
1

CSC2542

Representations

 for (Classical) Planning

Sheila McIlraith

Department of Computer Science

University of Toronto

Summer 2014

2

Acknowledgements

Some the slides used in this course are modifications of Dana Nau’s lecture

slides for the textbook Automated Planning, licensed under the Creative

Commons Attribution-NonCommercial-ShareAlike License:

http://creativecommons.org/licenses/by-nc-sa/2.0/

Other slides are modifications of slides developed by Malte Helmert,

Bernhard Nebel, and Jussi Rintanen.

I have also used some material prepared by P@trick Haslum and Rao

Kambhampati.

I would like to gratefully acknowledge the contributions of these researchers,

and thank them for generously permitting me to use aspects of their

presentation material.

4

Recall:

 Planning Problem
take

put

move1

put

take

move1

move1 move2

load unload

move2

move2

location 1 location 2

s0

location 1 location 2

s1

s4

location 1 location 2

s5

location 1 location 2

location 1 location 2

s3

location 1 location 2

s2

P = (, s0,G)

: System Description

S0: Initial state(s)

 E.g., Initial state = s0

G: Objective

Goal state,

Set of goal states,

Set of tasks,

“trajectory” of states,

Objective function, …

E.g., Goal state = s5 The Dock Worker Robots (DWR) domain

5

 = (S,A,E,)

 S = {states}

 A = {actions}

 E = {exogenous events}

 State-transition function  : S x (A  E)  2S

Example: Dock Workers Robots from previous slide

 S = {s0, …, s5}

 A = {move1, move2, put, take, load, unload}

 E = {}


: as captured by the arrows mapping states and

actions to successor states

Further Recall:

 System Description (as a state transition system)

7

Representational Challenge

 How do we represent our planning problem is a way

that supports exploration of the principles and practice

of automated planning?

Approach:

 There isn’t one answer.

 The [GNT04] proposes representations that are suitable

for generating classical plans.

[GNT04] = Ghallab, Nau, Traverso, Automated Planning: Theory and Practice, 2004

8

Broad Perspective on Plan Representation

The right representation for the right objective.

Distinguish representation schemes for:

1. studying the principles of planning and related tasks.

2. specifying planning domains

3. direct use within (classical) planners

http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/

9

Summary: Broad Perspective

1. Studying the formal principles of planning and other related task

 (First-order) logical languages

 (e.g., situation calculus, A languages, event calculus, fluent calculus, PDL)

Properties:

 well-defined semantics, representational issues must be addressed in the
language (not in the algorithm that interprets and manipulates them)

 excellent for study and proving properties. Not ideal for 3 below.

2. Specifying planning domains

 PDDL-n (PDDL2.1, PDDL2.2, PDDL3, ….)

Properties:

 (reasonably) well-defined semantics

 designed for input to planners – translate to an internal representation for
specific planners. Translators exist for most state-of-the-art planners

3. Direct use within (classical) planners

 Classical representation (e.g., STRIPS)

 Set-theoretic representation (basis for rep’ns used w/ SAT solvers)

 State-variable representation (aka “Finite Domain Repn’ (FDR)*”)(e.g., SAS,
SAS+)

Variants of these exist for particular planners (e.g., SAT solvers, model
checkers, etc.)

* [Helmert, AIJ 2009] 10

This Lecture:

1. Studying the formal principles of planning and other related task

 (First-order) logical languages

 (e.g., situation calculus, A languages, event calculus, fluent calculus, PDL)

Properties:

 well-defined semantics, representational issues must be addressed in the
language (not in the algorithm that interprets and manipulates them)

 excellent for study and proving properties. Not ideal for 3 below.

2. Specifying planning domains

 PDDL-n (PDDL2.1, PDDL2.2, PDDL3, ….)

