
1

CSC2542

Representations

 for (Classical) Planning

Sheila McIlraith

Department of Computer Science

University of Toronto

Summer 2014

2

Acknowledgements

Some the slides used in this course are modifications of Dana Nau’s lecture

slides for the textbook Automated Planning, licensed under the Creative

Commons Attribution-NonCommercial-ShareAlike License:

http://creativecommons.org/licenses/by-nc-sa/2.0/

Other slides are modifications of slides developed by Malte Helmert,

Bernhard Nebel, and Jussi Rintanen.

I have also used some material prepared by P@trick Haslum and Rao

Kambhampati.

I would like to gratefully acknowledge the contributions of these researchers,

and thank them for generously permitting me to use aspects of their

presentation material.

http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/

4

Recall:

 Planning Problem
take

put

move1

put

take

move1

move1 move2

load unload

move2

move2

location 1 location 2

s0

location 1 location 2

s1

s4

location 1 location 2

s5

location 1 location 2

location 1 location 2

s3

location 1 location 2

s2

P = (, s0,G)

: System Description

S0: Initial state(s)

 E.g., Initial state = s0

G: Objective

Goal state,

Set of goal states,

Set of tasks,

“trajectory” of states,

Objective function, …

E.g., Goal state = s5 The Dock Worker Robots (DWR) domain

5

 = (S,A,E,)

 S = {states}

 A = {actions}

 E = {exogenous events}

 State-transition function : S x (A E) 2S

Example: Dock Workers Robots from previous slide

 S = {s0, …, s5}

 A = {move1, move2, put, take, load, unload}

 E = {}

: as captured by the arrows mapping states and

actions to successor states

Further Recall:

 System Description (as a state transition system)

7

Representational Challenge

 How do we represent our planning problem is a way

that supports exploration of the principles and practice

of automated planning?

Approach:

 There isn’t one answer.

 The [GNT04] proposes representations that are suitable

for generating classical plans.

[GNT04] = Ghallab, Nau, Traverso, Automated Planning: Theory and Practice, 2004

8

Broad Perspective on Plan Representation

The right representation for the right objective.

Distinguish representation schemes for:

1. studying the principles of planning and related tasks.

2. specifying planning domains

3. direct use within (classical) planners

9

Summary: Broad Perspective

1. Studying the formal principles of planning and other related task

 (First-order) logical languages

 (e.g., situation calculus, A languages, event calculus, fluent calculus, PDL)

Properties:

 well-defined semantics, representational issues must be addressed in the
language (not in the algorithm that interprets and manipulates them)

 excellent for study and proving properties. Not ideal for 3 below.

2. Specifying planning domains

 PDDL-n (PDDL2.1, PDDL2.2, PDDL3, ….)

Properties:

 (reasonably) well-defined semantics

 designed for input to planners – translate to an internal representation for
specific planners. Translators exist for most state-of-the-art planners

3. Direct use within (classical) planners

 Classical representation (e.g., STRIPS)

 Set-theoretic representation (basis for rep’ns used w/ SAT solvers)

 State-variable representation (aka “Finite Domain Repn’ (FDR)*”)(e.g., SAS,
SAS+)

Variants of these exist for particular planners (e.g., SAT solvers, model
checkers, etc.)

* [Helmert, AIJ 2009]

10

This Lecture:

1. Studying the formal principles of planning and other related task

 (First-order) logical languages

 (e.g., situation calculus, A languages, event calculus, fluent calculus, PDL)

Properties:

 well-defined semantics, representational issues must be addressed in the
language (not in the algorithm that interprets and manipulates them)

 excellent for study and proving properties. Not ideal for 3 below.

2. Specifying planning domains

 PDDL-n (PDDL2.1, PDDL2.2, PDDL3, ….)

