
Search Algorithms for Planning

Sheila McIlraith

University of Toronto

Fall 2010

S. McIlraith Search Algorithms 1 / 50

Acknowledgements

Many of the slides used in today’s lecture are modifications of
slides developed by Malte Helmert, Bernhard Nebel, and Jussi
Rintanen.

Some material comes from papers by Daniel Bryce and Rao
Kambhampati.

I would like to gratefully acknowledge the contributions of these
researchers, and thank them for generously permitting me to use
aspects of their presentation material.

S. McIlraith Search Algorithms 2 / 50

Outline

1 Introduction to search algorithms for planning
Search nodes & search states
Search for planning
Common procedures for search algorithms

2 Uninformed search algorithms

3 Heuristic search algorithms
Heuristics: definition and properties
Systematic heuristic search algorithms
Heuristic local search algorithms

S. McIlraith Search Algorithms 3 / 50

Selecting the Right Planning Approach

Choices to make:

1 search direction: progression/regression/both

2 search space representation: states/sets of states

3 search algorithm: uninformed/heuristic; systematic/local
 this week and next

4 search control: heuristics, pruning techniques

S. McIlraith Search Algorithms 4 / 50

Search

Search algorithms are used to find solutions (plans) for
transition systems in general, not just for planning tasks.

Planning is one application of search among many.

Today, we describe some popular and/or representative search
algorithms, and (the basics of) how they apply to planning.

Most of the search material is covered in the textbook:
Russell & Norvig: AI a Modern Approach, if you wish a
further reference.

S. McIlraith Search Algorithms 5 / 50

Search states vs. search nodes

In search, one distinguishes:

search states s states (vertices) of the transition system

search nodes σ search states plus information on
where/when/how they are encountered during search

What is in a search node?

Different search algorithms store different information in a search
node σ, but typical information includes:

state(σ): associated search state

parent(σ): pointer to search node from which σ is reached

action(σ): an action/operator leading from state(parent(σ))
to state(σ)

g(σ): cost of σ (length of path from the root node)

For the root node, parent(σ) and action(σ) are undefined.

S. McIlraith Search Algorithms 6 / 50

Sheila
Text Box
Summer 2014

Search states vs. planning states

Search states 6= (planning) states:

Search states don’t have to correspond to states in the
planning sense.

progression: search states ≈ (planning) states
regression: search states ≈ sets of states (formulae)

Search algorithms for planning where search states are
planning states are called state-space search algorithms.

Strictly speaking, regression is not an example of state-space
search, although the term is often used loosely.

However, we will put the emphasis on progression, which is
almost always state-space search.

S. McIlraith Search Algorithms 7 / 50

Required ingredients for search

A general search algorithm can be applied to any transition system
for which we can define the following three operations:

init(): generate the initial state

is-goal(s): test if a given state is a goal state

succ(s): generate the set of successor states of state s, along
with the operators through which they are reached
(represented as pairs 〈o, s′〉 of operators and states)

Together, these three functions form a search space (a very similar
notion to a transition system).

S. McIlraith Search Algorithms 8 / 50

Outline

1 Introduction to search algorithms for planning
Search nodes & search states
Search for planning
Common procedures for search algorithms

2 Uninformed search algorithms

3 Heuristic search algorithms
Heuristics: definition and properties
Systematic heuristic search algorithms
Heuristic local search algorithms

S. McIlraith Search Algorithms 9 / 50

Search for planning: progression

Let Π = 〈A, I,O,G〉 be a planning task.

Search space for progression search

states: all states of Π (assignments to A)

init() = I

succ(s) = {〈o, s′〉 | o ∈ O, s′ = appo(s)}

is-goal(s) =

{
true if s |= G

false otherwise

where appo(s) refers to the state resulting from applying operator
o in state s.

* Note the unfortunate choice of A to denote the set of atomic

propositions, rather than the set of actions.

S. McIlraith Search Algorithms 10 / 50

Search for planning: regression

Let 〈A, I,O,G〉 be a planning task.

Search space for regression search

states: all formulae over A

init() = G

succ(φ) = {〈o, φ′〉 | o ∈ O,φ′ = regro(φ), φ
′ is satisfiable}

(modified if splitting is used)

is-goal(φ) =

{
true if I |= φ

false otherwise

where regro(φ) refers to the formula resulting from regressing φ
over operator o.

Recall that when regressing the search node is only a partial state,
often compactly represented by a formula, e.g. φ.

