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Recall: 

   Planning Problem 
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P = (, s0,G) 
 

:  System Description 

 

S0:  Initial state(s)  

      E.g., Initial state = s0 

 

G:  Objective 

Goal state,  

Set of goal states,  

Set of tasks,  

“trajectory” of states, 

Objective function, … 

E.g., Goal state = s5 The Dock Worker Robots (DWR) domain 
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 = (S,A,E,) 
 

 S = {states} 

 A = {actions} 

 E = {exogenous events} 

 State-transition function  : S x (A  E)  2S 

 

Example:  Dock Workers Robots from previous slide 

 S = {s0, …, s5} 

 A = {move1, move2, put, take, load, unload} 

 E = {} 

  
: as captured by the arrows mapping states and 

actions to successor states 

Further Recall: 

  System Description (as a state transition system) 
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Representational Challenge 

 How do we represent our planning problem is a way 

that supports exploration of the principles and practice 

of automated planning? 

 

Approach: 

 There isn’t one answer. 

 The [GNT04] proposes representations that are suitable 

for generating classical plans. 

 
[GNT04] = Ghallab, Nau, Traverso, Automated Planning: Theory and Practice, 2004 
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Broad Perspective on Plan Representation 

The right representation for the right objective.   

Distinguish representation schemes for: 

1. studying the principles of planning and related tasks. 

2. specifying planning domains 

3. direct use within (classical) planners 
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Summary:  Broad Perspective 

1. Studying the formal principles of planning and other related task 

 (First-order) logical languages  

 (e.g., situation calculus, A languages, event calculus, fluent calculus, PDL) 

Properties: 

 well-defined semantics, representational issues must be addressed in the 
language (not in the algorithm that interprets and manipulates them) 

 excellent for study and proving properties.  Not ideal for 3 below. 

2. Specifying planning domains 

 PDDL-n  (PDDL2.1, PDDL2.2, PDDL3, ….) 

Properties: 

 (reasonably) well-defined semantics 

 designed for input to planners – translate to an internal representation for 
specific planners.  Translators exist for most state-of-the-art planners 

3. Direct use within (classical) planners  

 Classical representation (e.g., STRIPS) 

 Set-theoretic representation (basis for rep’ns used w/ SAT solvers) 

 State-variable representation (aka “Finite Domain Repn’ (FDR)*” )(e.g., SAS, 
SAS+) 

Variants of these exist for particular planners (e.g., SAT solvers, model 
checkers, etc.) 

* [Helmert, AIJ 2009] 
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This Lecture: 

1. Studying the formal principles of planning and other related task 

 (First-order) logical languages  

 (e.g., situation calculus, A languages, event calculus, fluent calculus, PDL) 

Properties: 

 well-defined semantics, representational issues must be addressed in the 
language (not in the algorithm that interprets and manipulates them) 

 excellent for study and proving properties.  Not ideal for 3 below. 

2. Specifying planning domains 

 PDDL-n  (PDDL2.1, PDDL2.2, PDDL3, ….) 

Properties: 

 (reasonably) well-defined semantics 

 designed for input to planners – translate to an internal representation for 
specific planners.  Translators exist for most state-of-the-art planners 

3. Direct use within (classical) planners (what’s in the text) 

 Classical representation (e.g., STRIPS) 

 Set-theoretic representation (basis for rep’ns used w/ SAT solvers) 

 State-variable representation (aka “FDR”) (e.g., SAS, SAS+) 

Variants of these exist for particular planners (e.g., SAT solvers, model 
checkers, etc.) 

 

 

       WILL COVER LATER         
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Outline 

 Representation schemes for classical planning 

1. Classical representation 

2. Set-theoretic representation 

3. State-variable representation 

 Examples: DWR and the Blocks World 

 Comparisons 
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location 1 location 2 

location 1 location 2 

s1 

s3 

s4 

take 

put 

location 1 location 2 

location 1 location 2 

s0 

s2 

s5 

move1 

put 

take 

move1 

move1 move2 

load unload 

Quick Review of Classical Planning 

move2 

move2 

8 restrictive assumptions req’d: 

