Acknowledgements

Some the slides used in this course are modifications of Dana Nau’s lecture
slides for the textbook Automated Planning, licensed under the Creative
Commons Attribution-NonCommercial-ShareAlike License:
http://creativecommons.org/licenses/by-nc-sa/2.0/

Other slides are modifications of slides developed by Malte Helmert,
CSC2542 i Bernhard Nebel, and Jussi Rintanen.
State-Space Planning

| have also used some material prepared by P@trick Haslum and Rao
Kambhampati.

Sheila Mcllraith

I would like to gratefully acknowledge the contributions of these researchers,

Department of Computer Science and thank_ them for_generously permitting me to use aspects of their
. . presentation material.
University of Toronto
Summer 2014
Motivation Outline
e Nearly all planning procedures are search procedures e State-space planning
o Different planning procedures have different search spaces e Forward search*
e Two examples: e Backward search*
e State-space planning e Lifting
e Each node represents a state of the world e STRIPS
e A plan is a path through the space e Block-stacking
e Plan-space planning
e Each node is a set of partially-instantiated operators, plus * You'll sometimes see these referred to as “progression” and
some constraints “regression” in some of the automated planning literature, but
o Impose more and more constraints, until we get a plan these are alternative uses (some would argue misuses) relative

to existing formal definitions within the RAC literature

Forward-search(O, sg, g)

s Properties

7 +— the empty plan

loop e Forward-search is sound
if s satisfies g then return «) o for any plan returned by any of its nondeterministic traces,
E «— {ala is a ground instance an operator in O, this plan is guaranteed to be a solution

and precond(a) is true in s}
if £ = (then return failure) . i
nondeterministically choose an action a € & o if a solution exists then at least one of Forward-search’s
s ~(s,a) nondeterministic traces will return a solution.

T = T.d
3] cranei -
=1
2
Tl
; =7
2 ;

B

o Forward-search also is complete

take c2

move rl

http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/

Deterministic Implementations

e Some deterministic implememationsa

of forward search: 2 Sy
e breadth-first search s 1
o depth-first search ? a, %2 s

e best-first search (e.g., A*) a
e greedy search
e Breadth-first and best-first search are sound and complete
e But they usually aren’t practical, requiring too much memory
e Memory requirement is exponential in the length of the solution
e In practice, more likely to use depth-first search or greedy search
e Worst-case memory requirement is linear in the length of the solution
e In general, sound but not complete
e But classical planning has only finitely many states
e Thus, can make depth-first search complete by doing cycle-checking

Backward Search

For forward search, we started at the initial state and
computed state transitions

e new state = y(s,a)

e For backward search, we start at the goal and compute
inverse state transitions

e new set of subgoals = y(g,a)
To define y'1(g,a), must first define relevance:
e An action a is relevant for a goal g if
e a makes at least one of g’s literals true
o g N effects(a) # &
e a does not make any of g’s literals false
e g* N effects~(a) = & and g~ N effects*(a) = &

Backward-search(O, s, g)

7 +— the empty plan

loop
if s satisfies g then return @
A+ {ala is a ground instance of an operator in O

and v~ 1(g,a) is defined}

if A =10 then return failure
nondeterministically choose an action a € A
T .

g7 '(g,0)

Branching Factor of Forward Search

™

A
initial state goal

e Forward search can have a very large branching factor

e Can have many applicable actions that don’t progress
toward goal

e Why this is bad:

e Deterministic implementations can waste time trying lots of
irrelevant actions

e Need a good heuristic function and/or pruning procedure
(This will be a focus of later discussion)

Inverse State Transitions

e If ais relevantfor g, then
e y7Y(g,a) = (g — effects(a)) U precond(a)
e Otherwise y~%(g,a) is undefined

e Example: suppose that
e g ={on(b1,b2), on(b2,b3)}
e a = stack(b1,b2)

e Whatis y%(g,a)?

Efficiency of Backward Search

-

initial state goal
e Backward search can also have a very large branching factor
e E.g., an operator o that is relevant for g may have many
ground instances a,, a,, ..., a, such that each a;’s input
state might be unreachable from the initial state
e As before, deterministic implementations can waste lots of
time trying all of them

Lifting

p(ara;)
p(ay,a;) 0(a;,3;)
foo(xy) " foo(ay,a
precond: p(x,y) P(ag.as)

effects: q(x) foo(ay,a5) q(ay)

p(al,as) foo(@; 50)
e Can reduce the branching factor of backward search if we
partially instantiate the operators

o this is called lifting foo(ay.y)

q(ay)
p(ary)

