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Segue 

 The problem of finding a valid plan from the planning graph 

can be encoded on any combinatorial substrate 

 Alternatives: 

 CSP  [GP-CSP – Do & Kambhampati, 2000] 

 SAT  [Blackbox; SATPLAN – Kautz & Selman, 1996+] 

 ASP  [Son et al] 

 IP      [Vossen et al]  

 

 This is the notion of “Translation to General Problem Solver” 

that we discussed in our first technical lecture.   

 

Here we discuss SAT as the combinatorial substrate. 
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Motivation 

 Propositional satisfiability (SAT):   

  Given a boolean formula 

e.g.,    (P  Q)  (Q  R  S)  (R  P), 

Does there exist a model 

i.e.,  an assignment of truth values to the propositions 

 that makes the formula true? 

 This was the first problem shown to be NP-complete. 

 Lots of research on algorithms for solving SAT. 

 Systematic search (DPLL-based ..) 

 Stochastic search (GSAT, WalkSAT, … 

 Key idea behind SAT-based planning: 

 Translate classical planning problems into satisfiability problems, and 

solving them using a highly optimized SAT solver. 
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Basic Approach 

 Suppose a plan of length n exists 

 Encode this hypothesis in SAT 

 Initial state is true at t0 

 Goal is true at tn 

 Actions imply effects, etc 

 Look for satisfying assignment 

 Decode into plan 
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Evolution of SAT-based planners 

 The success of this approach has largely been the 

result of impressive advances in the proficiency of     

SAT solvers. 

 A continued limiting factor to this approach is the size of 

the CNF encoding of some problems. 

 Thus, a key challenge to this approach has been how to 

encode the planning problem effectively.  Such 

encodings have marked the evolution of SAT-based 

planners. 
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 1969 Plan synthesis as theorem proving (Green IJCAI-69)  

 1971 STRIPS (Fikes & Nilsson AIJ-71) 

 Decades of work on “specialized theorem provers” 

History History… 

. . . 
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 1992 Satplan “approach” (Kautz & Selman ECAI-92) 

 convention for encoding STRIPS-style linear planning in axiom 

schema 

 Didn’t appear practical 

 Rapid progress on SAT solving 

 1996 (Kautz & Selman AAAI-96) (Kautz, McAllester & Selman KR-96) 

 Electrifying results (on hand coded formulae) 

 Key technical advance:  parallel encodings where noninterfering 

actions could occur at the same time (i.e., Graphplan ideas) (but 

no compiler) 

 1997 MEDIC (Ernst et al. IJCAI-97) 

 First complete implementation of Satplan (with compiler) 

 1998 Blackbox (Kautz & Selman AIPS98 workshop) 

 Also performed mutex propagation before generating encoding 

…History (enter SAT-based planners)… 

. . . 
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 1998 IPC-1 Blackbox performance comparable to the best 

 2000 IPC-2 Blackbox performance abysmal (Graphplan-style planners 

dominated) 

 2002 IPC-3 No SAT-based planners entered 

 2004 IPC-4 Satplan04 was clear winner of “optimal propositional planners” 

 2006 IPC-5 Satplan06 & Maxplan* (Chen Xing & Zhang IJCAI-07) dominated** 

 … NOW Jussi Rintanen’s  “M planners” very impressive performance 

 http://users.ics.aalto.fi/rintanen/jussi/satplan.html 
     

What accounts for the success in 2004 and 2006? 

1) Huge advances in SAT solvers 2000-2004 (e.g., Seige, ZChaff) 

    (indeed in 2004 they ran out of time and didn’t include mutex propagation) 

 

2) New competition problems that were “intrinsically hard” 

…History (IPC)…. 

* Also a SAT-based planner 

** dominated the “optimal planners” track.  Note however that in the so-called “satisficing 

planners” track, e.g. the heuristic-search based planners that could not guarantee optimal 

length, satificing planners were able to solve much larger problems! 
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Outline 

 Encoding planning problems as satisfiability problems 

 Extracting plans from truth values 

 Satisfiability algorithms 

 Combining satisfiability with planning graphs 

 Blackbox & SatPlan 
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The SATPLAN Approach* 
 

axiom 

schemas instantiated 

propositional 

clauses 

satisfying 

model 
plan 

mapping 

length 

problem 

description 

SAT 

engine(s) 

instantiate 

interpret 

* Terminology: “SATPLAN approach” (circa 1992) vs. the SATPLAN planner of 2004, 2006 etc., the successor of Blackbox. 
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Overall Approach 

 A bounded planning problem is a pair (P,n): 