Properties:

 (reasonably) well-defined semantics

 designed for input to planners – translate to an internal representation for
specific planners. Translators exist for most state-of-the-art planners

3. Direct use within (classical) planners (what’s in the text)

 Classical representation (e.g., STRIPS)

 Set-theoretic representation (basis for rep’ns used w/ SAT solvers)

 State-variable representation (aka “FDR”) (e.g., SAS, SAS+)

Variants of these exist for particular planners (e.g., SAT solvers, model
checkers, etc.)

 WILL COVER LATER

11

Outline

 Representation schemes for classical planning

1. Classical representation

2. Set-theoretic representation

3. State-variable representation

 Examples: DWR and the Blocks World

 Comparisons

12

location 1 location 2

location 1 location 2

s1

s3

s4

take

put

location 1 location 2

location 1 location 2

s0

s2

s5

move1

put

take

move1

move1 move2

load unload

Quick Review of Classical Planning

move2

move2

8 restrictive assumptions req’d:

A0: Finite

A1: Fully observable

A2: Deterministic

A3: Static

A4: Attainment goals

A5: Sequential plans

A6: Implicit time

A7: Offline planning

location 1 location 2 location 1 location 2

14

Representation: Motivation for Approach
Default view:

 represent state explicitly

 represent actions as a transition system (e.g., as an incidence matrix)

Problem:

 explicit graph corresponding to transition system is huge

 direct manipulation of transition system is cumbersome

Solution:

 Provide compact representation of transition system & induced graph

1. Explicate the structure of the “states”

 e.g., states specified in terms of state variables

2. Represent actions not as transition system/incidence matrices but as
functions (e.g., operators) specified in terms of the state variables

 An action is applicable to a state when some state variables
have certain values. When applicable, it will change the values of
certain (other) state variables

3. To plan,

 Just give the initial state

 Use the operators to generate the other states as needed

16

Why is this more compact?

Why is this more compact than an explicit transition system?

 In an explicit transition system, actions are represented as state-to-

state transitions. Each action will be represented by an incidence

matrix of size |S|x|S|

 In the proposed model, actions are represented only in terms of state

variables whose values they care about, and whose value they affect.

(It exploits the structure of the problem!)

 Consider a state space of 1024 states. It can be represented by

log21024=10 state variables. If an action needs variable v1 to be true

and makes v7 to be false, it can be represented by just 2 bits (instead

of a 1024x1024 matrix)

 Of course, if the action has a complicated mapping from states to

states, in the worst case the action rep will be just as large

 The assumption being made here is that the actions will have

effects on a small number of state variables.

18

1. Classical Representation

 Start with a function-free first-order language

 Finitely many predicate symbols and constant symbols,

but no function symbols

 Example: the DWR domain

 Locations: l1, l2, …

 Containers: c1, c2, …

 Piles: p1, p2, …

 Robot carts: r1, r2, …

 Cranes: k1, k2, …

19

Quick review of terminology

 Atom: predicate symbol and args

 Use these to represent both fixed and dynamic (“fluent”) relations

adjacent(l,l’) attached(p,l) belong(k,l)

occupied(l) at(r,l)

loaded(r,c) unloaded(r)

holding(k,c) empty(k)

in(c,p) on(c,c’)

top(c,p) top(pallet,p)

 Ground expression: contains no variable symbols - e.g., in(c1,p3)

 Unground expression: at least one variable symbol - e.g., in(c1,x)

 Substitution: = {x1 t1, x2 t2, …, xn tn}

 Each xi is a variable symbol; each ti is a term

 Instance of e: result of applying a substitution to e

 Replace variables of e simultaneously, not sequentially

20

States
 State: a set s of ground atoms

 The atoms represent the things that are true in one of ’s states

 Only finitely many ground atoms, so only finitely many possible states

21

Operators

 Operator: a triple o=(name(o), precond(o), effects(o))

 name(o) is a syntactic expression of the form n(x1,…,xk)

 n: operator symbol - must be unique for each operator

 x1,…,xk: variable symbols (parameters)

