
1

CSC2542

SAT-Based Planning

Sheila McIlraith

Department of Computer Science

University of Toronto

Summer 2014

2

Acknowledgements

Some of the slides used in this course are modifications of Dana Nau’s

lecture slides for the textbook Automated Planning, licensed under the

Creative Commons Attribution-NonCommercial-ShareAlike License:

http://creativecommons.org/licenses/by-nc-sa/2.0/

Other slides are modifications of slides developed by Malte Helmert,

Bernhard Nebel, and Jussi Rintanen.

For this topic, some slides come from Henry Kautz, Ulrich Scholz, and

Yiqiao Wang.

I have also used some material prepared by Dan Weld, P@trick Haslum

and Rao Kambhampati.

I would like to gratefully acknowledge the contributions of these

researchers, and thank them for generously permitting me to use aspects of

their presentation material.

http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/

4

Segue

 The problem of finding a valid plan from the planning graph

can be encoded on any combinatorial substrate

 Alternatives:

 CSP [GP-CSP – Do & Kambhampati, 2000]

 SAT [Blackbox; SATPLAN – Kautz & Selman, 1996+]

 ASP [Son et al]

 IP [Vossen et al]

 This is the notion of “Translation to General Problem Solver”

that we discussed in our first technical lecture.

Here we discuss SAT as the combinatorial substrate.

5

Motivation

 Propositional satisfiability (SAT):

 Given a boolean formula

e.g., (P Q) (Q R S) (R P),

Does there exist a model

i.e., an assignment of truth values to the propositions

 that makes the formula true?

 This was the first problem shown to be NP-complete.

 Lots of research on algorithms for solving SAT.

 Systematic search (DPLL-based ..)

 Stochastic search (GSAT, WalkSAT, …

 Key idea behind SAT-based planning:

 Translate classical planning problems into satisfiability problems, and

solving them using a highly optimized SAT solver.

6

Basic Approach

 Suppose a plan of length n exists

 Encode this hypothesis in SAT

 Initial state is true at t0

 Goal is true at tn

 Actions imply effects, etc

 Look for satisfying assignment

 Decode into plan

7

Evolution of SAT-based planners

 The success of this approach has largely been the

result of impressive advances in the proficiency of

SAT solvers.

 A continued limiting factor to this approach is the size of

the CNF encoding of some problems.

 Thus, a key challenge to this approach has been how to

encode the planning problem effectively. Such

encodings have marked the evolution of SAT-based

planners.

8

 1969 Plan synthesis as theorem proving (Green IJCAI-69)

 1971 STRIPS (Fikes & Nilsson AIJ-71)

 Decades of work on “specialized theorem provers”

History History…

. . .

9

 1992 Satplan “approach” (Kautz & Selman ECAI-92)

 convention for encoding STRIPS-style linear planning in axiom

schema

 Didn’t appear practical

 Rapid progress on SAT solving

 1996 (Kautz & Selman AAAI-96) (Kautz, McAllester & Selman KR-96)

 Electrifying results (on hand coded formulae)

 Key technical advance: parallel encodings where noninterfering

actions could occur at the same time (i.e., Graphplan ideas) (but

no compiler)

 1997 MEDIC (Ernst et al. IJCAI-97)

 First complete implementation of Satplan (with compiler)

 1998 Blackbox (Kautz & Selman AIPS98 workshop)

 Also performed mutex propagation before generating encoding

…History (enter SAT-based planners)…

. . .

10

 1998 IPC-1 Blackbox performance comparable to the best

 2000 IPC-2 Blackbox performance abysmal (Graphplan-style planners

dominated)

 2002 IPC-3 No SAT-based planners entered

 2004 IPC-4 Satplan04 was clear winner of “optimal propositional planners”

 2006 IPC-5 Satplan06 & Maxplan* (Chen Xing & Zhang IJCAI-07) dominated**

 … NOW Jussi Rintanen’s “M planners” very impressive performance

 http://users.ics.aalto.fi/rintanen/jussi/satplan.html

What accounts for the success in 2004 and 2006?

1) Huge advances in SAT solvers 2000-2004 (e.g., Seige, ZChaff)

 (indeed in 2004 they ran out of time and didn’t include mutex propagation)

2) New competition problems that were “intrinsically hard”

…History (IPC)….

* Also a SAT-based planner

** dominated the “optimal planners” track. Note however that in the so-called “satisficing

planners” track, e.g. the heuristic-search based planners that could not guarantee optimal

length, satificing planners were able to solve much larger problems!