A0: Finite 

A1: Fully observable 

A2: Deterministic 

A3: Static 

A4: Attainment goals 

A5: Sequential plans 

A6: Implicit time 

A7: Offline planning 

location 1 location 2 location 1 location 2 
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Representation:  Motivation for Approach 
Default view: 

 represent state explicitly 

 represent actions as a transition system (e.g., as an incidence matrix) 

Problem:  

 explicit graph corresponding to transition system is huge 

 direct manipulation of transition system is cumbersome 

Solution:   

     Provide compact representation of transition system & induced graph 

1. Explicate the structure of the “states” 

 e.g., states specified in terms of state variables 

2. Represent actions not as transition system/incidence matrices but as 
functions (e.g., operators) specified in terms of the state variables 

 An action is applicable  to a state when some state variables 
have certain values. When applicable, it will change the values of 
certain (other) state variables  

3. To plan,  

 Just give the initial state 

 Use the operators to generate the other states as needed 
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Why is this more compact?  

Why is this more compact than an explicit transition system? 

 In an explicit transition system, actions are represented as state-to-

state transitions.  Each action will be represented by an incidence 

matrix of size |S|x|S|  

 In the proposed model, actions are represented only in terms of state 

variables whose values they care about, and whose value they affect. 

(It exploits the structure of the problem!)  

 Consider a state space of 1024 states. It can be represented by 

log21024=10 state variables. If an action needs variable v1 to be true 

and makes v7 to be false, it can be represented by just 2 bits (instead 

of a 1024x1024 matrix) 

 Of course, if the action has a complicated mapping from states to 

states, in the worst case the action rep will be just as large 

 The assumption being made here is that the actions will have 

effects on a small number of state variables.  
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1. Classical Representation 

 Start with a function-free first-order language 

 Finitely many predicate symbols and constant symbols, 

but no function symbols 

 

 Example: the DWR domain 

 Locations: l1, l2, … 

 Containers: c1, c2, … 

 Piles: p1, p2, … 

 Robot carts: r1, r2, … 

 Cranes: k1, k2, … 
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Quick review of terminology 

 Atom: predicate symbol and args 

 Use these to represent both fixed and dynamic (“fluent”) relations 

adjacent(l,l’)     attached(p,l)   belong(k,l)  

occupied(l)     at(r,l) 

loaded(r,c)     unloaded(r) 

holding(k,c)     empty(k) 

in(c,p)      on(c,c’) 

top(c,p)      top(pallet,p) 

 Ground expression: contains no variable symbols    -   e.g.,  in(c1,p3) 

 Unground expression: at least one variable symbol  -   e.g.,  in(c1,x) 

 

 Substitution:    = {x1  t1,  x2  t2,  …,  xn  tn} 

 Each xi is a variable symbol; each ti is a term 

 Instance of e: result of applying a substitution   to e 

 Replace variables of e simultaneously, not sequentially 
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States 
 State: a set s of ground atoms 

 The atoms represent the things that are true in one of ’s states 

 Only finitely many ground atoms, so only finitely many possible states 
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Operators 

 Operator: a triple o=(name(o), precond(o), effects(o)) 

 name(o) is a syntactic expression of the form n(x1,…,xk) 

 n: operator symbol - must be unique for each operator 

 x1,…,xk: variable symbols (parameters) 

 must include every variable symbol in o 

 precond(o):  preconditions 

 literals that must be true in order to use the operator 

 effects(o): effects 

 literals the operator will make true 
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Actions 

 Action: ground instance (via 

substitution) of an operator 
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Notation 
 Let a be an operator or action. Then 

 precond+(a) = {atoms that appear positively in a’s preconditions} 

 precond–(a) = {atoms that appear negatively in a’s preconditions} 

 effects+(a) = {atoms that appear positively in a’s effects} 

 effects–(a) = {atoms that appear negatively in a’s effects} 

 

 

 

 

 

 effects+(take(k,l,c,d,p) = {holding(k,c), top(d,p)} 

 effects–(take(k,l,c,d,p) = {empty(k), in(c,p), top(c,p), on(c,d)} 

E.g., 
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Aside:  Some things to note 

 The state only explicitly represents what is true.  The 

semantics of this representation is that any fluent not 

included in the state is false – just like a database.  