Properties:

 (reasonably) well-defined semantics

 designed for input to planners – translate to an internal representation for
specific planners. Translators exist for most state-of-the-art planners

3. Direct use within (classical) planners (what’s in the text)

 Classical representation (e.g., STRIPS)

 Set-theoretic representation (basis for rep’ns used w/ SAT solvers)

 State-variable representation (aka “FDR”) (e.g., SAS, SAS+)

Variants of these exist for particular planners (e.g., SAT solvers, model
checkers, etc.)

 WILL COVER LATER

11

Outline

 Representation schemes for classical planning

1. Classical representation

2. Set-theoretic representation

3. State-variable representation

 Examples: DWR and the Blocks World

 Comparisons

12

location 1 location 2

location 1 location 2

s1

s3

s4

take

put

location 1 location 2

location 1 location 2

s0

s2

s5

move1

put

take

move1

move1 move2

load unload

Quick Review of Classical Planning

move2

move2

8 restrictive assumptions req’d:

A0: Finite

A1: Fully observable

A2: Deterministic

A3: Static

A4: Attainment goals

A5: Sequential plans

A6: Implicit time

A7: Offline planning

location 1 location 2 location 1 location 2

14

Representation: Motivation for Approach
Default view:

 represent state explicitly

 represent actions as a transition system (e.g., as an incidence matrix)

Problem:

 explicit graph corresponding to transition system is huge

 direct manipulation of transition system is cumbersome

Solution:

 Provide compact representation of transition system & induced graph

1. Explicate the structure of the “states”

 e.g., states specified in terms of state variables

2. Represent actions not as transition system/incidence matrices but as
functions (e.g., operators) specified in terms of the state variables

 An action is applicable to a state when some state variables
have certain values. When applicable, it will change the values of
certain (other) state variables

3. To plan,

 Just give the initial state

 Use the operators to generate the other states as needed
16

Why is this more compact?

Why is this more compact than an explicit transition system?

 In an explicit transition system, actions are represented as state-to-

state transitions. Each action will be represented by an incidence

matrix of size |S|x|S|

 In the proposed model, actions are represented only in terms of state

variables whose values they care about, and whose value they affect.

(It exploits the structure of the problem!)

 Consider a state space of 1024 states. It can be represented by

log21024=10 state variables. If an action needs variable v1 to be true

and makes v7 to be false, it can be represented by just 2 bits (instead

of a 1024x1024 matrix)

 Of course, if the action has a complicated mapping from states to

states, in the worst case the action rep will be just as large

 The assumption being made here is that the actions will have

effects on a small number of state variables.

18

1. Classical Representation

 Start with a function-free first-order language

 Finitely many predicate symbols and constant symbols,

but no function symbols

 Example: the DWR domain

 Locations: l1, l2, …

 Containers: c1, c2, …

 Piles: p1, p2, …

 Robot carts: r1, r2, …

 Cranes: k1, k2, …

19

Quick review of terminology

 Atom: predicate symbol and args

 Use these to represent both fixed and dynamic (“fluent”) relations

adjacent(l,l’) attached(p,l) belong(k,l)

occupied(l) at(r,l)

loaded(r,c) unloaded(r)

holding(k,c) empty(k)

in(c,p) on(c,c’)

top(c,p) top(pallet,p)

 Ground expression: contains no variable symbols - e.g., in(c1,p3)

 Unground expression: at least one variable symbol - e.g., in(c1,x)

 Substitution:  = {x1  t1, x2  t2, …, xn  tn}

 Each xi is a variable symbol; each ti is a term

 Instance of e: result of applying a substitution  to e

 Replace variables of e simultaneously, not sequentially

20

States
 State: a set s of ground atoms

 The atoms represent the things that are true in one of ’s states

 Only finitely many ground atoms, so only finitely many possible states

21

Operators

 Operator: a triple o=(name(o), precond(o), effects(o))

 name(o) is a syntactic expression of the form n(x1,…,xk)

 n: operator symbol - must be unique for each operator

 x1,…,xk: variable symbols (parameters)

