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Motivation 

 Nearly all planning procedures are search procedures 

 Different planning procedures have different search spaces 

 Two examples: 

 State-space planning 

 Each node represents a state of the world 

 A plan is a path through the space 

 Plan-space planning 

 Each node is a set of partially-instantiated operators, plus 

some constraints 

 Impose more and more constraints, until we get a plan 
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Outline 

 State-space planning 

 Forward search* 

 Backward search* 

 Lifting 

 STRIPS 

 Block-stacking 

 

* You’ll sometimes see these referred to as “progression” and 

“regression” in some of the automated planning literature, but 

these are alternative uses (some would argue misuses) relative 

to existing formal definitions within the RAC literature 
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Forward Search 

take c3 

move r1 

take c2 
… 

… 
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Properties 

 Forward-search is sound 

 for any plan returned by any of its nondeterministic traces, 

this plan is guaranteed to be a solution 

 Forward-search also is complete 

 if a solution exists then at least one of Forward-search’s 

nondeterministic traces will return a solution. 

http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
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Deterministic Implementations 

 Some deterministic implementations 

of forward search: 

 breadth-first search 

 depth-first search 

 best-first search (e.g., A*) 

 greedy search 

 Breadth-first and best-first search are sound and complete 

 But they usually aren’t practical, requiring too much memory 

 Memory requirement is exponential in the length of the solution 

 In practice, more likely to use depth-first search or greedy search 

 Worst-case memory requirement is linear in the length of the solution 

 In general, sound but not complete 

 But classical planning has only finitely many states 

 Thus, can make depth-first search complete by doing cycle-checking 

s0 

s1 

s2 

s3 

a1 

a2 
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s4 

s5 
sg 

a4 

a5 … 
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Branching Factor of Forward Search 

 Forward search can have a very large branching factor 

 Can have many applicable actions that don’t progress 

toward goal 

 Why this is bad: 

 Deterministic implementations can waste time trying lots of 

irrelevant actions 

 Need a good heuristic function and/or pruning procedure 

 (This will be a focus of later discussion) 

a3 

a1 

a2 

… a1 a2 a50 a3 

initial state goal 
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Backward Search 

 For forward search, we started at the initial state and 

computed state transitions 

 new state = (s,a) 

 For backward search, we start at the goal and compute 

inverse state transitions 

 new set of subgoals = –1(g,a) 

 To define -1(g,a), must first define relevance: 

 An action a is relevant for a goal g if 

 a makes at least one of g’s literals true 

 g  effects(a) ≠  

 a does not make any of g’s literals false 

 g+  effects–(a) =  and g–  effects+(a) =  
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Inverse State Transitions 

 If a is relevant for g, then 

  –1(g,a) = (g – effects(a))  precond(a) 

 Otherwise –1(g,a) is undefined 

 

 Example: suppose that 

 g = {on(b1,b2), on(b2,b3)} 

 a = stack(b1,b2) 

 

 What is –1(g,a)? 
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g0 

g1 

g2 

g3 

a1 
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a3 

g4 

g5 
s0 

a4 

a5 
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Efficiency of Backward Search 

 Backward search can also have a very large branching factor 

 E.g., an operator o that is relevant for g may have many 
ground instances a1, a2, …, an such that each ai’s input 
state might be unreachable from the initial state 

 As before, deterministic implementations can waste lots of 
time trying all of them 

b1 

… b1 b2 b50 b3 

initial state goal 
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Lifting 

 Can reduce the branching factor of backward search if we 

partially instantiate the operators 

 this is called lifting 
q(a1) 

foo(a1,y) 

p(a1,y) 

q(a1) 

foo(x,y) 

 precond: p(x,y) 

 effects: q(x) 

foo(a1,a1) 

foo(a1,a2) 

foo(a1,a3) . . . 

p(a1,a1) 

p(a1,a2) 

p(a1,a3) 

p(a1,a50) 
foo(a1,a50) 

15 

Lifted Backward Search 

 More complicated than Backward-search  

 Have to keep track of what substitutions were performed 

 But it has a much smaller branching factor 
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The Search Space is Still Too Large 

 Lifted-backward-search generates a smaller search space 
than Backward-search, but it still can be quite large 

 Suppose actions a, b, and c are independent, action d 
must precede all of them, and there’s no path from s0 to 
d’s input state 

 We’ll try all possible orderings of  a, b, and c before 
realizing there is no solution 

 Plan-space planning or the use of “landmarks” can help 
with this problem 
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a 
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d 

d 

d 
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Pruning the Search Space 

Pruning the search space can really help. 