(Recall that one of the assumptions of classical 

planning is complete initial (and subsequent) state. 

The problem would be a lot harder w/o this 

assumption!!) 

 Terminology:  an action is a ground operator.  In the 

Knowledge Representation (KR) literature the 

concept of an “operator” is not used.  Actions may be 

ground or unground. 

 Classical planners generally operate over ground 

actions. 
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Applicability 

 An action a is applicable to a state s if s satisfies precond(a), 

 i.e., if  precond+(a)  s  and  precond–(a)  s =  

 Here are an action and a state that it’s applicable to: 



26 

Result of Performing an Action 

 If a is applicable to s, the result of performing it is 

         (s,a) = (s – effects–(a))  effects+(a) 

 Delete negative effects, and add positive ones 

 

Set of things 

that are true.  

(if not in set 

then false) 
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 Planning domain:  

 language & operators 

 Operators corresponds to a 

set of state-transition systems 

 

Operators for the DWR Domain 

 



28 

Planning Problems  

Given a planning domain (language L, operators O) 

 Encoding of a planning problem: a triple P=(O,s0,g) 

  O is the collection of operators 

  s0 is a state (the initial state) 

  g is a set of literals (the goal formula) 

 The actual planning problem: P = (,s0, g) 

  s0 and g are as above 

   = (S,A,) is a state-transition system 

  S = {all sets of ground atoms in L} 

  A = {all ground instances of operators in O} 

   = state-transition function determined by the operators 
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Plans and Solutions 

 Plan*: any sequence of actions  =  a1, a2, …, an such that 

each ai is a ground instance of an operator in O 

 The plan is a solution for P=(O,s0,g) if it is executable and 

achieves g 

 i.e., if there are states s0, s1, …, sn such that 

   (s0,a1) = s1 

   (s1,a2) = s2 

 … 

   (sn–1,an) = sn 

 sn satisfies g 
     

* Recall that we are restricting our attention to “Classical Planning” 
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Example 

  

 Let P1 = (O, s1, g1), where 

 O is the set of operators given earlier 

  g1={loaded(r1,c3), 

 at(r1,loc2)} 
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Example 

GOAL STATE:            

g1={loaded(r1,c3),at(r1,loc2)} 

INITIAL STATE: 



32 

 Here are three solutions for P1: 

   take(crane1,loc1,c3,c1,p1),  move(r1,loc2,loc1),  move(r1,loc1,loc2), 

   move(r1,loc2,loc1),  load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)  

   take(crane1,loc1,c3,c1,p1),  move(r1,loc2,loc1), 

   load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)  

   move(r1,loc2,loc1),  take(crane1,loc1,c3,c1,p1), 

   load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)  

 

 Each produces: 
 

Example (cont.) 
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Example (cont.) 

First is redundant: can remove actions and still have a solution 

1.   take(crane1,loc1,c3,c1,p1),  move(r1,loc2,loc1),  move(r1,loc1,loc2), 

   move(r1,loc2,loc1),  load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)  

2.   take(crane1,loc1,c3,c1,p1),  move(r1,loc2,loc1), 

   load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)  

3.   move(r1,loc2,loc1),  take(crane1,loc1,c3,c1,p1), 

   load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)  
 

2nd and 3rd are irredundant and shortest 
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2. Set-Theoretic Representation 

Like classical rep’n, but restricted to propositional logic. 

 

 

 

 

 

 States:  

 Instead of a collection of ground atoms … 

       {on(c1,pallet), on(c1,r1), on(c1,c2), …, at(r1,l1), at(r1,l2), …} 

 

… use a collection of propositions (boolean variables): 

       {on-c1-pallet, on-c1-r1, on-c1-c2, …, at-r1-l1, at-r1-l2, …} 
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Instead of operators like this one, 

 

 

 

 

 

  

  

take-crane1-loc1-c3-c1-p1 

   precond: belong-crane1-loc1, attached-p1-loc1,empty-crane1, top-c3-p1, on-c3-c1 

   delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1 

   add: holding-crane1-c3, top-c1-p1 

Take all of the operator instances, E.g.: 

 

And rewrite ground atoms as propositions, E.g.: 
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Comparison 

