
1

CSC2542

State-Space Planning

Sheila McIlraith

Department of Computer Science

University of Toronto

Summer 2014

2

Acknowledgements

Some the slides used in this course are modifications of Dana Nau’s lecture

slides for the textbook Automated Planning, licensed under the Creative

Commons Attribution-NonCommercial-ShareAlike License:

http://creativecommons.org/licenses/by-nc-sa/2.0/

Other slides are modifications of slides developed by Malte Helmert,

Bernhard Nebel, and Jussi Rintanen.

I have also used some material prepared by P@trick Haslum and Rao

Kambhampati.

I would like to gratefully acknowledge the contributions of these researchers,

and thank them for generously permitting me to use aspects of their

presentation material.

4

Motivation

 Nearly all planning procedures are search procedures

 Different planning procedures have different search spaces

 Two examples:

 State-space planning

 Each node represents a state of the world

 A plan is a path through the space

 Plan-space planning

 Each node is a set of partially-instantiated operators, plus

some constraints

 Impose more and more constraints, until we get a plan

5

Outline

 State-space planning

 Forward search*

 Backward search*

 Lifting

 STRIPS

 Block-stacking

* You’ll sometimes see these referred to as “progression” and

“regression” in some of the automated planning literature, but

these are alternative uses (some would argue misuses) relative

to existing formal definitions within the RAC literature

6

Forward Search

take c3

move r1

take c2
…

…

7

Properties

 Forward-search is sound

 for any plan returned by any of its nondeterministic traces,

this plan is guaranteed to be a solution

 Forward-search also is complete

 if a solution exists then at least one of Forward-search’s

nondeterministic traces will return a solution.

http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/

8

Deterministic Implementations

 Some deterministic implementations

of forward search:

 breadth-first search

 depth-first search

 best-first search (e.g., A*)

 greedy search

 Breadth-first and best-first search are sound and complete

 But they usually aren’t practical, requiring too much memory

 Memory requirement is exponential in the length of the solution

 In practice, more likely to use depth-first search or greedy search

 Worst-case memory requirement is linear in the length of the solution

 In general, sound but not complete

 But classical planning has only finitely many states

 Thus, can make depth-first search complete by doing cycle-checking

s0

s1

s2

s3

a1

a2

a3

s4

s5
sg

a4

a5 …

9

Branching Factor of Forward Search

 Forward search can have a very large branching factor

 Can have many applicable actions that don’t progress

toward goal

 Why this is bad:

 Deterministic implementations can waste time trying lots of

irrelevant actions

 Need a good heuristic function and/or pruning procedure

 (This will be a focus of later discussion)

a3

a1

a2

… a1 a2 a50 a3

initial state goal

10

Backward Search

 For forward search, we started at the initial state and

computed state transitions

 new state = (s,a)

 For backward search, we start at the goal and compute

inverse state transitions

 new set of subgoals = –1(g,a)

 To define -1(g,a), must first define relevance:

 An action a is relevant for a goal g if

 a makes at least one of g’s literals true

 g  effects(a) ≠ 

 a does not make any of g’s literals false

 g+  effects–(a) =  and g–  effects+(a) = 

11

Inverse State Transitions

 If a is relevant for g, then

 –1(g,a) = (g – effects(a))  precond(a)

 Otherwise –1(g,a) is undefined

 Example: suppose that

 g = {on(b1,b2), on(b2,b3)}

 a = stack(b1,b2)

 What is –1(g,a)?

12

g0

g1

g2

g3

a1

a2

a3

g4

g5
s0

a4

a5

13

Efficiency of Backward Search

 Backward search can also have a very large branching factor

 E.g., an operator o that is relevant for g may have many
ground instances a1, a2, …, an such that each ai’s input
state might be unreachable from the initial state

 As before, deterministic implementations can waste lots of
time trying all of them

b1

… b1 b2 b50 b3

initial state goal

14

Lifting

 Can reduce the branching factor of backward search if we

partially instantiate the operators

 this is called lifting
q(a1)

foo(a1,y)

p(a1,y)

q(a1)

foo(x,y)

 precond: p(x,y)

 effects: q(x)

foo(a1,a1)

foo(a1,a2)

foo(a1,a3) . . .

p(a1,a1)

p(a1,a2)

p(a1,a3)

p(a1,a50)
foo(a1,a50)

15

Lifted Backward Search

 More complicated than Backward-search

 Have to keep track of what substitutions were performed

 But it has a much smaller branching factor

16

The Search Space is Still Too Large

 Lifted-backward-search generates a smaller search space
than Backward-search, but it still can be quite large

 Suppose actions a, b, and c are independent, action d
must precede all of them, and there’s no path from s0 to
d’s input state

 We’ll try all possible orderings of a, b, and c before
realizing there is no solution

 Plan-space planning or the use of “landmarks” can help
with this problem

c

b

a

goal

a b

b a

b a

a c

b c

c b

d

d

d

d

d

d

s0

17

Pruning the Search Space

Pruning the search space can really help.

