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Recall: 
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P = (, s0,G) 
 

:  System Description 

 

S0:  Initial state(s)  

      E.g., Initial state = s0 

 

G:  Objective 

Goal state,  

Set of goal states,  

Set of tasks,  

“trajectory” of states, 

Objective function, … 

E.g., Goal state = s5 The Dock Worker Robots (DWR) domain 
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 = (S,A,E,) 
 

 S = {states} 

 A = {actions} 

 E = {exogenous events} 

 State-transition function  : S x (A  E)  2S 

 

Example:  Dock Workers Robots from previous slide 

 S = {s0, …, s5} 

 A = {move1, move2, put, take, load, unload} 

 E = {} 

  
: as captured by the arrows mapping states and 

actions to successor states 

Further Recall: 

  System Description (as a state transition system) 
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Representational Challenge 

 How do we represent our planning problem is a way 

that supports exploration of the principles and practice 

of automated planning? 

 

Approach: 

 There isn’t one answer. 

 The [GNT04] proposes representations that are suitable 

for generating classical plans. 

 
[GNT04] = Ghallab, Nau, Traverso, Automated Planning: Theory and Practice, 2004 
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Broad Perspective on Plan Representation 

The right representation for the right objective.   

Distinguish representation schemes for: 

1. studying the principles of planning and related tasks. 

2. specifying planning domains 

3. direct use within (classical) planners 

 

http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
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Summary:  Broad Perspective 

1. Studying the formal principles of planning and other related task 

 (First-order) logical languages  

 (e.g., situation calculus, A languages, event calculus, fluent calculus, PDL) 

Properties: 

 well-defined semantics, representational issues must be addressed in the 
language (not in the algorithm that interprets and manipulates them) 

 excellent for study and proving properties.  Not ideal for 3 below. 

2. Specifying planning domains 

 PDDL-n  (PDDL2.1, PDDL2.2, PDDL3, ….) 

Properties: 

 (reasonably) well-defined semantics 

 designed for input to planners – translate to an internal representation for 
specific planners.  Translators exist for most state-of-the-art planners 

3. Direct use within (classical) planners  

 Classical representation (e.g., STRIPS) 

 Set-theoretic representation (basis for rep’ns used w/ SAT solvers) 

 State-variable representation (aka “Finite Domain Repn’ (FDR)*” )(e.g., SAS, 
SAS+) 

Variants of these exist for particular planners (e.g., SAT solvers, model 
checkers, etc.) 

* [Helmert, AIJ 2009] 10 

This Lecture: 

1. Studying the formal principles of planning and other related task 

 (First-order) logical languages  

 (e.g., situation calculus, A languages, event calculus, fluent calculus, PDL) 

Properties: 

 well-defined semantics, representational issues must be addressed in the 
language (not in the algorithm that interprets and manipulates them) 

 excellent for study and proving properties.  Not ideal for 3 below. 

2. Specifying planning domains 

 PDDL-n  (PDDL2.1, PDDL2.2, PDDL3, ….) 

Properties: 

 (reasonably) well-defined semantics 

 designed for input to planners – translate to an internal representation for 
specific planners.  Translators exist for most state-of-the-art planners 

3. Direct use within (classical) planners (what’s in the text) 

 Classical representation (e.g., STRIPS) 

 Set-theoretic representation (basis for rep’ns used w/ SAT solvers) 

 State-variable representation (aka “FDR”) (e.g., SAS, SAS+) 

Variants of these exist for particular planners (e.g., SAT solvers, model 
checkers, etc.) 