 must include every variable symbol in o

 precond(o): preconditions

 literals that must be true in order to use the operator

 effects(o): effects

 literals the operator will make true

22

Actions

 Action: ground instance (via

substitution) of an operator

23

Notation
 Let a be an operator or action. Then

 precond+(a) = {atoms that appear positively in a’s preconditions}

 precond–(a) = {atoms that appear negatively in a’s preconditions}

 effects+(a) = {atoms that appear positively in a’s effects}

 effects–(a) = {atoms that appear negatively in a’s effects}

 effects+(take(k,l,c,d,p) = {holding(k,c), top(d,p)}

 effects–(take(k,l,c,d,p) = {empty(k), in(c,p), top(c,p), on(c,d)}

E.g.,

24

Aside: Some things to note

 The state only explicitly represents what is true. The

semantics of this representation is that any fluent not

included in the state is false – just like a database.

(Recall that one of the assumptions of classical

planning is complete initial (and subsequent) state.

The problem would be a lot harder w/o this

assumption!!)

 Terminology: an action is a ground operator. In the

Knowledge Representation (KR) literature the

concept of an “operator” is not used. Actions may be

ground or unground.

 Classical planners generally operate over ground

actions.

25

Applicability

 An action a is applicable to a state s if s satisfies precond(a),

 i.e., if precond+(a)  s and precond–(a)  s = 

 Here are an action and a state that it’s applicable to:

26

Result of Performing an Action

 If a is applicable to s, the result of performing it is

 (s,a) = (s – effects–(a))  effects+(a)

 Delete negative effects, and add positive ones

Set of things

that are true.

(if not in set

then false)

27

 Planning domain:

 language & operators

 Operators corresponds to a

set of state-transition systems

Operators for the DWR Domain

28

Planning Problems

Given a planning domain (language L, operators O)

 Encoding of a planning problem: a triple P=(O,s0,g)

 O is the collection of operators

 s0 is a state (the initial state)

 g is a set of literals (the goal formula)

 The actual planning problem: P = (,s0, g)

 s0 and g are as above

  = (S,A,) is a state-transition system

 S = {all sets of ground atoms in L}

 A = {all ground instances of operators in O}

  = state-transition function determined by the operators

29

Plans and Solutions

 Plan*: any sequence of actions  = a1, a2, …, an such that

each ai is a ground instance of an operator in O

 The plan is a solution for P=(O,s0,g) if it is executable and

achieves g

 i.e., if there are states s0, s1, …, sn such that

  (s0,a1) = s1

  (s1,a2) = s2

 …

  (sn–1,an) = sn

 sn satisfies g

* Recall that we are restricting our attention to “Classical Planning”

30

Example

 Let P1 = (O, s1, g1), where

 O is the set of operators given earlier

 g1={loaded(r1,c3),

 at(r1,loc2)}

31

Example

GOAL STATE:

g1={loaded(r1,c3),at(r1,loc2)}

INITIAL STATE:

32

 Here are three solutions for P1:

 take(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1), move(r1,loc1,loc2),

 move(r1,loc2,loc1), load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

 take(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1),

 load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

 move(r1,loc2,loc1), take(crane1,loc1,c3,c1,p1),

 load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

 Each produces:

Example (cont.)

33

Example (cont.)

First is redundant: can remove actions and still have a solution

1. take(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1), move(r1,loc1,loc2),

 move(r1,loc2,loc1), load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

2. take(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1),

 load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

3. move(r1,loc2,loc1), take(crane1,loc1,c3,c1,p1),

 load(crane1,loc1,c3,r1), move(r1,loc1,loc2)

2nd and 3rd are irredundant and shortest

34

2. Set-Theoretic Representation

Like classical rep’n, but restricted to propositional logic.