A set-theoretic representation is equivalent to a classical 

representation in which all of the atoms are ground 

 

Problem:  Exponential blowup 

 If a classical operator contains n atoms and each atom has arity k, 

then it corresponds to cnk actions where c = |{constant symbols}| 
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 Non-fluents (properties that don’t change) are ground relations: 

e.g., adjacent(loc1,loc2) 

 Fluents are functions:  

  i.e., for properties that can change, assign values to state variables 

 Classical and state-variable rep’ns take similar amounts of space 

each can be translated into the other in low-order polynomial time 

3. State-Variable Representation (aka FDR) 

{top(p1)=c3, 

 cpos(c3)=c1, 

 cpos(c1)=pallet, 

 holding(crane1)=nil, 

 rloc(r1)=loc2, 

 loaded(r1)=nil, …} 
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 Captures further information about the state.  E.g., that 

state variables can only take on one of the values in the 

domain.  This helps reduce the search space.   

 

 Basis for the SAS and SAS+ formalisms (used most 

recently in the FastDownward Planner (FD) and its 

descendents (e.g., LAMA, etc) 

 

 Basis for encodings further plan properties such as domain 

transition graphs (DTGs) and causal graphs (CG) 

State-Variable Representation (cont.) 
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Example: The Blocks World 

(Review on your own) 
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Example: The Blocks World 

 Infinitely wide table, finite number of children’s blocks 

 Ignore where a block is located on the table 

 A block can sit on the table or on another block 

 Want to move blocks from one configuration to another 

 e.g., 

 

 initial state        goal 

 

 

 Classical, set-theoretic, and state-variable formulations for 

the case of FIVE BLOCKS follow. 

c 

a 

b c 

a b e 

d 
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1. Example Classical Representation 

 Constant symbols: 

 The blocks: a, b, c, d, e 

 Predicates: 

 ontable(x) - block x is on the table 

 on(x,y) - block x is on block y 

 clear(x) - block x has nothing on it 

 holding(x) - the robot hand is holding block x 

 handempty - the robot hand isn’t holding anything 

 

 

c 

a b e 

d 
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unstack(x,y) 

   Precond:  on(x,y), clear(x), handempty 

   Effects:  ~on(x,y), ~clear(x), ~handempty, 

                   holding(x), clear(y) 

stack(x,y) 

   Precond:   holding(x), clear(y) 

   Effects:   ~holding(x), ~clear(y), 

                    on(x,y), clear(x), handempty 

pickup(x) 

   Precond:  ontable(x), clear(x), handempty 

   Effects:  ~ontable(x), ~clear(x), 

                   ~handempty, holding(x) 

putdown(x) 

   Precond:   holding(x) 

   Effects:  ~holding(x), ontable(x), 

                   clear(x), handempty 

Classical Operators c 

a b 

c 
a b 

c 

a b 

c 

a 
b 

c 

a b 
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For five blocks, 36 propositions, 50 actions 

 

 

 

E.g., 

ontable-a - block a is on the table 

on-c-a - block c is on block a 

clear-c - block c has nothing on it 

holding-d - the robot hand is holding block d 

handempty - the robot hand isn’t holding anything 

… (31 more) 

 

 

c 

a b 

d 

e 

2. Example Set-Theoretic Representation 
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Set-Theoretic Actions 

E.g.,  
 

 

unstack-c-a 

 Pre: on-c,a, clear-c, handempty 

 Del: on-c,a, clear-c, handempty 

 Add: holding-c, clear-a 

stack-c-a 

 Pre: holding-c, clear-a 

 Del: holding-c, clear-a 

 Add: on-c-a, clear-c, handempty 

pickup-c 

 Pre: ontable-c, clear-c, handempty 

 Del: ontable-c, clear-c, handempty 

 Add: holding-c 

putdown-c 

 Pre: holding-c 

 Del: holding-c 

 Add: ontable-c, clear-c, handempty 

c 

a b 

c 
a b 

c 

a b 

c 

a 
b 

c 

a b 
. . . (46 more) 
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 Constant symbols: 

a, b, c, d, e of type block 

0, 1, table, nil of type other 

 State variables: 

pos(x) = y if block x is on block y 

pos(x) = table if block x is on the table 

pos(x) = nil if block x is being held 

clear(x) = 1 if block x has nothing on it 

clear(x) = 0 if block x is being held or has a block on it 

holding = x  if the robot hand is holding block x 

holding = nil if the robot hand is holding nothing 

c 

a b e 

d 

3. Example State-Variable Representation 
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State-Variable Operators 

unstack(x : block, y : block) 