 

 

       WILL COVER LATER         
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Outline 

 Representation schemes for classical planning 

1. Classical representation 

2. Set-theoretic representation 

3. State-variable representation 

 Examples: DWR and the Blocks World 

 Comparisons 
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location 1 location 2 
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take 
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s5 

move1 

put 

take 

move1 

move1 move2 

load unload 

Quick Review of Classical Planning 

move2 

move2 

8 restrictive assumptions req’d: 

A0: Finite 

A1: Fully observable 

A2: Deterministic 

A3: Static 

A4: Attainment goals 

A5: Sequential plans 

A6: Implicit time 

A7: Offline planning 

location 1 location 2 location 1 location 2 
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Representation:  Motivation for Approach 
Default view: 

 represent state explicitly 

 represent actions as a transition system (e.g., as an incidence matrix) 

Problem:  

 explicit graph corresponding to transition system is huge 

 direct manipulation of transition system is cumbersome 

Solution:   

     Provide compact representation of transition system & induced graph 

1. Explicate the structure of the “states” 

 e.g., states specified in terms of state variables 

2. Represent actions not as transition system/incidence matrices but as 
functions (e.g., operators) specified in terms of the state variables 

 An action is applicable  to a state when some state variables 
have certain values. When applicable, it will change the values of 
certain (other) state variables  

3. To plan,  

 Just give the initial state 

 Use the operators to generate the other states as needed 
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Why is this more compact?  

Why is this more compact than an explicit transition system? 

 In an explicit transition system, actions are represented as state-to-

state transitions.  Each action will be represented by an incidence 

matrix of size |S|x|S|  

 In the proposed model, actions are represented only in terms of state 

variables whose values they care about, and whose value they affect. 

(It exploits the structure of the problem!)  

 Consider a state space of 1024 states. It can be represented by 

log21024=10 state variables. If an action needs variable v1 to be true 

and makes v7 to be false, it can be represented by just 2 bits (instead 

of a 1024x1024 matrix) 

 Of course, if the action has a complicated mapping from states to 

states, in the worst case the action rep will be just as large 

 The assumption being made here is that the actions will have 

effects on a small number of state variables.  
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1. Classical Representation 

 Start with a function-free first-order language 

 Finitely many predicate symbols and constant symbols, 

but no function symbols 

 

 Example: the DWR domain 

 Locations: l1, l2, … 

 Containers: c1, c2, … 

 Piles: p1, p2, … 

 Robot carts: r1, r2, … 

 Cranes: k1, k2, … 
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Quick review of terminology 

 Atom: predicate symbol and args 

 Use these to represent both fixed and dynamic (“fluent”) relations 

adjacent(l,l’)     attached(p,l)   belong(k,l)  

occupied(l)     at(r,l) 

loaded(r,c)     unloaded(r) 

holding(k,c)     empty(k) 

in(c,p)      on(c,c’) 

top(c,p)      top(pallet,p) 

 Ground expression: contains no variable symbols    -   e.g.,  in(c1,p3) 

 Unground expression: at least one variable symbol  -   e.g.,  in(c1,x) 

 

 Substitution:    = {x1  t1,  x2  t2,  …,  xn  tn} 

 Each xi is a variable symbol; each ti is a term 

 Instance of e: result of applying a substitution   to e 

 Replace variables of e simultaneously, not sequentially 
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States 
 State: a set s of ground atoms 

 The atoms represent the things that are true in one of ’s states 

 Only finitely many ground atoms, so only finitely many possible states 
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Operators 

 Operator: a triple o=(name(o), precond(o), effects(o)) 

 name(o) is a syntactic expression of the form n(x1,…,xk) 

 n: operator symbol - must be unique for each operator 

 x1,…,xk: variable symbols (parameters) 

 must include every variable symbol in o 

 precond(o):  preconditions 

 literals that must be true in order to use the operator 

 effects(o): effects 

 literals the operator will make true 
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Actions 

 Action: ground instance (via 

substitution) of an operator 
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Notation 
 Let a be an operator or action. Then 

 precond+(a) = {atoms that appear positively in a’s preconditions} 

 precond–(a) = {atoms that appear negatively in a’s preconditions} 

 effects+(a) = {atoms that appear positively in a’s effects} 

 effects–(a) = {atoms that appear negatively in a’s effects} 

 

 

 

 

 

 effects+(take(k,l,c,d,p) = {holding(k,c), top(d,p)} 

 effects–(take(k,l,c,d,p) = {empty(k), in(c,p), top(c,p), on(c,d)} 

E.g., 
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Aside:  Some things to note 

 The state only explicitly represents what is true.  The 

semantics of this representation is that any fluent not 

included in the state is false – just like a database.  

(Recall that one of the assumptions of classical 

planning is complete initial (and subsequent) state. 