S. McIlraith Search Algorithms 11 / 50

Classification of search algorithms

uninformed search vs. heuristic search:

uninformed search algorithms only use the basic ingredients
for general search algorithms

heuristic search algorithms additionally use heuristic functions
which estimate how close a node is to the goal

systematic search vs. local search:

systematic algorithms consider a large number of search nodes
simultaneously

local search algorithms work with one (or a few) candidate
solutions (search nodes) at a time

not a black-and-white distinction; there are crossbreeds (e. g.,
enforced hill-climbing)

S. McIlraith Search Algorithms 12 / 50

Classification: what works where in planning?

uninformed vs. heuristic search:

For satisficing planning, heuristic search vastly outperforms
uninformed algorithms on most domains.

For optimal planning, the difference is less pronounced. An
efficiently implemented uninformed algorithm is not easy to
beat in most domains.

systematic search vs. local search:

For satisficing planning, the most successful algorithms are
somewhere between the two extremes.

For optimal planning, systematic algorithms are required.

S. McIlraith Search Algorithms 13 / 50

Outline

1 Introduction to search algorithms for planning
Search nodes & search states
Search for planning
Common procedures for search algorithms

2 Uninformed search algorithms

3 Heuristic search algorithms
Heuristics: definition and properties
Systematic heuristic search algorithms
Heuristic local search algorithms

S. McIlraith Search Algorithms 14 / 50

Common procedures for search algorithms

Before we describe the different search algorithms, we introduce
three procedures used by all of them:

make-root-node: Create a search node without parent.

make-node: Create a search node for a state generated as the
successor of another state.

extract-solution: Extract a solution from a search node
representing a goal state.

S. McIlraith Search Algorithms 15 / 50

Procedure make-root-node

make-root-node: Create a search node without parent.

Procedure make-root-node

def make-root-node(s):
σ := new node
state(σ) := s
parent(σ) := undefined
action(σ) := undefined
g(σ) := 0
return σ

S. McIlraith Search Algorithms 16 / 50

Procedure make-node

make-node: Create a search node for a state generated as the
successor of another state.

Procedure make-node

def make-node(σ, o, s):
σ′ := new node
state(σ′) := s
parent(σ′) := σ
action(σ′) := o
g(σ′) := g(σ) + 1
return σ′

S. McIlraith Search Algorithms 17 / 50

Procedure extract-solution

extract-solution: Extract a solution from a search node
representing a goal state.

Procedure extract-solution

def extract-solution(σ):
solution := new list
while parent(σ) is defined:

solution.push-front(action(σ))
σ := parent(σ)

return solution

S. McIlraith Search Algorithms 18 / 50

Uninformed search algorithms

Uninformed algorithms are less relevant for planning than
heuristic ones, so we keep their discussion brief.

Uninformed algorithms are mostly interesting to us because
we can compare and contrast them to related heuristic search
algorithms.

Popular uninformed systematic search algorithms:

breadth-first search

depth-first search

iterated depth-first search

Popular uninformed local search algorithms:

random walk

S. McIlraith Search Algorithms 19 / 50

Outline

1 Introduction to search algorithms for planning
Search nodes & search states
Search for planning
Common procedures for search algorithms

2 Uninformed search algorithms

3 Heuristic search algorithms
Heuristics: definition and properties
Systematic heuristic search algorithms
Heuristic local search algorithms

S. McIlraith Search Algorithms 20 / 50

Our Motivation: Heuristic Search in Planning

Stepping back for a moment, let’s recall why we’re interested in
heuristic search:

The primary revolution in automated planning in the last
decade has been the impressive scale-up in planner
performance.

Most of the gains have been as a direct result of the invention
and deployment of powerful reachability heuristics.

Most, if not all of these reachability heuristics were based on
(or can be recast in terms of) the planning graph data
structure, and were performed over a relaxation of the
planning graph. Planning graphs are a cheap means to obtain
informative look-ahead heuristics for search.

Since their development, these so-called Relaxed Planning
Graph (RPG) heuristics have been used for a variety of
different types of planners, though the most noteworthy are
forward search satisficing or optimizing planners.

S. McIlraith Search Algorithms 21 / 50

Historical Perspective

Ghallab and Laruelle, 1994 used reachability heuristics for
action selection in their partial order planners, IxTeT.

McDermott 1996, 1999 rediscovered the notion of reachability
heuristics in the context of UNPOP. UNPOP showed
impressive performance, for its day.

Bonet and Geffner, 1999 HSP

Hoffmann and Nebel, 2000 Fast-Forward (FF)

Helmert and Richter, 2004 Fast Downward

Wah, Hsu, Chen, and Huang, 2006 SGPlan

Baier, Bacchus and McIlraith, 2006 HPlan-P

Richter and Westphal, 2008 LAMA

We will return to the details of how these more recent planners
achieved their great success, after first reviewing the underlying
principles of heuristic search for planning.