 must include every variable symbol in o

 precond(o): preconditions

 literals that must be true in order to use the operator

 effects(o): effects

 literals the operator will make true

22

Actions

 Action: ground instance (via

substitution) of an operator

23

Notation
 Let a be an operator or action. Then

 precond+(a) = {atoms that appear positively in a’s preconditions}

 precond–(a) = {atoms that appear negatively in a’s preconditions}

 effects+(a) = {atoms that appear positively in a’s effects}

 effects–(a) = {atoms that appear negatively in a’s effects}

 effects+(take(k,l,c,d,p) = {holding(k,c), top(d,p)}

 effects–(take(k,l,c,d,p) = {empty(k), in(c,p), top(c,p), on(c,d)}

E.g.,

24

Aside: Some things to note

 The state only explicitly represents what is true. The

semantics of this representation is that any fluent not

included in the state is false – just like a database.

(Recall that one of the assumptions of classical

planning is complete initial (and subsequent) state.

The problem would be a lot harder w/o this

assumption!!)

 Terminology: an action is a ground operator. In the

Knowledge Representation (KR) literature the

concept of an “operator” is not used. Actions may be

ground or unground.

 Classical planners generally operate over ground

actions.

25

Applicability

 An action a is applicable to a state s if s satisfies precond(a),

 i.e., if precond+(a) s and precond–(a) s =

 Here are an action and a state that it’s applicable to:

26

Result of Performing an Action

 If a is applicable to s, the result of performing it is

 (s,a) = (s – effects–(a)) effects+(a)

 Delete negative effects, and add positive ones

Set of things

that are true.

(if not in set

then false)

27

 Planning domain:

 language & operators

 Operators corresponds to a

set of state-transition systems

Operators for the DWR Domain

28

Planning Problems

Given a planning domain (language L, operators O)

 Encoding of a planning problem: a triple P=(O,s0,g)

 O is the collection of operators

 s0 is a state (the initial state)

 g is a set of literals (the goal formula)

 The actual planning problem: P = (,s0, g)

 s0 and g are as above

 = (S,A,) is a state-transition system

 S = {all sets of ground atoms in L}

 A = {all ground instances of operators in O}

 = state-transition function determined by the operators

29

Plans and Solutions

 Plan*: any sequence of actions = a1, a2, …, an such that

each ai is a ground instance of an operator in O

 The plan is a solution for P=(O,s0,g) if it is executable and

achieves g

 i.e., if there are states s0, s1, …, sn such that

 (s0,a1) = s1

 (s1,a2) = s2

 …

 (sn–1,an) = sn

 sn satisfies g

* Recall that we are restricting our attention to “Classical Planning”

30

Example

 Let P1 = (O, s1, g1), where

 O is the set of operators given earlier

 g1={loaded(r1,c3),

 at(r1,loc2)}

31

Example

GOAL STATE:

g1={loaded(r1,c3),at(r1,loc2)}

INITIAL STATE:

32

 Here are three solutions for P1:

 take(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1), move(r1,loc1,loc2),

 move(r1,loc2,loc1), load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

 take(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1),

 load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

 move(r1,loc2,loc1), take(crane1,loc1,c3,c1,p1),

 load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

 Each produces:

Example (cont.)

33

Example (cont.)

First is redundant: can remove actions and still have a solution

1. take(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1), move(r1,loc1,loc2),

 move(r1,loc2,loc1), load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

2. take(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1),

 load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

3. move(r1,loc2,loc1), take(crane1,loc1,c3,c1,p1),

 load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

2nd and 3rd are irredundant and shortest

34

2. Set-Theoretic Representation

Like classical rep’n, but restricted to propositional logic.