12

Outline

 Encoding planning problems as satisfiability problems

 Extracting plans from truth values

 Satisfiability algorithms

 Combining satisfiability with planning graphs

 Blackbox & SatPlan

13

The SATPLAN Approach*

axiom

schemas instantiated

propositional

clauses

satisfying

model
plan

mapping

length

problem

description

SAT

engine(s)

instantiate

interpret

* Terminology: “SATPLAN approach” (circa 1992) vs. the SATPLAN planner of 2004, 2006 etc., the successor of Blackbox.

14

Overall Approach

 A bounded planning problem is a pair (P,n):

 P is a planning problem; n is a positive integer

 Any solution for P of length n is a solution for (P,n)

 Planning algorithm:

 Do iterative deepening as we did with Graphplan:

 for n = 0, 1, 2, …,

 encode (P,n) as a satisfiability problem

 if is satisfiable, then

 From the set of truth values that satisfies , a

solution plan can be constructed, return it and exit.

15

Notation

 For satisfiability problems we need to use propositional logic

 Need to encode ground atoms into propositions

 For set-theoretic planning we encoded atoms into
propositions by rewriting them as shown here:

 Atom: at(r1,loc1)

 Proposition: at-r1-loc1

 For planning as satisfiability we’ll do the same thing

 But we won’t bother to do a syntactic rewrite

 Just use at(r1,loc1) itself as the proposition

 Also, we’ll write plans starting at a0 rather than a1

 π = a0, a1, …, an–1

16

Fluents

 If π = a0, a1, …, an–1 is a solution for (P,n), it generates these

states:

s0, s1 = (s0,a0), s2 = (s1,a1), …, sn = (sn–1, an–1)

 Fluent: proposition saying a particular atom is true in a particular

state, e.g.,

 at(r1,loc1,i) is a fluent that’s true iff at(r1,loc1) is in si

 We’ll use li to denote the fluent for literal l in state si

 e.g., if l = at(r1,loc1)

 then li = at(r1,loc1,i)

 ai is a fluent saying that a is the i’th step of π

 e.g., if a = move(r1,loc2,loc1)

 then ai = move(r1,loc2,loc1,i)

17

Encoding Planning Problems

 Encode (P,n) as a formula such that

π = a0, a1, …, an–1 is a solution for (P,n) if and only if

There is a satisfying assignment for such that fluents

a0, …, an–1 are true

 Let

 A = {all actions in the planning domain}

 S = {all states in the planning domain}

 L = {all literals in the language}

 is the conjunct of many other formulas …

18

Formulae in
 Formula describing the initial state:

 Ʌ {l0 | l s0} Ʌ {l0 | l L – s0 }

 Formula describing the goal:

 Ʌ {ln | l g+} Ʌ{ln | l g–}

 For every action a in A, formulae describing what changes a would make
if it were the i’th step of the plan:

 ai Ʌ {pi | p Precond(a)} Ʌ {ei+1 | e Effects(a)}

 Complete exclusion (i.e., LINEAR ENCODING) axiom:

 For all actions a and b, formulas saying they can’t occur at the same
time

 ai bi

 this guarantees there can be only one action at a time (i.e., a
sequential plan. This is revisted in the blackbox encoding later.

 Is this enough?

19

Frame Axioms

 Frame axioms:

 Formulas describing what doesn’t change between steps i and i+1

 Several ways to write these

 One way: explanatory frame axioms

 One axiom for every literal l

 Says that if l changes between si and si+1,

 then the action at step i must be responsible:

 (li li+1 Va in A{ai | l effects+(a)})

 (li li+1 Va in A{ai | l effects–(a)})

20

Example

 Planning domain:

 one robot r1

 two adjacent locations l1, l2

 one operator (move the robot)

 Encode (P,n) where n = 1

 Initial state: {at(r1,l1)}

 Encoding: at(r1,l1,0) at(r1,l2,0)

 Goal: {at(r1,l2)}

 Encoding: at(r1,l2,1) at(r1,l1,1)

 Operator: see next slide

21

Example (continued)
 Operator: move(r,l,l’)

 precond: at(r,l)

 effects: at(r,l’), at(r,l)

 Encoding:

 move(r1,l1,l2,0) at(r1,l1,0) at(r1,l2,1) at(r1,l1,1)

 move(r1,l2,l1,0) at(r1,l2,0) at(r1,l1,1) at(r1,l2,1)

 move(r1,l1,l1,0) at(r1,l1,0) at(r1,l1,1) at(r1,l1,1)

 move(r1,l2,l2,0) at(r1,l2,0) at(r1,l2,1) at(r1,l2,1)

 move(l1,r1,l2,0) …

 move(l2,l1,r1,0) …

 move(l1,l2,r1,0) …

 move(l2,l1,r1,0) …

 How to avoid generating the last four actions?

