is set of all states for which condition holds
• For propositional temporal logic, number of 

worlds is finite ⇒ termination ⇒ decidable!
• BDD data structure used to compactly 

encode sets of worlds and evolve worlds.



28

• A concept oriented logic:

• Guarded fragment subset of FOL

Description Logic

LDWDS ⇔
Dog  Large 
∃ has.(Spot  Dark)

LDWDS(x) ⇔
(Dog(x) ^ Large(x)) ^
(∃ y.has(x,y)

^ (Spot(y) ^ Dark(y))

Large Dog 
with a Dark 
Spot
(LDWDS)

DWS ⇔
Dog  ∃ has.Spot

DWS(x)  ⇔
Dog(x) ^ (∃ y.has(x,y)

^ Spot(y))

Dog with a 
Spot 
(DWS)

DLDLDLDLFOLFOLFOLFOLEnglishEnglishEnglishEnglish

Description Logic (DL) 
Inference
• Natural correspondence between ALC DL 

and modal logic (Schild):
– Modal propositions are concepts that hold in 

possible worlds w, e.g. lecture is boring: LIB(w)
– Modal operators Ki are DL roles that link possible 

worlds:  Kscott(w1, w2)
– If Scott knows that the lecture-is-boring then 

∀ w2 Kscott(w1, w2)⇒LIB(w2) (w1 is a free variable)
– Or in DL notation ∀ Kscott.LIB

• Since decidable tableaux methods known 
for modal logics, these were imported into 
DL and later extended to expressive DLs

• Benefit of DL: Decidable subset of FOL that 
is ideal for conceptual ontology reasoning!



29

Example of Description Logic 
Tableaux Proof

• Given:
– Axioms:

None

– Conjecture: 
¬∃∃∃∃ Child.¬Male ⇒⇒⇒⇒

∀∀∀∀ Child.Male ?

• Inference:
– Tableaux

• Proof:
Check unsatisfiability of 
∃∃∃∃ Child.¬Male  ∀∀∀∀ Child.Male

x: ∃∃∃∃ Child.¬Male  ∀∀∀∀ Child.Male
x: ∀∀∀∀ Child.Male   [  -rule ]
x: ∃∃∃∃ Child.¬Male   [  -rule ]
x: Child y         [ ∃∃∃∃ -rule ]
y: ¬Male           [ ∃∃∃∃ -rule ]
y: Male            [ ∀∀∀∀ -rule ]
<CLASH>

Contradiction ⇒⇒⇒⇒ Conj. is true

DL Reasoner 
Output (FaCT++)

Taxonomy encodes all ⇒ relations



30

Modal, Verification, and 
DL Inference Software

• Modal logic
– MSPASS (converts modal formula to FOL)
– By correspondence, also DL reasoners

• Verification (temporal and non-temporal)
– PVS (interactive TP for HW/SW verification)
– ALLOY (first-order HW/SW model checker)
– NuSMV (BDD-based LTL/CTL HW/SW verif.)

• DL Reasoning
– Classic (limited DL, poly-time inference)
– Racer (expressive DL, highly optimized)
– FaCT++ (very expr. DL, highly optimized)

Repositories of TP Problems

– TPTP: Thousands of Problems for TPs
• Algebraic group theory, geometry, set theory, 

topology, software verification, NLP KBs
– SATLIB: Library of Prop. SAT problems

• Hardware verification, industrial planning 
problems, hard randomized problems

– Open/ResearchCyc: Public version of Cyc
• Large common-sense repository expressed in 

higher-order logic
– Semantic Web: DL ontologies in OWL

• The web is the limit!

Many repositories of theorem proving 
knowledge bases:



31

Concluding Thoughts

• Many logics, inference techniques, 
and computational guarantees 

• Have to balance expressivity and 
computational tradeoffs with task-
specific needs (Brachman & Levesque, 1985)

• Woods (1987): Don’t blame the tool!
– A poor craftsman blames the tool when 

their efforts fail
– An experienced craftsman uses the right 

tool for the job