The problem would be a lot harder w/o this 

assumption!!) 

 Terminology:  an action is a ground operator.  In the 

Knowledge Representation (KR) literature the 

concept of an “operator” is not used.  Actions may be 

ground or unground. 

 Classical planners generally operate over ground 

actions. 
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Applicability 

 An action a is applicable to a state s if s satisfies precond(a), 

 i.e., if  precond+(a)  s  and  precond–(a)  s =  

 Here are an action and a state that it’s applicable to: 
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Result of Performing an Action 

 If a is applicable to s, the result of performing it is 

         (s,a) = (s – effects–(a))  effects+(a) 

 Delete negative effects, and add positive ones 

 

Set of things 

that are true.  

(if not in set 

then false) 
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 Planning domain:  

 language & operators 

 Operators corresponds to a 

set of state-transition systems 

 

Operators for the DWR Domain 
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Planning Problems  

Given a planning domain (language L, operators O) 

 Encoding of a planning problem: a triple P=(O,s0,g) 

  O is the collection of operators 

  s0 is a state (the initial state) 

  g is a set of literals (the goal formula) 

 The actual planning problem: P = (,s0, g) 

  s0 and g are as above 

   = (S,A,) is a state-transition system 

  S = {all sets of ground atoms in L} 

  A = {all ground instances of operators in O} 

   = state-transition function determined by the operators 
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Plans and Solutions 

 Plan*: any sequence of actions  =  a1, a2, …, an such that 

each ai is a ground instance of an operator in O 

 The plan is a solution for P=(O,s0,g) if it is executable and 

achieves g 

 i.e., if there are states s0, s1, …, sn such that 

   (s0,a1) = s1 

   (s1,a2) = s2 

 … 

   (sn–1,an) = sn 

 sn satisfies g 
     

* Recall that we are restricting our attention to “Classical Planning” 
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Example 

  

 Let P1 = (O, s1, g1), where 

 O is the set of operators given earlier 

  g1={loaded(r1,c3), 

 at(r1,loc2)} 
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Example 

GOAL STATE:            

g1={loaded(r1,c3),at(r1,loc2)} 

INITIAL STATE: 
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 Here are three solutions for P1: 

   take(crane1,loc1,c3,c1,p1),  move(r1,loc2,loc1),  move(r1,loc1,loc2), 

   move(r1,loc2,loc1),  load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)  

   take(crane1,loc1,c3,c1,p1),  move(r1,loc2,loc1), 

   load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)  

   move(r1,loc2,loc1),  take(crane1,loc1,c3,c1,p1), 

   load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)  

 

 Each produces: 
 

Example (cont.) 
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Example (cont.) 

First is redundant: can remove actions and still have a solution 

1.   take(crane1,loc1,c3,c1,p1),  move(r1,loc2,loc1),  move(r1,loc1,loc2), 

   move(r1,loc2,loc1),  load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)  

2.   take(crane1,loc1,c3,c1,p1),  move(r1,loc2,loc1), 

   load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)  

3.   move(r1,loc2,loc1),  take(crane1,loc1,c3,c1,p1), 

   load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)  
 

2nd and 3rd are irredundant and shortest 
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2. Set-Theoretic Representation 

Like classical rep’n, but restricted to propositional logic. 

 

 

 

 

 

 States:  

 Instead of a collection of ground atoms … 

       {on(c1,pallet), on(c1,r1), on(c1,c2), …, at(r1,l1), at(r1,l2), …} 

 

… use a collection of propositions (boolean variables): 

       {on-c1-pallet, on-c1-r1, on-c1-c2, …, at-r1-l1, at-r1-l2, …} 
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Instead of operators like this one, 

 

 

 

 

 

  

  

take-crane1-loc1-c3-c1-p1 

   precond: belong-crane1-loc1, attached-p1-loc1,empty-crane1, top-c3-p1, on-c3-c1 

   delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1 

   add: holding-crane1-c3, top-c1-p1 

Take all of the operator instances, E.g.: 

 

And rewrite ground atoms as propositions, E.g.: 
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Comparison 