 P is a planning problem; n is a positive integer 

 Any solution for P of length n is a solution for (P,n) 

 

 Planning algorithm: 

 Do iterative deepening as we did with Graphplan:  

 for n = 0, 1, 2, …, 

 encode (P,n) as a satisfiability problem   

 if  is satisfiable, then 

 From the set of truth values that satisfies , a 

solution plan can be constructed, return it and exit. 
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Notation 

 For satisfiability problems we need to use propositional logic 

 Need to encode ground atoms into propositions 

 For set-theoretic planning we encoded atoms into 
propositions by rewriting them as shown here: 

 Atom: at(r1,loc1) 

 Proposition: at-r1-loc1 

 For planning as satisfiability we’ll do the same thing 

 But we won’t bother to do a syntactic rewrite 

 Just use at(r1,loc1) itself as the proposition 

 

 Also, we’ll write plans starting at a0 rather than a1 

 π = a0, a1, …, an–1 
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Fluents 

 If π = a0, a1, …, an–1 is a solution for (P,n), it generates these 

states: 

s0,    s1 =  (s0,a0),    s2 =  (s1,a1),    …,    sn =  (sn–1, an–1) 

 

 Fluent: proposition saying a particular atom is true in a particular 

state, e.g.,  

 at(r1,loc1,i) is a fluent that’s true iff  at(r1,loc1) is in si  

 

 We’ll use li to denote the fluent for literal l in state si 

 e.g., if  l = at(r1,loc1) 

      then li = at(r1,loc1,i)  

 

 ai is a fluent saying that a is the i’th step of π 

 e.g., if  a = move(r1,loc2,loc1) 

      then ai = move(r1,loc2,loc1,i) 
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Encoding Planning Problems 

 Encode (P,n) as a formula  such that 

π =  a0, a1, …, an–1 is a solution for (P,n) if and only if 

There is a satisfying assignment for  such that fluents     

a0, …, an–1 are true 

 

 Let 

 A = {all actions in the planning domain} 

 S = {all states in the planning domain} 

 L = {all literals in the language} 

 

   is the conjunct of many other formulas … 
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Formulae in  
 Formula describing the initial state: 

    Ʌ {l0  | l  s0}   Ʌ {l0  | l  L – s0 } 

 

 Formula describing the goal: 

 Ʌ {ln  | l  g+}  Ʌ{ln  |  l  g–} 

 

 For every action a in A, formulae describing what changes a would make 
if it were the i’th step of the plan: 

 ai    Ʌ {pi  | p  Precond(a)}  Ʌ {ei+1  |  e  Effects(a)} 

 

 Complete exclusion  (i.e., LINEAR ENCODING ) axiom: 

 For all actions a and b, formulas saying they can’t occur at the same 
time 

      ai    bi 

 this guarantees there can be only one action at a time (i.e., a 
sequential plan.  This is revisted in the blackbox encoding later. 

 

 Is this enough? 
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Frame Axioms 

 Frame axioms: 

 Formulas describing what doesn’t change between steps i and i+1 

 

 Several ways to write these 

 

 One way: explanatory frame axioms 

 One axiom for every literal  l 

 Says that if l changes between si and si+1,  

 then the action at step i must be responsible: 

 

       (li  li+1  Va in A{ai | l  effects+(a)}) 

    (li  li+1  Va in A{ai | l  effects–(a)}) 
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Example 

 Planning domain: 

 one robot r1 

 two adjacent locations l1, l2 

 one operator (move the robot) 

 

 Encode (P,n) where n = 1 

 

 Initial state: {at(r1,l1)} 

 Encoding: at(r1,l1,0)  at(r1,l2,0) 

 

 Goal:  {at(r1,l2)} 

 Encoding: at(r1,l2,1)  at(r1,l1,1) 

 

 Operator: see next slide 
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Example (continued) 
 Operator: move(r,l,l’) 

      precond: at(r,l) 

      effects:   at(r,l’), at(r,l) 

 Encoding: 

 move(r1,l1,l2,0)  at(r1,l1,0)  at(r1,l2,1)  at(r1,l1,1) 

 move(r1,l2,l1,0)  at(r1,l2,0)  at(r1,l1,1)  at(r1,l2,1) 

 move(r1,l1,l1,0)  at(r1,l1,0)  at(r1,l1,1)  at(r1,l1,1) 

 move(r1,l2,l2,0)  at(r1,l2,0)  at(r1,l2,1)  at(r1,l2,1) 

 move(l1,r1,l2,0)  … 

 move(l2,l1,r1,0)  … 

 move(l1,l2,r1,0)  … 

 move(l2,l1,r1,0)  … 

 

 How to avoid generating the last four actions? 