 States:

 Instead of a collection of ground atoms …

 {on(c1,pallet), on(c1,r1), on(c1,c2), …, at(r1,l1), at(r1,l2), …}

… use a collection of propositions (boolean variables):

 {on-c1-pallet, on-c1-r1, on-c1-c2, …, at-r1-l1, at-r1-l2, …}

35

Instead of operators like this one,

take-crane1-loc1-c3-c1-p1

 precond: belong-crane1-loc1, attached-p1-loc1,empty-crane1, top-c3-p1, on-c3-c1

 delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1

 add: holding-crane1-c3, top-c1-p1

Take all of the operator instances, E.g.:

And rewrite ground atoms as propositions, E.g.:

36

Comparison

A set-theoretic representation is equivalent to a classical

representation in which all of the atoms are ground

Problem: Exponential blowup

 If a classical operator contains n atoms and each atom has arity k,

then it corresponds to cnk actions where c = |{constant symbols}|

37

 Non-fluents (properties that don’t change) are ground relations:

e.g., adjacent(loc1,loc2)

 Fluents are functions:

 i.e., for properties that can change, assign values to state variables

 Classical and state-variable rep’ns take similar amounts of space

each can be translated into the other in low-order polynomial time

3. State-Variable Representation (aka FDR)

{top(p1)=c3,

 cpos(c3)=c1,

 cpos(c1)=pallet,

 holding(crane1)=nil,

 rloc(r1)=loc2,

 loaded(r1)=nil, …}

38

 Captures further information about the state. E.g., that

state variables can only take on one of the values in the

domain. This helps reduce the search space.

 Basis for the SAS and SAS+ formalisms (used most

recently in the FastDownward Planner (FD) and its

descendents (e.g., LAMA, etc)

 Basis for encodings further plan properties such as domain

transition graphs (DTGs) and causal graphs (CG)

State-Variable Representation (cont.)

39

Example: The Blocks World

(Review on your own)

40

Example: The Blocks World

 Infinitely wide table, finite number of children’s blocks

 Ignore where a block is located on the table

 A block can sit on the table or on another block

 Want to move blocks from one configuration to another

 e.g.,

 initial state goal

 Classical, set-theoretic, and state-variable formulations for

the case of FIVE BLOCKS follow.

c

a

b c

a b e

d

41

1. Example Classical Representation

 Constant symbols:

 The blocks: a, b, c, d, e

 Predicates:

 ontable(x) - block x is on the table

 on(x,y) - block x is on block y

 clear(x) - block x has nothing on it

 holding(x) - the robot hand is holding block x

 handempty - the robot hand isn’t holding anything

c

a b e

d

42

unstack(x,y)

 Precond: on(x,y), clear(x), handempty

 Effects: ~on(x,y), ~clear(x), ~handempty,

 holding(x), clear(y)

stack(x,y)

 Precond: holding(x), clear(y)

 Effects: ~holding(x), ~clear(y),

 on(x,y), clear(x), handempty

pickup(x)

 Precond: ontable(x), clear(x), handempty

 Effects: ~ontable(x), ~clear(x),

 ~handempty, holding(x)

putdown(x)

 Precond: holding(x)

 Effects: ~holding(x), ontable(x),

 clear(x), handempty

Classical Operators c

a b

c
a b

c

a b

c

a
b

c

a b
43

For five blocks, 36 propositions, 50 actions

E.g.,

ontable-a - block a is on the table

on-c-a - block c is on block a

clear-c - block c has nothing on it

holding-d - the robot hand is holding block d

handempty - the robot hand isn’t holding anything

… (31 more)

c

a b

d

e

2. Example Set-Theoretic Representation

44

Set-Theoretic Actions

E.g.,

unstack-c-a

 Pre: on-c,a, clear-c, handempty

 Del: on-c,a, clear-c, handempty

 Add: holding-c, clear-a

stack-c-a

 Pre: holding-c, clear-a

 Del: holding-c, clear-a

 Add: on-c-a, clear-c, handempty

pickup-c

 Pre: ontable-c, clear-c, handempty

 Del: ontable-c, clear-c, handempty

 Add: holding-c

putdown-c

 Pre: holding-c

 Del: holding-c

 Add: ontable-c, clear-c, handempty

c

a b

c
a b

c

a b

c

a
b

c

a b
. . . (46 more)