A set-theoretic representation is equivalent to a classical 

representation in which all of the atoms are ground 

 

Problem:  Exponential blowup 

 If a classical operator contains n atoms and each atom has arity k, 

then it corresponds to cnk actions where c = |{constant symbols}| 
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 Non-fluents (properties that don’t change) are ground relations: 

e.g., adjacent(loc1,loc2) 

 Fluents are functions:  

  i.e., for properties that can change, assign values to state variables 

 Classical and state-variable rep’ns take similar amounts of space 

each can be translated into the other in low-order polynomial time 

3. State-Variable Representation (aka FDR) 

{top(p1)=c3, 

 cpos(c3)=c1, 

 cpos(c1)=pallet, 

 holding(crane1)=nil, 

 rloc(r1)=loc2, 

 loaded(r1)=nil, …} 
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 Captures further information about the state.  E.g., that 

state variables can only take on one of the values in the 

domain.  This helps reduce the search space.   

 

 Basis for the SAS and SAS+ formalisms (used most 

recently in the FastDownward Planner (FD) and its 

descendents (e.g., LAMA, etc) 

 

 Basis for encodings further plan properties such as domain 

transition graphs (DTGs) and causal graphs (CG) 

State-Variable Representation (cont.) 
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Example: The Blocks World 

(Review on your own) 
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Example: The Blocks World 

 Infinitely wide table, finite number of children’s blocks 

 Ignore where a block is located on the table 

 A block can sit on the table or on another block 

 Want to move blocks from one configuration to another 

 e.g., 

 

 initial state        goal 

 

 

 Classical, set-theoretic, and state-variable formulations for 

the case of FIVE BLOCKS follow. 

c 

a 

b c 

a b e 

d 
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1. Example Classical Representation 

 Constant symbols: 

 The blocks: a, b, c, d, e 

 Predicates: 

 ontable(x) - block x is on the table 

 on(x,y) - block x is on block y 

 clear(x) - block x has nothing on it 

 holding(x) - the robot hand is holding block x 

 handempty - the robot hand isn’t holding anything 

 

 

c 

a b e 

d 
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unstack(x,y) 

   Precond:  on(x,y), clear(x), handempty 

   Effects:  ~on(x,y), ~clear(x), ~handempty, 

                   holding(x), clear(y) 

stack(x,y) 

   Precond:   holding(x), clear(y) 

   Effects:   ~holding(x), ~clear(y), 

                    on(x,y), clear(x), handempty 

pickup(x) 

   Precond:  ontable(x), clear(x), handempty 

   Effects:  ~ontable(x), ~clear(x), 

                   ~handempty, holding(x) 

putdown(x) 

   Precond:   holding(x) 

   Effects:  ~holding(x), ontable(x), 

                   clear(x), handempty 

Classical Operators c 

a b 

c 
a b 

c 

a b 

c 

a 
b 

c 

a b 
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For five blocks, 36 propositions, 50 actions 

 

 

 

E.g., 

ontable-a - block a is on the table 

on-c-a - block c is on block a 

clear-c - block c has nothing on it 

holding-d - the robot hand is holding block d 

handempty - the robot hand isn’t holding anything 

… (31 more) 

 

 

c 

a b 

d 

e 

2. Example Set-Theoretic Representation 
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Set-Theoretic Actions 

E.g.,  
 

 

unstack-c-a 

 Pre: on-c,a, clear-c, handempty 

 Del: on-c,a, clear-c, handempty 

 Add: holding-c, clear-a 

stack-c-a 

 Pre: holding-c, clear-a 

 Del: holding-c, clear-a 

 Add: on-c-a, clear-c, handempty 

pickup-c 

 Pre: ontable-c, clear-c, handempty 

 Del: ontable-c, clear-c, handempty 

 Add: holding-c 

putdown-c 

 Pre: holding-c 

 Del: holding-c 

 Add: ontable-c, clear-c, handempty 

c 

a b 

c 
a b 

c 

a b 

c 

a 
b 

c 

a b 
. . . (46 more) 
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 Constant symbols: 

a, b, c, d, e of type block 

0, 1, table, nil of type other 

 State variables: 

pos(x) = y if block x is on block y 

pos(x) = table if block x is on the table 

pos(x) = nil if block x is being held 

clear(x) = 1 if block x has nothing on it 

clear(x) = 0 if block x is being held or has a block on it 

holding = x  if the robot hand is holding block x 

holding = nil if the robot hand is holding nothing 

c 

a b e 

d 

3. Example State-Variable Representation 
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State-Variable Operators 

unstack(x : block, y : block) 