 Assign data types to the constant symbols 

nonsensical 

contradictions 

(easy to detect) 
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Example (continued) 

Solution:  Add typing of parameters 

 

 Locations: l1, l2 

 Robots: r1 

 

 Operator: move(r : robot, l : location, l’ : location) 

       precond: at(r,l) 

       effects:   at(r,l’), at(r,l) 

 

 Encoding: 

 move(r1,l1,l2,0)  at(r1,l1,0)  at(r1,l2,1)  at(r1,l1,1) 

 move(r1,l2,l1,0)  at(r1,l2,0)  at(r1,l1,1)  at(r1,l2,1) 
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Example (continued) 

 Complete-exclusion axiom: 

 move(r1,l1,l2,0)  move(r1,l2,l1,0) 

 

 Explanatory frame axioms: 

 at(r1,l1,0)  at(r1,l1,1)  move(r1,l2,l1,0) 

 at(r1,l2,0)  at(r1,l2,1)  move(r1,l1,l2,0) 

 at(r1,l1,0)  at(r1,l1,1)  move(r1,l1,l2,0) 

 at(r1,l2,0)  at(r1,l2,1)  move(r1,l2,l1,0) 
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Extracting a Plan 

 Suppose we find a satisfying assignment for  . 

 This means P has a solution of length n 

 

 For i=1,…,n, there will be exactly one action s.t. ai = true 

 This is the i’th action of the plan. 

 

 Example (from the previous slides): 

   can be satisfied with move(r1,l1,l2,0) = true 

 Thus move(r1,l1,l2,0) is a solution for (P,0) 

 It’s the only solution - no other way to satisfy   
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Planning 

 How to find an assignment of truth values that satisfies ? 

 Use a satisfiability (SAT) algorithm  

 Systematic  search e.g., Davis-Putnam-Logemann-Loveland (DPLL) 

 Local search e.g., GSAT, Walksat 

 

 Example: the Davis-Putnam* algorithm 

 First need to put  into conjunctive normal form 

 e.g.,  = D  (D  A  B)  (D  A  B)  (D  A  B)  A 

 Write  as a set of clauses (disjuncts of literals) 

   = {{D},   {D, A, B},   {D, A, B},   {D, A, B},  {A}} 

 Two special cases: 

 If  =  then  is always true 

 If  = {…, , …} then  is always false (hence unsatisfiable) 

*NOTE:  DP is the term used in the text book but is actually a resolution procedure.  

DPLL(1962) is a refinement of DP(1960). “DP” is sometimes used to refer to “DPLL”. 
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The Davis-Putnam Procedure 

Backtracking search through alternative assignments of truth values to literals 

  = {literals to which we have assigned the value TRUE}; initially empty 

 if  contains  then 

 backtrack 

 if  is  then 

  is a solution 

 while  contains a clause 

that’s a single literal l 
 Remove clause containing l 

 Remove l from clauses 

 select a Boolean 

variable P in  

 do recursive calls on 

   P 

   P 
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Local Search 

 Let u be an assignment of truth values to all of the variables 

 cost(u,) = number of clauses in  that are not satisfied by u 

 flip(P,u) = u except that P’s truth value is reversed 

 

 Local search: 

 Select a random assignment u 

 while cost(u,) ≠ 0 

 if there is a P such that cost(flip(P,u),) < cost(u,) then 

 randomly choose any such P 

 u  flip(P,u) 

 else return failure 

 Local search is sound  

 If it finds a solution it will find it very quickly 

 Local search is not complete: can get trapped in local minima 

Boolean variable 
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GSAT (local search algorithm) 

 Basic-GSAT: 

 Select a random assignment u 

 while cost(u,) ≠ 0 

 choose a P that minimizes cost(flip(P,u),), and flip it 

 Not guaranteed to terminate (in contrast to DPLL) 

 

 

 WALKSAT 

 Like GSAT but differs in the method used to pick which variable to flip 

 

 Both algorithms may restart with a new random assignment if trapped in  

local minima. 

 Many versions of GSAT/WalkSAT.  WalkSAT superior for planning. 

 

But…. 
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Bottom Line 

 

 

 

Previous discussion notwithstanding, the best solvers for SAT-

based planning are currently DPLL-based solvers such as 

Satzilla, PrecoSAT (and previously RelSAT and before that 

Siege and before that ZChaff) that have the option of using 

random restarts and some other local-search “tricks”. 