  Precond:  pos(x)=y, clear(y)=0, clear(x)=1, holding=nil 

  Effects:  pos(x)=nil, clear(x)=0, holding=x, clear(y)=1 

stack(x : block, y : block) 

  Precond:   holding=x, clear(x)=0, clear(y)=1 

  Effects:   holding=nil, clear(y)=0, pos(x)=y, clear(x)=1 

pickup(x : block) 

  Precond:  pos(x)=table, clear(x)=1, holding=nil 

  Effects:  pos(x)=nil, clear(x)=0, holding=x 

putdown(x : block) 

  Precond:  holding=x 

  Effects:  holding=nil, pos(x)=table, clear(x)=1 

c 

a b 

c 
a b 

c 

a b 

c 

a 
b 

c 

a b 
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Representational Equivalence 

 Any problem that can be represented in one representation 

can also be represented in the other two 

 Can convert in linear time and space, except when 

converting to set-theoretic (where we get an exponential 

blowup) 

Classical 

representation 

State-variable 

representation 

Set-theoretic 

representation 

trivial 

P(x1,…,xn) 

becomes 

fP(x1,…,xn-1)=1  (***) 

write all of 

the ground 

instances 

f(x1,…,xn)=y 

becomes 

Pf(x1,…,xn,y) 

(***) trivially, or there can be a more parsimonious problem-specific 

encoding that ignores irrelevant variables 
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Comparison 
 Classical representation 

 Most popular for classical planning, basis of PDDL 
 

 Set-theoretic representation 

 Can take much more space than classical representation 

 Useful in algorithms that manipulate ground atoms directly 

 e.g., planning graphs, SAT 

 Useful for certain kinds of theoretical studies 
 

 State-variable representation (e.g., SAS, SAS+,”FDR”) 

 Equivalent to classical representation in expressive power 

 Arguably less natural to conceive  

 Clever problem-specific encodings can be much more compact and 
embed critical info (e.g., one-of constraints) 

 Leveraged in many of the state-of-the-art heuristic search classical 
planners (e.g., FD, LAMA, etc) 

 Useful in non-classical planning problems as a way to handle 
numbers, functions, time 
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Extending Expressivity:  ADL* 

 Previous representations were so-called “STRIPS” rep’ns.  
These have useful properties for automatically generating 
classical plans, but are not always sufficient to express the 
behaviour of more complex domains. 

  ADL is a richer, and thus more compact, representation 
language that allows for  

 Disjunction and Quantification in preconditions and goals 

 Effects that are Quantified, and/or Conditional (effect is 
conditioned on state) 

 PDDL supports STRIPS and ADL, but not all planners 
support ADL, and not all planners even support a so-called 
Classical Representation 

 In the KR community ADL or greater is common. 

* ADL = “Action Description Language”, [Pednault, KR89] 
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Pros/Cons:  Compiling to Canonical Action Rep’n 

Possible to compile down ADL actions into STRIPS actions 

 Quantification -> conjunctions/disjunctions over finite universes 

 Actions with conditional effects -> multiple (exponentially more) actions 

without conditional effects 

 Actions with disjunctive effects -> multiple actions, each of which take 

one of the disjuncts as their preconditions (called “determinization”) 

 Domain axioms (ramifications) -> the individual effects of the  actions; 

so all actions satisfy STRIPS assumption 

Compilation is not always a win-win. 

 By compiling down to canonical form, we can concentrate on highly 

efficient planning for canonical actions 

 However, often compilation leads to an exponential blowup and 

makes it harder to exploit the structure of the domain 

 By leaving actions in non-canonical form, we can often do more 

compact encoding of the domains as well as more efficient search 

 However, we will have to continually extend planning algorithms to 

handle these representations 