 Assign data types to the constant symbols

nonsensical

contradictions

(easy to detect)

22

Example (continued)

Solution: Add typing of parameters

 Locations: l1, l2

 Robots: r1

 Operator: move(r : robot, l : location, l’ : location)

 precond: at(r,l)

 effects: at(r,l’), at(r,l)

 Encoding:

 move(r1,l1,l2,0) at(r1,l1,0) at(r1,l2,1) at(r1,l1,1)

 move(r1,l2,l1,0) at(r1,l2,0) at(r1,l1,1) at(r1,l2,1)

23

Example (continued)

 Complete-exclusion axiom:

 move(r1,l1,l2,0) move(r1,l2,l1,0)

 Explanatory frame axioms:

 at(r1,l1,0) at(r1,l1,1) move(r1,l2,l1,0)

 at(r1,l2,0) at(r1,l2,1) move(r1,l1,l2,0)

 at(r1,l1,0) at(r1,l1,1) move(r1,l1,l2,0)

 at(r1,l2,0) at(r1,l2,1) move(r1,l2,l1,0)

24

Extracting a Plan

 Suppose we find a satisfying assignment for .

 This means P has a solution of length n

 For i=1,…,n, there will be exactly one action s.t. ai = true

 This is the i’th action of the plan.

 Example (from the previous slides):

 can be satisfied with move(r1,l1,l2,0) = true

 Thus move(r1,l1,l2,0) is a solution for (P,0)

 It’s the only solution - no other way to satisfy

25

Planning

 How to find an assignment of truth values that satisfies ?

 Use a satisfiability (SAT) algorithm

 Systematic search e.g., Davis-Putnam-Logemann-Loveland (DPLL)

 Local search e.g., GSAT, Walksat

 Example: the Davis-Putnam* algorithm

 First need to put into conjunctive normal form

 e.g., = D (D A B) (D A B) (D A B) A

 Write as a set of clauses (disjuncts of literals)

 = {{D}, {D, A, B}, {D, A, B}, {D, A, B}, {A}}

 Two special cases:

 If = then is always true

 If = {…, , …} then is always false (hence unsatisfiable)

*NOTE: DP is the term used in the text book but is actually a resolution procedure.

DPLL(1962) is a refinement of DP(1960). “DP” is sometimes used to refer to “DPLL”.

26

The Davis-Putnam Procedure

Backtracking search through alternative assignments of truth values to literals

 = {literals to which we have assigned the value TRUE}; initially empty

 if contains then

 backtrack

 if is then

 is a solution

 while contains a clause

that’s a single literal l
 Remove clause containing l

 Remove l from clauses

 select a Boolean

variable P in

 do recursive calls on

 P

 P

27

Local Search

 Let u be an assignment of truth values to all of the variables

 cost(u,) = number of clauses in that are not satisfied by u

 flip(P,u) = u except that P’s truth value is reversed

 Local search:

 Select a random assignment u

 while cost(u,) ≠ 0

 if there is a P such that cost(flip(P,u),) < cost(u,) then

 randomly choose any such P

 u flip(P,u)

 else return failure

 Local search is sound

 If it finds a solution it will find it very quickly

 Local search is not complete: can get trapped in local minima

Boolean variable

28

GSAT (local search algorithm)

 Basic-GSAT:

 Select a random assignment u

 while cost(u,) ≠ 0

 choose a P that minimizes cost(flip(P,u),), and flip it

 Not guaranteed to terminate (in contrast to DPLL)

 WALKSAT

 Like GSAT but differs in the method used to pick which variable to flip

 Both algorithms may restart with a new random assignment if trapped in

local minima.

 Many versions of GSAT/WalkSAT. WalkSAT superior for planning.

But….

30

Bottom Line

Previous discussion notwithstanding, the best solvers for SAT-

based planning are currently DPLL-based solvers such as

Satzilla, PrecoSAT (and previously RelSAT and before that

Siege and before that ZChaff) that have the option of using

random restarts and some other local-search “tricks”.

