
Heuristic Search for Planning

Sheila McIlraith

University of Toronto

Fall 2010

S. McIlraith Heuristic Search for Planning 1 / 50

Acknowledgements

Many of the slides used in today’s lecture are modifications of
slides developed by Malte Helmert, Bernhard Nebel, and Jussi
Rintanen.

Some material comes from papers by Daniel Bryce and Rao
Kambhampati.

I would like to gratefully acknowledge the contributions of these
researchers, a nd thank them for generously permitting me to use
aspects of their presentation material.

S. McIlraith Heuristic Search for Planning 2 / 50

Outline

1 How to obtain a heuristic
The STRIPS heuristic
Relaxation and abstraction

2 Towards relaxations for planning: Positive normal form
Motivation
Definition & algorithm
Example

3 Relaxed planning tasks
Definition
Greedy algorithm
Optimality
Discussion
Towards better relaxed plans

S. McIlraith Heuristic Search for Planning 3 / 50

A simple heuristic for deterministic planning

STRIPS (Fikes & Nilsson, 1971) used the number of state variables
that differ in current state s and a STRIPS goal l1 ∧ · · · ∧ ln:

h(s) := |{i ∈ {1, . . . , n} | s(a) 6|= li}|.

Intuition: more true goal literals closer to the goal

 STRIPS heuristic (properties?)

Note: From now on, for convenience we usually write heuristics as
functions of states (as above), not nodes.
Node heuristic h′ is defined from state heuristic h as
h′(σ) := h(state(σ)).

S. McIlraith Heuristic Search for Planning 4 / 50

Criticism of the STRIPS heuristic

What is wrong with the STRIPS heuristic?

quite uninformative:
the range of heuristic values in a given task is small;
typically, most successors have the same estimate

very sensitive to reformulation:
can easily transform any planning task into an equivalent one
where h(s) = 1 for all non-goal states

ignores almost all problem structure:
heuristic value does not depend on the set of operators!

 need a better, principled way of coming up with heuristics

S. McIlraith Heuristic Search for Planning 5 / 50

Outline

1 How to obtain a heuristic
The STRIPS heuristic
Relaxation and abstraction

2 Towards relaxations for planning: Positive normal form
Motivation
Definition & algorithm
Example

3 Relaxed planning tasks
Definition
Greedy algorithm
Optimality
Discussion
Towards better relaxed plans

S. McIlraith Heuristic Search for Planning 6 / 50

Sheila
Rectangle

Coming up with heuristics in a principled way

General procedure for obtaining a heuristic

Solve an easier version of the problem.

Two common methods:

relaxation: consider less constrained version of the problem

abstraction: consider smaller version of real problem

Both have been very successfully applied in planning.
We consider both in this course, beginning with relaxation.

S. McIlraith Heuristic Search for Planning 7 / 50

Relaxing a problem

How do we relax a problem?

Example (Route planning for a road network)

The road network is formalized as a weighted graph over points in
the Euclidean plane. The weight of an edge is the road distance
between two locations.

A relaxation drops constraints of the original problem.

Example (Relaxation for route planning)

Use the Euclidean distance
√

|x1 − y1|2 + |x2 − y2|2 as a heuristic
for the road distance between (x1, x2) and (y1, y2)
This is a lower bound on the road distance (admissible).

 We drop the constraint of having to travel on roads.

S. McIlraith Heuristic Search for Planning 8 / 50

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100

km

100 km 120
km80

km

160 km

100
km

100 km

120
km

20
0
km

20
0
km

S. McIlraith Heuristic Search for Planning 9 / 50

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100

km

100 km 120
km80

km

160 km

100
km

100 km

120
km

270
km

150
km

S. McIlraith Heuristic Search for Planning 10 / 50

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100

km

100 km 120
km80

km

160 km

100
km

100 km

120
km

420 km180 km

340
km

120
km

S. McIlraith Heuristic Search for Planning 11 / 50

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100

km

100 km 120
km80

km

160 km

100
km

100 km

120
km

420 km180 km

45
0
km

13
0
km

S. McIlraith Heuristic Search for Planning 12 / 50

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100

km

100 km 120
km80

km

160 km

100
km

100 km

120
km

45
0
km

13
0
km

440
km

100
km

S. McIlraith Heuristic Search for Planning 13 / 50

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100

km

100 km 120
km80

km

160 km

100
km

100 km

120
km

45
0
km

13
0
km

460 km

S. McIlraith Heuristic Search for Planning 14 / 50

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100

km

100 km 120
km80

km

160 km

100
km

100 km

120
km

540
km

120
km

460 km

S. McIlraith Heuristic Search for Planning 15 / 50

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg

Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100

km

100 km 120
km80

km

160 km

100
km

100 km

120
km

460 km

S. McIlraith Heuristic Search for Planning 16 / 50

Outline

1 How to obtain a heuristic
The STRIPS heuristic
Relaxation and abstraction

2 Towards relaxations for planning: Positive normal form
Motivation
Definition & algorithm
Example

3 Relaxed planning tasks
Definition
Greedy algorithm
Optimality
Discussion
Towards better relaxed plans

S. McIlraith Heuristic Search for Planning 17 / 50

Relaxations for planning

Relaxation is a general technique for heuristic design:

Straight-line heuristic (route planning): Ignore the fact that
one must stay on roads.
Manhattan heuristic (15-puzzle): Ignore the fact that one
cannot move through occupied tiles.

We want to apply the idea of relaxations to planning.

Informally, we want to ignore bad side effects of applying
operators.

S. McIlraith Heuristic Search for Planning 18 / 50

What is a good or bad effect?

Question: Which operator effects are good, and which are bad?

Difficult to answer in general, because it depends on context:

Locking the entrance door is good if we want to keep burglars
out.

Locking the entrance door is bad if we want to enter.

We will now consider a reformulation of planning tasks that makes
the distinction between good and bad effects obvious.

S. McIlraith Heuristic Search for Planning 19 / 50

Outline

1 How to obtain a heuristic
The STRIPS heuristic
Relaxation and abstraction

2 Towards relaxations for planning: Positive normal form
Motivation
Definition & algorithm
Example

3 Relaxed planning tasks
Definition
Greedy algorithm
Optimality
Discussion
Towards better relaxed plans

S. McIlraith Heuristic Search for Planning 20 / 50

Notation Review

The notation we use here is a generalization of the notation used
in previous introductory lectures, which was based on the GNT
textbook. Recall:

Definition

An operator 〈c, e〉 is a STRIPS operator if

1 precondition c is a conjunction* of literals, and

2 effect e is a conjunction of atomic effects.

*We previously used ”set” rather than ”conjunction”.

S. McIlraith Heuristic Search for Planning 21 / 50

Notation Review (cont.)

Here we extend the expressiveness of our operator definition as
follows:

precondition c is an arbitrary propositional formula.

(Deterministic) effect e is defined recursively as follows:

1 If a ∈ A is a state variable, then a and ¬a are effects (atomic
effects).

2 If e1, . . . , en are effects, then e1 ∧ · · · ∧ en is an effect
(conjunctive effects). The special case with n = 0 is the empty
conjunction ⊤.

3 If c is a propositional formula and e is an effect, then c ⊲ e is
an effect (conditional effects).

Atomic effects a and ¬a are best understood as assignments
a := 1 and a := 0, respectively.

S. McIlraith Heuristic Search for Planning 22 / 50

Positive normal form

Definition (operators in positive normal form)

An operator o = 〈c, e〉 is in positive normal form if it is in normal
form, no negation symbols appear in c, and no negation symbols
appear in any effect condition in e.

Definition (planning tasks in positive normal form)

A planning task 〈A, I,O,G〉 is in positive normal form if all
operators in O are in positive normal form and no negation
symbols occur in the goal G.

S. McIlraith Heuristic Search for Planning 23 / 50

Positive normal form: existence

Theorem (positive normal form)

Every planning task Π has an equivalent planning task Π′ in
positive normal form.
Moreover, Π′ can be computed from Π in polynomial time.

Note: Equivalence here means that the represented transition
systems of Π and Π′, limited to the states that can be reached
from the initial state, are isomorphic.

We prove the theorem by describing a suitable algorithm.
(However, we do not prove its correctness or complexity.)

S. McIlraith Heuristic Search for Planning 24 / 50

Positive normal form: algorithm

Transformation of 〈A, I, O,G〉 to positive normal form

Convert all operators o ∈ O to normal form.
Convert all conditions* to negation normal form (NNF).
while any condition contains a negative literal ¬a:

Let a be a variable which occurs negatively in a condition.
A := A ∪ {â} for some new state variable â
I(â) := 1− I(a)
Replace the effect a by (a ∧ ¬â) in all operators o ∈ O.
Replace the effect ¬a by (¬a ∧ â) in all operators o ∈ O.
Replace ¬a by â in all conditions.

Convert all operators o ∈ O to normal form (again).

* Here, all conditions refers to all operator preconditions, operator
effect conditions and the goal.