 

More recent advances have exploited actually modifying SAT 

solvers to tailor search to the planning task.  
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Discussion of the ’92 Satplan Approach 

 Recall the overall approach: 

 for n = 0, 1, 2, …, 

 encode (P,n) as a satisfiability problem   

 if  is satisfiable, then 

 From the set of truth values that satisfies , extract 

a solution plan  and return it 

 

 How well does this work? 
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Discussion of the ’92 Satplan Approach 

 Recall the overall approach: 

 for n = 0, 1, 2, …, 

 encode (P,n) as a satisfiability problem   

 if  is satisfiable, then 

 From the set of truth values that satisfies , extract 

a solution plan  and return it 

 

 How well does this work? 

 By itself, not practical (takes too much memory & time) 

 But it can be combined with other techniques 

 e.g., planning graphs 

(Remember historical discussion at the beginning of this lecture.) 



33 

Blackbox 

STRIPS 
Plan 

Graph 

Mutex 

computation 

CNF 

General 

SAT 

engines 
Solution 

Simplifier 
Translator 

CNF 
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Exploiting the planning graph 

 Fact  Act1  Act2 

 Act1  Pre1  Pre2 

 ¬Act1  ¬Act2 

Act1 

Act2 

Fact 

Pre1 

Pre2 

The Basic Idea: 

 The planning graph approximates the reachability graph by 

pruning unreachable nodes 

 In logical terms, it is actually limiting negative binary propagation 

 

Translation of the Planning Graph 
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SatPlan* (sucessor to Blackbox) 

 SatPlan combines planning-graph expansion and satisfiability checking, 

roughly as follows: 

 for k = 0, 1, 2, … 

 Create a planning graph that contains k levels 

 Encode the planning graph as a satisfiability problem 

 Try to solve it using a SAT solver 

 If the SAT solver finds a solution within some time limit, 

 Remove some unnecessary actions 

 Return the solution 

 

 Memory requirement still is combinatorially large 

 but less than what’s needed by a direct translation into satisfiability 

 BlackBox (predecessor to SatPlan) was one of the best planners in the 

1998 planning competition 

 SatPlan was one of the best planners in the 2004 and 2006 planning 

competitions 
*1992 – “Satplan Approach”,vs, 2004+ - Satplan implementation, successor to Blackbox 
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Linear and Parallel Encodings 
 

 Linear Encoding 

ai    Ʌ for all actions bi ≠ai  bi   

 

 Parallel Encoding (aka “for all” encoding) 

For all actions ai and bi that cannot co-occur (e.g., are mutex) 

      (ai  bi )  

  ᴲ Encoding 

Actions in a single step must have one possible serialization. 

Define a total order between actions.   

Instead of defining mutexes between all interfering actions:  

If ai and bi that cannot co-occur, and ai and bi , then add 
 

 (ai  bi )  

Rintanen claims it’s 2 orders of magnitude faster! 
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Improved SAT Encodings for Planning  

 As I mentioned at the outset, advances in SAT-based planning have 

largely been marked by advances in encodings.   

 E.g., translations of IPC Logistics.a domain 

 STRIPS  Axiom Schemas  SAT (Medic system, Weld et. al 1997) 

 3,510 variables, 16,168 clauses 

 24 hours to solve 

 STRIPS  Plan Graph  SAT (Blackbox) 

 2,709 variables, 27,522 clauses 

 5 seconds to solve! 

 Biggest drawback to Blackbox successors is the enormous sized CNFs 

E.g., Satplan06 encoding of IPC-5 Pipesworld domain with n=19 

 47,000 variables, 20,000,000 clauses 

 

…. And this is a big reason why heuristic search (aka “satisficing planners”) 

can solve much bigger problems 
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Heuristics in SAT 

 Practically all work on planning with SAT has used general-purpose SAT 

solvers. Some works on planning with CSP has used heuristics specific to 

planning, but the resulting planners have not been very competitive.  

 Recent work has shown that the conflict-driven clause learning algorithm 

(CDCL), which most of the current best SAT solvers use, together with an 

extremely simple planning-specific scheme for selecting decision 

variables (forcing CDCL to do a form of backward chaining, and 

leveraging the inferences made by CDCL) lead to very competitive 

planning, typically matching other search paradigms on standard 

benchmark sets (Rintanen 2010a, 2010b, 2012). Simple heuristics on top 

of the basic variable selection scheme improve the efficiency further. 

 Check out the Madagascar family of solvers (M, Mp, MpC) by Rintanen.  

These represent the state of the art and have impressive performance, 

based on interesting principles. 

 

 http://users.ics.aalto.fi/rintanen/jussi/satplan.html 

 