S. McIlraith Search Algorithms 22 / 50

Heuristic search algorithms: systematic

Heuristic search algorithms are the most common and overall most
successful algorithms for classical planning.

Popular systematic heuristic search algorithms:

greedy best-first search

A∗

weighted A∗

IDA∗

depth-first branch-and-bound search

breadth-first heuristic search

. . .

S. McIlraith Search Algorithms 23 / 50

Heuristic search algorithms: local

Heuristic search algorithms are the most common and overall most
successful algorithms for classical planning.

Popular heuristic local search algorithms:

hill-climbing

enforced hill-climbing

beam search

tabu search

genetic algorithms

simulated annealing

. . .

S. McIlraith Search Algorithms 24 / 50

Heuristic search: idea

goal
init

dist
anc

e est
imate

distance
estimate

distance estimate

distance estimate

S. McIlraith Search Algorithms 25 / 50

Required ingredients for heuristic search

A heuristic search algorithm requires one more operation
in addition to the definition of a search space.

Definition (heuristic function)

Let Σ be the set of nodes of a given search space.
A heuristic function or heuristic (for that search space) is a
function h : Σ → N0 ∪ {∞}.

The value h(σ) is called the heuristic estimate or heuristic value of
heuristic h for node σ. It is supposed to estimate the distance from
σ to the nearest goal node.

S. McIlraith Search Algorithms 26 / 50

What exactly is a heuristic estimate?

What does it mean that h “estimates the goal distance”?

For most heuristic search algorithms, h does not need to have
any strong properties for the algorithm to work (= be correct
and complete).

However, the efficiency of the algorithm closely relates to how
accurately h reflects the actual goal distance.

For some algorithms, like A∗, we can prove strong formal
relationships between properties of h and properties of the
algorithm (optimality, dominance, run-time for bounded error,
. . .)

For other search algorithms, “it works well in practice” is
often as good an analysis as one gets.

S. McIlraith Search Algorithms 27 / 50

Heuristics applied to nodes or states?

Most texts apply heuristic functions to states, not nodes.

This is slightly less general than the definition here:

Given a state heuristic h, we can define an equivalent node
heuristic as h′(σ) := h(state(σ)).

There is good justification for only allowing state-defined
heuristics: why should the estimated distance to the goal
depend on how we ended up in a given state s?

We call heuristics which don’t just depend on state(σ)
pseudo-heuristics.

In practice there are sometimes good reasons to have the
heuristic value depend on the generating path of σ
(e. g., the landmark pseudo-heuristic, Richter et al. 2008).

S. McIlraith Search Algorithms 28 / 50

Perfect heuristic

Let Σ be the set of nodes of a given search space.

Definition (optimal/perfect heuristic)

The optimal or perfect heuristic of a search space is the heuristic
h∗ which maps each search node σ to the length of a shortest path
from state(σ) to any goal state.

Note: h∗(σ) = ∞ iff no goal state is reachable from σ.

S. McIlraith Search Algorithms 29 / 50

Properties of heuristics

A heuristic h is called

safe if h∗(σ) = ∞ for all σ ∈ Σ with h(σ) = ∞
goal-aware if h(σ) = 0 for all goal nodes σ ∈ Σ

admissible if h(σ) ≤ h∗(σ) for all nodes σ ∈ Σ

consistent if h(σ) ≤ h(σ′) + 1 for all nodes σ, σ′ ∈ Σ
such that σ′ is a successor of σ

S. McIlraith Search Algorithms 30 / 50

Outline

1 Introduction to search algorithms for planning
Search nodes & search states
Search for planning
Common procedures for search algorithms

2 Uninformed search algorithms

3 Heuristic search algorithms
Heuristics: definition and properties
Systematic heuristic search algorithms
Heuristic local search algorithms

S. McIlraith Search Algorithms 31 / 50

Systematic heuristic search algorithms

greedy best-first search

A∗

weighted A∗

S. McIlraith Search Algorithms 32 / 50

Greedy best-first search

Greedy best-first search (with duplicate detection)

open := new min-heap ordered by (σ 7→ h(σ))
open.insert(make-root-node(init()))
closed := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) < ∞:

open.insert(σ′)
return unsolvable

S. McIlraith Search Algorithms 33 / 50

Properties of greedy best-first search

one of the three most commonly used algorithms for
satisficing planning

complete for safe heuristics (due to duplicate detection)

suboptimal unless h satisfies some very strong assumptions
(similar to being perfect)

invariant under all strictly monotonic transformations of h
(e. g., scaling with a positive constant or adding a constant)

S. McIlraith Search Algorithms 34 / 50

A∗

A∗ is a best-first search algorithm

it uses a distance-plus-cost heuristic function,
f(x) = g(x) + h(x), where
g(x) is the cost from the starting node to the current node,
and
h(x) is the estimated distance to the goal.

h(x) is generally admissible – it must not overestimate the
distance to the goal. As such, A∗ can be shown to yield the
optimal solution.