S. McIlraith Heuristic Search for Planning 25 / 50

Outline

1 How to obtain a heuristic
The STRIPS heuristic
Relaxation and abstraction

2 Towards relaxations for planning: Positive normal form
Motivation
Definition & algorithm
Example

3 Relaxed planning tasks
Definition
Greedy algorithm
Optimality
Discussion
Towards better relaxed plans

S. McIlraith Heuristic Search for Planning 26 / 50

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) ⊲ ¬bike)〉}

G = lecture ∧ bike

S. McIlraith Heuristic Search for Planning 27 / 50

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) ⊲ ¬bike)〉}

G = lecture ∧ bike

Identify state variable a occurring negatively in conditions.

S. McIlraith Heuristic Search for Planning 28 / 50

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) ⊲ ¬bike)〉}

G = lecture ∧ bike

Introduce new variable â with complementary initial value.

S. McIlraith Heuristic Search for Planning 29 / 50

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) ⊲ ¬bike)〉}

G = lecture ∧ bike

Identify effects on variable a.

S. McIlraith Heuristic Search for Planning 30 / 50

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) ⊲ ¬bike)〉}

G = lecture ∧ bike

Introduce complementary effects for â.

S. McIlraith Heuristic Search for Planning 31 / 50

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) ⊲ ¬bike)〉}

G = lecture ∧ bike

Identify negative conditions for a.

S. McIlraith Heuristic Search for Planning 32 / 50

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ bike-unlocked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ bike-unlocked) ⊲ ¬bike)〉}

G = lecture ∧ bike

Replace by positive condition â.

S. McIlraith Heuristic Search for Planning 33 / 50

Positive normal form: example

Example (transformation to positive normal form)

A = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ 1, bike 7→ 1, bike-locked 7→ 1,

uni 7→ 0, lecture 7→ 0, bike-unlocked 7→ 0}
O = {〈home ∧ bike ∧ bike-unlocked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ bike-unlocked) ⊲ ¬bike)〉}

G = lecture ∧ bike

S. McIlraith Heuristic Search for Planning 34 / 50

What does this transformation achieve?

We have expanded the size of our domain by introducing new
propositions to ensure that all the conditions that affect planning:

preconditions

conditions of conditional effects

goals

are expressed in terms of positive literals, and we’ve adjusted the
effects of operators to ensure that they are consistent with the
introduction of these new propositions.

S. McIlraith Heuristic Search for Planning 35 / 50

Outline

1 How to obtain a heuristic
The STRIPS heuristic
Relaxation and abstraction

2 Towards relaxations for planning: Positive normal form
Motivation
Definition & algorithm
Example

3 Relaxed planning tasks
Definition
Greedy algorithm
Optimality
Discussion
Towards better relaxed plans

S. McIlraith Heuristic Search for Planning 36 / 50

Relaxed planning tasks: idea

In positive normal form, good and bad effects are easy to
distinguish:

Effects that make state variables true are good
(add effects).

Effects that make state variables false are bad
(delete effects).

*** Idea for the heuristic: Ignore all delete effects. **

S. McIlraith Heuristic Search for Planning 37 / 50

Relaxed planning tasks

Definition (relaxation of operators)

The relaxation o+ of an operator o = 〈c, e〉 in positive normal form
is the operator which is obtained by replacing all negative effects
¬a within e by the do-nothing effect ⊤.

Definition (relaxation of planning tasks)

The relaxation Π+ of a planning task Π = 〈A, I,O,G〉 in positive
normal form is the planning task Π+ := 〈A, I, {o+ | o ∈ O}, G〉.

Definition (relaxation of operator sequences)

The relaxation of an operator sequence π = o1 . . . on is the
operator sequence π+ := o1

+ . . . on
+.

S. McIlraith Heuristic Search for Planning 38 / 50

Relaxed planning tasks: terminology

Planning tasks in positive normal form without delete effects
are called relaxed planning tasks.

Plans for relaxed planning tasks are called relaxed plans.

If Π is a planning task in positive normal form and π+ is a
plan for Π+, then π+ is called a relaxed plan for Π.

S. McIlraith Heuristic Search for Planning 39 / 50

Outline

1 How to obtain a heuristic
The STRIPS heuristic
Relaxation and abstraction

2 Towards relaxations for planning: Positive normal form
Motivation
Definition & algorithm
Example

3 Relaxed planning tasks
Definition
Greedy algorithm
Optimality
Discussion
Towards better relaxed plans

S. McIlraith Heuristic Search for Planning 40 / 50

Greedy algorithm for relaxed planning tasks

The relaxed planning task can be solved in polynomial time using a
simple greedy algorithm:

Greedy planning algorithm for 〈A, I, O+, G〉
s := I
π+ := ǫ
forever:

if s |= G:
return π+

else if there is an operator o+ ∈ O+ applicable in s
with appo+(s) 6= s:

Append such an operator o+ to π+.
s := appo+(s)

else:
return unsolvable

S. McIlraith Heuristic Search for Planning 41 / 50

Correctness of the greedy algorithm

The algorithm is sound:

If it returns a plan, this is indeed a correct solution.