Two techniques we will discuss: 

 Sound pruning using branch-and-bound heuristic search 

 Domain customization that prunes actions and states 

 

For now, just two examples: 

 STRIPS 

 Block stacking 
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STRIPS 

 π  the empty plan 

 do a modified backward search from g 

 instead of -1(s,a), each new set of subgoals is just 

precond(a) 

 when you find an action that’s executable in the current 

state, then go forward on the current search path as far as 

possible, executing actions and appending them to π 

 repeat until all goals are satisfied 

g 

g1 

g2 

g3 

a1 

a2 

a3 

g4 

g5 
g3 

a4 

a5 

current search path 

a6 

π = a6, a4 

s = ((s0,a6),a4) 

g6 

a3 

satisfied in s0 
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STRIPS 
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unstack(x,y) 

 Pre:  on(x,y), clear(x), handempty 

 Eff:  ~on(x,y), ~clear(x), ~handempty, 

           holding(x), clear(y) 

stack(x,y) 

 Pre:   holding(x), clear(y) 

 Eff:   ~holding(x), ~clear(y), 

            on(x,y), clear(x), handempty 

pickup(x) 

 Pre:  ontable(x), clear(x), handempty 

 Eff:  ~ontable(x), ~clear(x), ~handempty, holding(x) 

putdown(x) 

 Pre:   holding(x) 

 Eff:  ~holding(x), ontable(x), clear(x), handempty 

Quick Review of Blocks World 

c 

a b 

c 
a b 

c 

a b 

c 

a 
b 

c 

a b 
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The Sussman Anomaly 

  Initial state    goal 

 

 On this problem, STRIPS can’t produce an irredundant 

solution 

 Try it and see 

c 

a b c 

a 

b 
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The Register Assignment Problem 

 State-variable formulation: 

 

Initial state: {value(r1)=3, value(r2)=5, value(r3)=0} 

 

Goal:  {value(r1)=5, value(r2)=3} 

 

Operator: assign(r,v,r',v') 

     precond:  value(r)=v, value(r')=v' 

     effects:    value(r)=v' 

 

 STRIPS cannot solve this problem at all 
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How to Handle Problems like These? 

Several ways: 

 

 Do something other than state-space search 

 e.g., Chapters 5–8 

 

 Use forward or backward state-space search, with 

domain-specific knowledge to prune the search space 

 Can solve both problems quite easily this way 

 Example: block stacking using forward search  
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Domain-Specific Knowledge 

 A blocks-world planning problem P = (O,s0,g) is solvable 

if s0 and g satisfy some simple consistency conditions 

 g should not mention any blocks not mentioned in s0 

 a block cannot be on two other blocks at once 

 etc. 

 Can check these in time O(n log n) 

 If P is solvable, can easily construct a solution of length 

O(2m), where m is the number of blocks 

 Move all blocks to the table, then build up stacks from the 

bottom 

 Can do this in time O(n) 

 With additional domain-specific knowledge can do even 

better … 
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Additional Domain-Specific Knowledge 

A block x needs to be moved if any of the following is true: 

 s contains ontable(x) and g contains on(x,y)  -  see a below 

 s contains on(x,y) and g contains ontable(x)  -  see d below 

 s contains on(x,y) and g contains on(x,z) for some y≠z -  see c below 

 s contains on(x,y) and y needs to be moved  -  see e below 

initial state goal 

e 

d 

d 

b a 

c c 

a 

b 
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Domain-Specific Algorithm 

loop 

 if there is a clear block x such that 

       x needs to be moved and 

       x can be moved to a place where it won’t need to be moved 

  then move x to that place 

 else if there is a clear block x such that x needs to be moved 

  then move x to the table 

 else if the goal is satisfied 

  then return the plan 

 else return failure 

repeat 

initial state goal 

e 

d 

d 

b a 

c c 

a 

b 
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Easily Solves the Sussman Anomaly 

loop 

 if there is a clear block x such that 

       x needs to be moved and 

       x can be moved to a place where it won’t need to be moved 

  then move x to that place 

 else if there is a clear block x such that 

      x needs to be moved 

  then move x to the table 

 else if the goal is satisfied 

  then return the plan 

 else return failure 

repeat 

initial state goal 

b a 

c 

c 

a 

b 
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Properties 

The block-stacking algorithm: 

 

 Sound, complete, guaranteed to terminate 

 

 Runs in time O(n3) 

 Can be modified to run in time O(n) 

 

 Often finds optimal (shortest) solutions 

 

 But sometimes only near-optimal (Exercise 4.22 in the book) 

(Note: PLAN LENGTH for the blocks world is NP-complete) 

 