45

 Constant symbols:

a, b, c, d, e of type block

0, 1, table, nil of type other

 State variables:

pos(x) = y if block x is on block y

pos(x) = table if block x is on the table

pos(x) = nil if block x is being held

clear(x) = 1 if block x has nothing on it

clear(x) = 0 if block x is being held or has a block on it

holding = x if the robot hand is holding block x

holding = nil if the robot hand is holding nothing

c

a b e

d

3. Example State-Variable Representation

46

State-Variable Operators

unstack(x : block, y : block)

 Precond: pos(x)=y, clear(y)=0, clear(x)=1, holding=nil

 Effects: pos(x)=nil, clear(x)=0, holding=x, clear(y)=1

stack(x : block, y : block)

 Precond: holding=x, clear(x)=0, clear(y)=1

 Effects: holding=nil, clear(y)=0, pos(x)=y, clear(x)=1

pickup(x : block)

 Precond: pos(x)=table, clear(x)=1, holding=nil

 Effects: pos(x)=nil, clear(x)=0, holding=x

putdown(x : block)

 Precond: holding=x

 Effects: holding=nil, pos(x)=table, clear(x)=1

c

a b

c
a b

c

a b

c

a
b

c

a b
48

Representational Equivalence

 Any problem that can be represented in one representation

can also be represented in the other two

 Can convert in linear time and space, except when

converting to set-theoretic (where we get an exponential

blowup)

Classical

representation

State-variable

representation

Set-theoretic

representation

trivial

P(x1,…,xn)

becomes

fP(x1,…,xn-1)=1 (***)

write all of

the ground

instances

f(x1,…,xn)=y

becomes

Pf(x1,…,xn,y)

(***) trivially, or there can be a more parsimonious problem-specific

encoding that ignores irrelevant variables

49

Comparison

 Classical representation

 Most popular for classical planning, basis of PDDL

 Set-theoretic representation

 Can take much more space than classical representation

 Useful in algorithms that manipulate ground atoms directly

 e.g., planning graphs, SAT

 Useful for certain kinds of theoretical studies

 State-variable representation (e.g., SAS, SAS+,”FDR”)

 Equivalent to classical representation in expressive power

 Arguably less natural to conceive

 Clever problem-specific encodings can be much more compact and
embed critical info (e.g., one-of constraints)

 Leveraged in many of the state-of-the-art heuristic search classical
planners (e.g., FD, LAMA, etc)

 Useful in non-classical planning problems as a way to handle
numbers, functions, time

63

Extending Expressivity: ADL*

 Previous representations were so-called “STRIPS” rep’ns.
These have useful properties for automatically generating
classical plans, but are not always sufficient to express the
behaviour of more complex domains.

 ADL is a richer, and thus more compact, representation
language that allows for

 Disjunction and Quantification in preconditions and goals

 Effects that are Quantified, and/or Conditional (effect is
conditioned on state)

 PDDL supports STRIPS and ADL, but not all planners
support ADL, and not all planners even support a so-called
Classical Representation

 In the KR community ADL or greater is common.

* ADL = “Action Description Language”, [Pednault, KR89]

64

Pros/Cons: Compiling to Canonical Action Rep’n

Possible to compile down ADL actions into STRIPS actions

 Quantification -> conjunctions/disjunctions over finite universes

 Actions with conditional effects -> multiple (exponentially more) actions

without conditional effects

 Actions with disjunctive effects -> multiple actions, each of which take

one of the disjuncts as their preconditions (called “determinization”)

 Domain axioms (ramifications) -> the individual effects of the actions;

so all actions satisfy STRIPS assumption

Compilation is not always a win-win.

 By compiling down to canonical form, we can concentrate on highly

efficient planning for canonical actions

 However, often compilation leads to an exponential blowup and

makes it harder to exploit the structure of the domain

 By leaving actions in non-canonical form, we can often do more

compact encoding of the domains as well as more efficient search

 However, we will have to continually extend planning algorithms to

handle these representations