Two techniques we will discuss:

 Sound pruning using branch-and-bound heuristic search

 Domain customization that prunes actions and states

For now, just two examples:

 STRIPS

 Block stacking

18

STRIPS

 π  the empty plan

 do a modified backward search from g

 instead of -1(s,a), each new set of subgoals is just

precond(a)

 when you find an action that’s executable in the current

state, then go forward on the current search path as far as

possible, executing actions and appending them to π

 repeat until all goals are satisfied

g

g1

g2

g3

a1

a2

a3

g4

g5
g3

a4

a5

current search path

a6

π = a6, a4

s = ((s0,a6),a4)

g6

a3

satisfied in s0

19

STRIPS

20

unstack(x,y)

 Pre: on(x,y), clear(x), handempty

 Eff: ~on(x,y), ~clear(x), ~handempty,

 holding(x), clear(y)

stack(x,y)

 Pre: holding(x), clear(y)

 Eff: ~holding(x), ~clear(y),

 on(x,y), clear(x), handempty

pickup(x)

 Pre: ontable(x), clear(x), handempty

 Eff: ~ontable(x), ~clear(x), ~handempty, holding(x)

putdown(x)

 Pre: holding(x)

 Eff: ~holding(x), ontable(x), clear(x), handempty

Quick Review of Blocks World

c

a b

c
a b

c

a b

c

a
b

c

a b

21

The Sussman Anomaly

 Initial state goal

 On this problem, STRIPS can’t produce an irredundant

solution

 Try it and see

c

a b c

a

b

22

The Register Assignment Problem

 State-variable formulation:

Initial state: {value(r1)=3, value(r2)=5, value(r3)=0}

Goal: {value(r1)=5, value(r2)=3}

Operator: assign(r,v,r',v')

 precond: value(r)=v, value(r')=v'

 effects: value(r)=v'

 STRIPS cannot solve this problem at all

23

How to Handle Problems like These?

Several ways:

 Do something other than state-space search

 e.g., Chapters 5–8

 Use forward or backward state-space search, with

domain-specific knowledge to prune the search space

 Can solve both problems quite easily this way

 Example: block stacking using forward search

24

Domain-Specific Knowledge

 A blocks-world planning problem P = (O,s0,g) is solvable

if s0 and g satisfy some simple consistency conditions

 g should not mention any blocks not mentioned in s0

 a block cannot be on two other blocks at once

 etc.

 Can check these in time O(n log n)

 If P is solvable, can easily construct a solution of length

O(2m), where m is the number of blocks

 Move all blocks to the table, then build up stacks from the

bottom

 Can do this in time O(n)

 With additional domain-specific knowledge can do even

better …

25

Additional Domain-Specific Knowledge

A block x needs to be moved if any of the following is true:

 s contains ontable(x) and g contains on(x,y) - see a below

 s contains on(x,y) and g contains ontable(x) - see d below

 s contains on(x,y) and g contains on(x,z) for some y≠z - see c below

 s contains on(x,y) and y needs to be moved - see e below

initial state goal

e

d

d

b a

c c

a

b

26

Domain-Specific Algorithm

loop

 if there is a clear block x such that

 x needs to be moved and

 x can be moved to a place where it won’t need to be moved

 then move x to that place

 else if there is a clear block x such that x needs to be moved

 then move x to the table

 else if the goal is satisfied

 then return the plan

 else return failure

repeat

initial state goal

e

d

d

b a

c c

a

b

27

Easily Solves the Sussman Anomaly

loop

 if there is a clear block x such that

 x needs to be moved and

 x can be moved to a place where it won’t need to be moved

 then move x to that place

 else if there is a clear block x such that

 x needs to be moved

 then move x to the table

 else if the goal is satisfied

 then return the plan

 else return failure

repeat

initial state goal

b a

c

c

a

b

28

Properties

The block-stacking algorithm:

 Sound, complete, guaranteed to terminate

 Runs in time O(n3)

 Can be modified to run in time O(n)

 Often finds optimal (shortest) solutions

 But sometimes only near-optimal (Exercise 4.22 in the book)

(Note: PLAN LENGTH for the blocks world is NP-complete)