 States:

 Instead of a collection of ground atoms …

 {on(c1,pallet), on(c1,r1), on(c1,c2), …, at(r1,l1), at(r1,l2), …}

… use a collection of propositions (boolean variables):

 {on-c1-pallet, on-c1-r1, on-c1-c2, …, at-r1-l1, at-r1-l2, …}

35

Instead of operators like this one,

take-crane1-loc1-c3-c1-p1

 precond: belong-crane1-loc1, attached-p1-loc1,empty-crane1, top-c3-p1, on-c3-c1

 delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1

 add: holding-crane1-c3, top-c1-p1

Take all of the operator instances, E.g.:

And rewrite ground atoms as propositions, E.g.:

36

Comparison

A set-theoretic representation is equivalent to a classical

representation in which all of the atoms are ground

Problem: Exponential blowup

 If a classical operator contains n atoms and each atom has arity k,

then it corresponds to cnk actions where c = |{constant symbols}|

37

 Non-fluents (properties that don’t change) are ground relations:

e.g., adjacent(loc1,loc2)

 Fluents are functions:

 i.e., for properties that can change, assign values to state variables

 Classical and state-variable rep’ns take similar amounts of space

each can be translated into the other in low-order polynomial time

3. State-Variable Representation (aka FDR)

{top(p1)=c3,

 cpos(c3)=c1,

 cpos(c1)=pallet,

 holding(crane1)=nil,

 rloc(r1)=loc2,

 loaded(r1)=nil, …}

38

 Captures further information about the state. E.g., that

state variables can only take on one of the values in the

domain. This helps reduce the search space.

 Basis for the SAS and SAS+ formalisms (used most

recently in the FastDownward Planner (FD) and its

descendents (e.g., LAMA, etc)

 Basis for encodings further plan properties such as domain

transition graphs (DTGs) and causal graphs (CG)

State-Variable Representation (cont.)

39

Example: The Blocks World

(Review on your own)

40

Example: The Blocks World

 Infinitely wide table, finite number of children’s blocks

 Ignore where a block is located on the table

 A block can sit on the table or on another block

 Want to move blocks from one configuration to another

 e.g.,

 initial state goal

 Classical, set-theoretic, and state-variable formulations for

the case of FIVE BLOCKS follow.

c

a

b c

a b e

d

41

1. Example Classical Representation

 Constant symbols:

 The blocks: a, b, c, d, e

 Predicates:

 ontable(x) - block x is on the table

 on(x,y) - block x is on block y

 clear(x) - block x has nothing on it

 holding(x) - the robot hand is holding block x

 handempty - the robot hand isn’t holding anything

c

a b e

d

42

unstack(x,y)

 Precond: on(x,y), clear(x), handempty

 Effects: ~on(x,y), ~clear(x), ~handempty,

 holding(x), clear(y)

stack(x,y)

 Precond: holding(x), clear(y)

 Effects: ~holding(x), ~clear(y),

 on(x,y), clear(x), handempty

pickup(x)

 Precond: ontable(x), clear(x), handempty

 Effects: ~ontable(x), ~clear(x),

 ~handempty, holding(x)

putdown(x)

 Precond: holding(x)

 Effects: ~holding(x), ontable(x),

 clear(x), handempty

Classical Operators c

a b

c
a b

c

a b

c

a
b

c

a b

43

For five blocks, 36 propositions, 50 actions

E.g.,

ontable-a - block a is on the table

on-c-a - block c is on block a

clear-c - block c has nothing on it

holding-d - the robot hand is holding block d

handempty - the robot hand isn’t holding anything

… (31 more)

c

a b

d

e

2. Example Set-Theoretic Representation

44

Set-Theoretic Actions

E.g.,

unstack-c-a

 Pre: on-c,a, clear-c, handempty

 Del: on-c,a, clear-c, handempty

 Add: holding-c, clear-a

stack-c-a

 Pre: holding-c, clear-a

 Del: holding-c, clear-a

 Add: on-c-a, clear-c, handempty

pickup-c

 Pre: ontable-c, clear-c, handempty

 Del: ontable-c, clear-c, handempty

 Add: holding-c

putdown-c

 Pre: holding-c

 Del: holding-c

 Add: ontable-c, clear-c, handempty

c

a b

c
a b

c

a b

c

a
b

c

a b
. . . (46 more)