  Precond:  pos(x)=y, clear(y)=0, clear(x)=1, holding=nil 

  Effects:  pos(x)=nil, clear(x)=0, holding=x, clear(y)=1 

stack(x : block, y : block) 

  Precond:   holding=x, clear(x)=0, clear(y)=1 

  Effects:   holding=nil, clear(y)=0, pos(x)=y, clear(x)=1 

pickup(x : block) 

  Precond:  pos(x)=table, clear(x)=1, holding=nil 

  Effects:  pos(x)=nil, clear(x)=0, holding=x 

putdown(x : block) 

  Precond:  holding=x 

  Effects:  holding=nil, pos(x)=table, clear(x)=1 

c 

a b 

c 
a b 

c 

a b 

c 

a 
b 

c 

a b 
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Representational Equivalence 

 Any problem that can be represented in one representation 

can also be represented in the other two 

 Can convert in linear time and space, except when 

converting to set-theoretic (where we get an exponential 

blowup) 

Classical 

representation 

State-variable 

representation 

Set-theoretic 

representation 

trivial 

P(x1,…,xn) 

becomes 

fP(x1,…,xn-1)=1  (***) 

write all of 

the ground 

instances 

f(x1,…,xn)=y 

becomes 

Pf(x1,…,xn,y) 

(***) trivially, or there can be a more parsimonious problem-specific 

encoding that ignores irrelevant variables 
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Comparison 

 Classical representation 

 Most popular for classical planning, basis of PDDL 
 

 Set-theoretic representation 

 Can take much more space than classical representation 

 Useful in algorithms that manipulate ground atoms directly 

 e.g., planning graphs, SAT 

 Useful for certain kinds of theoretical studies 
 

 State-variable representation (e.g., SAS, SAS+,”FDR”) 

 Equivalent to classical representation in expressive power 

 Arguably less natural to conceive  

 Clever problem-specific encodings can be much more compact and 
embed critical info (e.g., one-of constraints) 

 Leveraged in many of the state-of-the-art heuristic search classical 
planners (e.g., FD, LAMA, etc) 

 Useful in non-classical planning problems as a way to handle 
numbers, functions, time 
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Extending Expressivity:  ADL* 

 Previous representations were so-called “STRIPS” rep’ns.  
These have useful properties for automatically generating 
classical plans, but are not always sufficient to express the 
behaviour of more complex domains. 

  ADL is a richer, and thus more compact, representation 
language that allows for  

 Disjunction and Quantification in preconditions and goals 

 Effects that are Quantified, and/or Conditional (effect is 
conditioned on state) 

 PDDL supports STRIPS and ADL, but not all planners 
support ADL, and not all planners even support a so-called 
Classical Representation 

 In the KR community ADL or greater is common. 

* ADL = “Action Description Language”, [Pednault, KR89] 
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Pros/Cons:  Compiling to Canonical Action Rep’n 

Possible to compile down ADL actions into STRIPS actions 

 Quantification -> conjunctions/disjunctions over finite universes 

 Actions with conditional effects -> multiple (exponentially more) actions 

without conditional effects 

 Actions with disjunctive effects -> multiple actions, each of which take 

one of the disjuncts as their preconditions (called “determinization”) 

 Domain axioms (ramifications) -> the individual effects of the  actions; 

so all actions satisfy STRIPS assumption 

Compilation is not always a win-win. 

 By compiling down to canonical form, we can concentrate on highly 

efficient planning for canonical actions 

 However, often compilation leads to an exponential blowup and 

makes it harder to exploit the structure of the domain 

 By leaving actions in non-canonical form, we can often do more 

compact encoding of the domains as well as more efficient search 

 However, we will have to continually extend planning algorithms to 

handle these representations 