The Search Space is Still Too Large

o Lifted-backward-search generates a smaller search space
than Backward-search, but it still can be quite large

e Suppose actions a, b, and c are independent, action d
must precede all of them, and there’s no path from s, to
d’s input state

e We’'lltry all possible orderings of a, b, and c before
realizing there is no solution

e Plan-space planning or the use of “landmarks” can help
with this problem

d a b
>c
d——b a
So d b a>b goal
d a c
d——»b c
a
d c h>

STRIPS

e T « the empty plan
e do a modified backward search from g

e instead of y(s,a), each new set of subgoals is just
precond(a)

e when you find an action that’s executable in the current
state, then go forward on the current search path as far as
possible, executing actions and appending them to ™

e repeat until all goals are satisfied

= (3, ay) g satisfied in s,

$ = Y(y(S0:36),4)

current search path

Lifted Backward Search

e More complicated than Backward-search
e Have to keep track of what substitutions were performed
e But it has a much smaller branching factor

Lifted-backward-search(O, sq. g)
7 + the empty plan
loop
if s satisfies g then return 7
A — {(0.0)|o is a standardization of an operator in O,
8 is an mgu for an atom of g and an atom of effects™ (o),
and v 1(8(g), #(0)) is defined}
if A =0 then return failure
nondeterministically choose a pair (0,6) € A
7 « the concatenation of #(0) and 6(r)

g7 0(g),0(0))

Pruning the Search Space

Pruning the search space can really help.

Two techniques we will discuss:
e Sound pruning using branch-and-bound heuristic search
e Domain customization that prunes actions and states

For now, just two examples:
e STRIPS
e Block stacking

Ground-STRIPS(O, s, g)

<« the empty plan

loop
if s satisfies g then return &
A <« {a | ais a ground instance of an operator in O,

and a is relevant for g}

if A = @ then return failure
nondeterministically choose any action a € A
7' « Ground-STRIPS(O, s, precond(a))
if 7' = failure then return failure
i if we get here, then " achieves precond(a) from s
s« plsa’)
i s now satisfies precond(a)
s« yls,a)
T +—ana

Quick Review of Blocks World
unstack(x,y) rlj

Pre: on(x.y), clear(x), handempty
Eff: ~on(x.y), ~clear(x), ~handempty,
holding(x), clear(y)
c

stack(x,y) . .

Pre: holding(x), clear(y)

Eff: ~holding(x), ~clear(y), .
on(x,y), clear(x), handempty
pickup(x)

Pre: ontable(x), clear(x), handempty

Eff: ~ontable(x), ~clear(x), ~handempty, holding(x) I r@j
putdown(x) E

Pre: holding(x)
Eff: ~holding(x), ontable(x), clear(x), handempty

The Register Assignment Problem

e State-variable formulation:
Initial state: {value(r1)=3, value(r2)=5, value(r3)=0}
Goal: {value(r1)=5, value(r2)=3}

Operator: assign(r,v,r',v")
precond: value(r)=v, value(r')=v'
effects: value(r)=v'

e STRIPS cannot solve this problem at all

Domain-Specific Knowledge
e A blocks-world planning problem P = (O,s,,g) is solvable
if s, and g satisfy some simple consistency conditions
e g should not mention any blocks not mentioned in s,
e a block cannot be on two other blocks at once
e etc.
e Can check these in time O(n log n)

e If P is solvable, can easily construct a solution of length
O(2m), where m is the number of blocks

e Move all blocks to the table, then build up stacks from the
bottom

e Can do this in time O(n)

o With additional domain-specific knowledge can do even
better ...

The Sussman Anomaly

r B
Bl

Initial state goal

e On this problem, STRIPS can’t produce an irredundant
solution

e Tryitand see

How to Handle Problems like These?

Several ways:

e Do something other than state-space search
e e.g., Chapters 5-8

e Use forward or backward state-space search, with
domain-specific knowledge to prune the search space
e Can solve both problems quite easily this way
e Example: block stacking using forward search

Additional Domain-Specific Knowledge

A block x needs to be moved if any of the following is true:
e s contains ontable(x) and g contains on(x,y) - see a below
e s contains on(x,y) and g contains ontable(x) - see d below
e s contains on(x,y) and g contains on(x,z) for some y#z - see c below
e s contains on(x,y) and y needs to be moved - see e below

[a]
98 || E

initial state goal

Domain-Specific Algorithm
loop
if there is a clear block x such that
X needs to be moved and
x can be moved to a place where it won’t need to be moved
then move x to that place
else if there is a clear block x such that x needs to be moved
then move x to the table
else if the goal is satisfied
then return the plan

else return failure

repeat 4] E
2 |»
al |b]

initial state goal

Properties
The block-stacking algorithm:

e Sound, complete, guaranteed to terminate

e Runs in time O(n3)
e Can be modified to run in time O(n)

e Often finds optimal (shortest) solutions

e But sometimes only near-optimal (Exercise 4.22 in the book)
(Note: PLAN LENGTH for the blocks world is NP-complete)

Easily Solves the Sussman Anomaly
loop
if there is a clear block x such that
X needs to be moved and
x can be moved to a place where it won’t need to be moved
then move x to that place
else if there is a clear block x such that
x needs to be moved
then move x to the table
else if the goal is satisfied
then return the plar|
else return failure
repeat

[c[=]x]

o

initial state goal