45

 Constant symbols:

a, b, c, d, e of type block

0, 1, table, nil of type other

 State variables:

pos(x) = y if block x is on block y

pos(x) = table if block x is on the table

pos(x) = nil if block x is being held

clear(x) = 1 if block x has nothing on it

clear(x) = 0 if block x is being held or has a block on it

holding = x if the robot hand is holding block x

holding = nil if the robot hand is holding nothing

c

a b e

d

3. Example State-Variable Representation

46

State-Variable Operators

unstack(x : block, y : block)

 Precond: pos(x)=y, clear(y)=0, clear(x)=1, holding=nil

 Effects: pos(x)=nil, clear(x)=0, holding=x, clear(y)=1

stack(x : block, y : block)

 Precond: holding=x, clear(x)=0, clear(y)=1

 Effects: holding=nil, clear(y)=0, pos(x)=y, clear(x)=1

pickup(x : block)

 Precond: pos(x)=table, clear(x)=1, holding=nil

 Effects: pos(x)=nil, clear(x)=0, holding=x

putdown(x : block)

 Precond: holding=x

 Effects: holding=nil, pos(x)=table, clear(x)=1

c

a b

c
a b

c

a b

c

a
b

c

a b

48

Representational Equivalence

 Any problem that can be represented in one representation

can also be represented in the other two

 Can convert in linear time and space, except when

converting to set-theoretic (where we get an exponential

blowup)

Classical

representation

State-variable

representation

Set-theoretic

representation

trivial

P(x1,…,xn)

becomes

fP(x1,…,xn-1)=1 (***)

write all of

the ground

instances

f(x1,…,xn)=y

becomes

Pf(x1,…,xn,y)

(***) trivially, or there can be a more parsimonious problem-specific

encoding that ignores irrelevant variables

49

Comparison
 Classical representation

 Most popular for classical planning, basis of PDDL

 Set-theoretic representation

 Can take much more space than classical representation

 Useful in algorithms that manipulate ground atoms directly

 e.g., planning graphs, SAT

 Useful for certain kinds of theoretical studies

 State-variable representation (e.g., SAS, SAS+,”FDR”)

 Equivalent to classical representation in expressive power

 Arguably less natural to conceive

 Clever problem-specific encodings can be much more compact and
embed critical info (e.g., one-of constraints)

 Leveraged in many of the state-of-the-art heuristic search classical
planners (e.g., FD, LAMA, etc)

 Useful in non-classical planning problems as a way to handle
numbers, functions, time

63

Extending Expressivity: ADL*

 Previous representations were so-called “STRIPS” rep’ns.
These have useful properties for automatically generating
classical plans, but are not always sufficient to express the
behaviour of more complex domains.

 ADL is a richer, and thus more compact, representation
language that allows for

 Disjunction and Quantification in preconditions and goals

 Effects that are Quantified, and/or Conditional (effect is
conditioned on state)

 PDDL supports STRIPS and ADL, but not all planners
support ADL, and not all planners even support a so-called
Classical Representation

 In the KR community ADL or greater is common.

* ADL = “Action Description Language”, [Pednault, KR89]

64

Pros/Cons: Compiling to Canonical Action Rep’n

Possible to compile down ADL actions into STRIPS actions

 Quantification -> conjunctions/disjunctions over finite universes

 Actions with conditional effects -> multiple (exponentially more) actions

without conditional effects

 Actions with disjunctive effects -> multiple actions, each of which take

one of the disjuncts as their preconditions (called “determinization”)

 Domain axioms (ramifications) -> the individual effects of the actions;

so all actions satisfy STRIPS assumption

Compilation is not always a win-win.

 By compiling down to canonical form, we can concentrate on highly

efficient planning for canonical actions

 However, often compilation leads to an exponential blowup and

makes it harder to exploit the structure of the domain

 By leaving actions in non-canonical form, we can often do more

compact encoding of the domains as well as more efficient search

 However, we will have to continually extend planning algorithms to

handle these representations