S. McIlraith Search Algorithms 35 / 50

A∗ Algorithm

A∗ (with duplicate detection and reopening)

open := new min-heap ordered by (σ 7→ g(σ) + h(σ))
open.insert(make-root-node(init()))
closed := ∅
distance := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed or g(σ) < distance(state(σ)):

closed := closed ∪ {state(σ)}
distance(σ) := g(σ)
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) < ∞:

open.insert(σ′)
return unsolvable

S. McIlraith Search Algorithms 36 / 50

A∗ example
Example

G

I

0+3 3

S. McIlraith Search Algorithms 37 / 50

A∗ example
Example

G

I

0+3

1+3

1+2

2

3

S. McIlraith Search Algorithms 38 / 50

A∗ example
Example

G

I

0+3

1+3

1+2

2+7

2+6

7

6

3

S. McIlraith Search Algorithms 39 / 50

A∗ example
Example

G

I

0+3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

2

S. McIlraith Search Algorithms 40 / 50

A∗ example
Example

G

I

0+3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

1

S. McIlraith Search Algorithms 41 / 50

Terminology for A∗

f value of a node: defined by f(σ) := g(σ) + h(σ)

generated nodes: nodes inserted into open at some point

expanded nodes: nodes σ popped from open for which the
test against closed and distance succeeds

reexpanded nodes: expanded nodes for which
state(σ) ∈ closed upon expansion (also called reopened nodes)

S. McIlraith Search Algorithms 42 / 50

Properties of A∗

the most commonly used algorithm for optimal planning

rarely used for satisficing planning

complete for safe heuristics (even without duplicate detection)

optimal if h is admissible and/or consistent (even without
duplicate detection)

never reopens nodes if h is consistent

S. McIlraith Search Algorithms 43 / 50

Weighted A∗

Weighted A∗ (with duplicate detection and reopening)

open := new min-heap ordered by (σ 7→ g(σ) +W · h(σ))
open.insert(make-root-node(init()))
closed := ∅
distance := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed or g(σ) < distance(state(σ)):

closed := closed ∪ {state(σ)}
distance(σ) := g(σ)
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) < ∞:

open.insert(σ′)
return unsolvable

S. McIlraith Search Algorithms 44 / 50

Properties of weighted A∗

The weight W ∈ R+
0 is a parameter of the algorithm.

for W = 0, behaves like breadth-first search

for W = 1, behaves like A∗

for W → ∞, behaves like greedy best-first search

Properties:

one of the three most commonly used algorithms for
satisficing planning

for W > 1, can prove similar properties to A∗, replacing
optimal with bounded suboptimal: generated solutions are at
most a factor W as long as optimal ones

S. McIlraith Search Algorithms 45 / 50

Outline

1 Introduction to search algorithms for planning
Search nodes & search states
Search for planning
Common procedures for search algorithms

2 Uninformed search algorithms

3 Heuristic search algorithms
Heuristics: definition and properties
Systematic heuristic search algorithms
Heuristic local search algorithms

S. McIlraith Search Algorithms 46 / 50

Local heuristic search algorithms

hill-climbing

enforced hill-climbing

S. McIlraith Search Algorithms 47 / 50

Hill-climbing

Hill-climbing

σ := make-root-node(init())
forever:

if is-goal(state(σ)):
return extract-solution(σ)

Σ′ := {make-node(σ, o, s) | 〈o, s〉 ∈ succ(state(σ)) }
σ := an element of Σ′ minimizing h (random tie breaking)

can easily get stuck in local minima where immediate
improvements of h(σ) are not possible

many variations: tie-breaking strategies, restarts

S. McIlraith Search Algorithms 48 / 50

Enforced hill-climbing

Enforced hill-climbing

σ := make-root-node(init())
while not is-goal(state(σ)):

σ := improve(σ)
return extract-solution(σ)

one of the three most commonly used algorithms for
satisficing planning

can fail if procedure improve fails (when the goal is
unreachable from σ0)

S. McIlraith Search Algorithms 49 / 50

Enforced hill-climbing (ctd.)

Enforced hill-climbing: procedure improve

def improve(σ0):
queue := new fifo-queue
queue.push-back(σ0)
closed := ∅
while not queue.empty():

σ = queue.pop-front()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if h(σ) < h(σ0):

return σ
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
queue.push-back(σ′)

fail

 breadth-first search for more promising node than σ0

S. McIlraith Search Algorithms 50 / 50