More recent advances have exploited actually modifying SAT

solvers to tailor search to the planning task.

31

Discussion of the ’92 Satplan Approach

 Recall the overall approach:

 for n = 0, 1, 2, …,

 encode (P,n) as a satisfiability problem

 if is satisfiable, then

 From the set of truth values that satisfies , extract

a solution plan and return it

 How well does this work?

32

Discussion of the ’92 Satplan Approach

 Recall the overall approach:

 for n = 0, 1, 2, …,

 encode (P,n) as a satisfiability problem

 if is satisfiable, then

 From the set of truth values that satisfies , extract

a solution plan and return it

 How well does this work?

 By itself, not practical (takes too much memory & time)

 But it can be combined with other techniques

 e.g., planning graphs

(Remember historical discussion at the beginning of this lecture.)

33

Blackbox

STRIPS
Plan

Graph

Mutex

computation

CNF

General

SAT

engines
Solution

Simplifier
Translator

CNF

35

Exploiting the planning graph

 Fact Act1 Act2

 Act1 Pre1 Pre2

 ¬Act1 ¬Act2

Act1

Act2

Fact

Pre1

Pre2

The Basic Idea:

 The planning graph approximates the reachability graph by

pruning unreachable nodes

 In logical terms, it is actually limiting negative binary propagation

Translation of the Planning Graph

37

SatPlan* (sucessor to Blackbox)

 SatPlan combines planning-graph expansion and satisfiability checking,

roughly as follows:

 for k = 0, 1, 2, …

 Create a planning graph that contains k levels

 Encode the planning graph as a satisfiability problem

 Try to solve it using a SAT solver

 If the SAT solver finds a solution within some time limit,

 Remove some unnecessary actions

 Return the solution

 Memory requirement still is combinatorially large

 but less than what’s needed by a direct translation into satisfiability

 BlackBox (predecessor to SatPlan) was one of the best planners in the

1998 planning competition

 SatPlan was one of the best planners in the 2004 and 2006 planning

competitions
*1992 – “Satplan Approach”,vs, 2004+ - Satplan implementation, successor to Blackbox

38

Linear and Parallel Encodings

 Linear Encoding

ai Ʌ for all actions bi ≠ai bi

 Parallel Encoding (aka “for all” encoding)

For all actions ai and bi that cannot co-occur (e.g., are mutex)

 (ai bi)

 ᴲ Encoding

Actions in a single step must have one possible serialization.

Define a total order between actions.

Instead of defining mutexes between all interfering actions:

If ai and bi that cannot co-occur, and ai and bi , then add

 (ai bi)

Rintanen claims it’s 2 orders of magnitude faster!

39

Improved SAT Encodings for Planning

 As I mentioned at the outset, advances in SAT-based planning have

largely been marked by advances in encodings.

 E.g., translations of IPC Logistics.a domain

 STRIPS Axiom Schemas SAT (Medic system, Weld et. al 1997)

 3,510 variables, 16,168 clauses

 24 hours to solve

 STRIPS Plan Graph SAT (Blackbox)

 2,709 variables, 27,522 clauses

 5 seconds to solve!

 Biggest drawback to Blackbox successors is the enormous sized CNFs

E.g., Satplan06 encoding of IPC-5 Pipesworld domain with n=19

 47,000 variables, 20,000,000 clauses

…. And this is a big reason why heuristic search (aka “satisficing planners”)

can solve much bigger problems

43

Heuristics in SAT

 Practically all work on planning with SAT has used general-purpose SAT

solvers. Some works on planning with CSP has used heuristics specific to

planning, but the resulting planners have not been very competitive.

 Recent work has shown that the conflict-driven clause learning algorithm

(CDCL), which most of the current best SAT solvers use, together with an

extremely simple planning-specific scheme for selecting decision

variables (forcing CDCL to do a form of backward chaining, and

leveraging the inferences made by CDCL) lead to very competitive

planning, typically matching other search paradigms on standard

benchmark sets (Rintanen 2010a, 2010b, 2012). Simple heuristics on top

of the basic variable selection scheme improve the efficiency further.

 Check out the Madagascar family of solvers (M, Mp, MpC) by Rintanen.

These represent the state of the art and have impressive performance,

based on interesting principles.

 http://users.ics.aalto.fi/rintanen/jussi/satplan.html