If it returns “unsolvable”, the task is indeed unsolvable

What about completeness (termination) and runtime?

Each iteration of the loop adds at least one atom to the set of
true state variables in s.

This guarantees termination after at most |A| iterations.
Thus, the algorithm can clearly be implemented to run in
polynomial time.

S. McIlraith Heuristic Search for Planning 42 / 50

Outline

1 How to obtain a heuristic
The STRIPS heuristic
Relaxation and abstraction

2 Towards relaxations for planning: Positive normal form
Motivation
Definition & algorithm
Example

3 Relaxed planning tasks
Definition
Greedy algorithm
Optimality
Discussion
Towards better relaxed plans

S. McIlraith Heuristic Search for Planning 43 / 50

Using the greedy algorithm as a heuristic

We can apply the greedy algorithm within heuristic search:

In a search node σ, solve the relaxation of the planning task
with state(σ) as the initial state.

Set h(σ) to the length of the generated relaxed plan.

Is this an admissible heuristic?

Yes if the relaxed plans are optimal (due to the plan
preservation corollary).

However, usually they are not, because our greedy planning
algorithm is very poor.

S. McIlraith Heuristic Search for Planning 44 / 50

Generating an admissible heuristic is NP-hard

To obtain an admissible heuristic, we need to generate an
optimal relaxed plan.

The problem of deciding whether a given relaxed planning
task has a length at most K is NP-complete (through a
reduction of part of the problem to the set cover problem).

Thus, generating an optimal relaxed plan for the purposes of
generating a heuristic (not even solving the problem!) is not a
good strategy.

S. McIlraith Heuristic Search for Planning 45 / 50

Outline

1 How to obtain a heuristic
The STRIPS heuristic
Relaxation and abstraction

2 Towards relaxations for planning: Positive normal form
Motivation
Definition & algorithm
Example

3 Relaxed planning tasks
Definition
Greedy algorithm
Optimality
Discussion
Towards better relaxed plans

S. McIlraith Heuristic Search for Planning 46 / 50

Using relaxations in practice

How can we use relaxations for heuristic planning in practice?

Different possibilities:

Implement an optimal planner for relaxed planning tasks and
use its solution lengths as an estimate, even though it is
NP-hard.
 h+ heuristic

Do not actually solve the relaxed planning task, but compute
an estimate of its difficulty in a different way.
 hmax heuristic, hadd heuristic

Compute a solution for relaxed planning tasks which is not
necessarily optimal, but “reasonable”.
 hFF heuristic

S. McIlraith Heuristic Search for Planning 47 / 50

Outline

1 How to obtain a heuristic
The STRIPS heuristic
Relaxation and abstraction

2 Towards relaxations for planning: Positive normal form
Motivation
Definition & algorithm
Example

3 Relaxed planning tasks
Definition
Greedy algorithm
Optimality
Discussion
Towards better relaxed plans

S. McIlraith Heuristic Search for Planning 48 / 50

Towards better relaxed plans

Why does the greedy algorithm compute low-quality plans?

It may apply many operators which are not goal-directed.

How can this problem be fixed?

Reaching the goal of a relaxed planning task is most easily
achieved with forward search.

Analyzing relevance of an operator for achieving a goal (or
subgoal) is most easily achieved with backward search.

Idea: Use a forward-backward algorithm that first finds a path to
the goal greedily, then prunes it to a relevant subplan. Does this
sound similar to an algorithm we’ve seen before?

S. McIlraith Heuristic Search for Planning 49 / 50

The Relaxed Plan Graph Heuristic and FF

In the tutorial today you will learn about the Relaxed Plan Graph
(RPG) heuristic and how it is used in one particular planner,
Fast-Forward (FF) (Hoffmannn & Nebel, JAIR-01).

Heuristic: Solve the relaxed planning problem using a
planning graph approach.

Search: Hill-climbing extended by breadth-first search on
plateaus and with pruning

Pruning: Only those successors are considered that are part of
a relaxed solution – i.e., the result of so-called helpful actions

Fall-back strategy: Complete best-first search

S. McIlraith Heuristic Search for Planning 50 / 50

