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Planning 

• We will look at one technique: 

Relaxed Plan heuristics used with heuristic search. 

 

The heuristics are domain independent.  As such they are 

part of a class of so-called 

 domain-independent heuristic search for planning 
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Reachability Analysis. 

• The idea is to consider what happens if we ignore 

the delete lists of actions. 

• This is yields a “relaxed problem” that can produce 

a useful heuristic estimate. 
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Reachability Analysis 

• In the relaxed problem actions add new facts, but 

never delete facts. 

• Then we can do reachability analysis, which is 

much simpler than searching for a solution. 
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Reachability 

• We start with the initial state S0.  
 

• We alternate between state and action layers. 
 

• We find all actions whose preconditions are contained in S0. 
These actions comprise the first action layer A0. 
 

• The next state layer contains:  

• S0 U all states added by the actions in A0. 
 

• In general: 

• Ai … set of actions whose preconditions are in Si. 

• Si = Si-1 U the add lists of all of the actions in Ai  
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STRIPS Blocks World Operators. 
• pickup(X)  

Pre:  {handempty, ontable(X), clear(X)} 
Add: {holding(X)} 
Del:  {handempty, ontable(X), clear(X)} 

• putdown(X) 
Pre:  {holding(X)} 
Add: {handempty, ontable(X), clear(X)} 
Del:  {holding(X)} 

• unstack(X,Y)  
Pre:  {handempty, clear(X), on(X,Y)} 
Add: {holding(X), clear(Y)} 
Del:  {handempty, clear(X), on(X,Y)} 

• stack(X,Y) 
Pre:  {holding(X),clear(Y)} 
Add: {handempty, clear(X), on(X,Y)} 
Del:  {holding(X),clear(Y)} 
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Example 

a 

b 

c d 

on(a,b), 
on(b,c), 
ontable(c), 
ontable(d), 
clear(a), 
clear(d), 
handempty 

unstack(a,b) 
pickup(d) 

a 
b 

c d 

S0 A0 

on(a,b), 
on(b,c), 
ontable(c), 
ontable(d), 
clear(a), 
handempty, 
clear(d), 
holding(a), 
clear(b), 
holding(d) 

a 
d 

this is not 
a state as 
some of 
these 
facts 

cannot be 
true at the 
same time! S1 
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Example 

on(a,b), 
on(b,c), 
ontable(c), 
ontable(d), 
clear(a), 
clear(d), 
handempty, 
holding(a), 
clear(b), 
holding(d) 

S1 

unstack(a,b) 
pickup(d) 

putdown(a), 
putdown(d), 
stack(a,b), 
stack(a,a), 
stack(d,a), 
stack(d,b), 
stack(d,d), 
unstack(b,c) 
…  

A1 

a 
b 

c d 

a 
d A0 

from 

Impossible, 
but we don’t 
know because 
we ignore dels. 
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Example 

a 

b 

c d 

on(a,b), 
on(b,c), 
ontable(c), 
ontable(d), 
clear(a), 
clear(d), 
handempty 

unstack(a,b) 
pickup(d) 

a 
b 

c d 

S0 A0 

on(a,b), 
on(b,c), 
ontable(c), 
ontable(d), 
clear(a), 
handempty, 
clear(d), 
holding(a), 
clear(b), 
holding(d) 

a 
d 

this is not 
a state! 

S1 
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Example 

on(a,b), 
on(b,c), 
ontable(c), 
ontable(d), 
clear(a), 
clear(d), 
handempty, 
holding(a), 
clear(b), 
holding(d) 

S1 

putdown(a), 
putdown(d), 
stack(a,b), 
stack(a,a), 
stack(d,b), 
stack(d,a), 
pickup(d), 
… 
unstack(b,c) 
…  

A1 
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Reachabilty 

• We continue until: 

• the goal G is contained in the state layer, or  

• until the state layer no longer changes (reached fix point).  

• Intuitively: 

• the actions at level Ai are the actions that could be 

executed at the i-th step of some plan, and  

• the facts in level Si are the facts that could be made true 

within a plan of length i. 

• Some of the actions/facts have this property.  

But not all! 
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Reachability 

a 

b c 

on(a,b), 
ontable(c), 
ontable(b), 
clear(a), 
clear(c), 
handempty 

unstack(a,b) 
pickup(c) 

S0 A0 

on(a,b), 
ontable(c), 
ontable(b), 
clear(a), 
clear(c), 
handempty, 
holding(a), 
clear(b), 
holding(c) 

S1 

stack(c,b) 
… 

A1 

on(c,b), 
… 

but 
stack(c,b) 
cannot be 
executed 
after one 

step 

to reach 
on(c,b) 

requires 4 
actions 

 a 

b c 

on(a,b), 
ontable(c), 
ontable(b), 
clear(a), 
clear(c), 
handempty 
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Heuristics from Reachability Analysis 

Grow the levels until the goal is contained in the final 

state level SK.  

• If the state level stops changing and the goal is not 

present: The goal is unachievable under the assumption 

that (a) the goal is a set of positive facts, and (b) all 

preconditions are positive facts. 

 

• Then do the following 
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Heuristics from Reachability Analysis 

CountActions(G,SK): 

/* Compute the number of actions contained in a relaxed plan 

achieving the goal. */  

• Split G into facts in SK-1 and elements in SK only.  

• GP contains the previously achieved (in SK-1) and  

• GN contains the just achieved parts of G (only in SK). 

• Find a minimal set of actions A whose add effects cover GN. 

• may contain no redundant actions,  

• but may not be the minimum sized set (computing the minimum 

sized set of actions is the set cover problem and is NP-Hard) 

• NewG := SK-1 U preconditions of A. 

• return CountAction(NewG,SK-1) + size(A) 
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Heuristics from Reachability Analysis 

CountActions(G,SK): 

/* Compute the number of actions contained in a relaxed plan 

achieving the goal. */  

• Split G into facts in SK-1 and elements in SK only.  

• GP contains the previously achieved (in SK-1) and  

• GN contains the just achieved parts of G (only in SK). 

• Find a minimal set of actions A whose add effects cover GN. 

• may contain no redundant actions,  

• but may not be the minimum sized set (computing the minimum 

sized set of actions is the set cover problem and is NP-Hard) 

• NewG := GP U preconditions of A. 

• return CountAction(NewG,SK-1) + size(A) 
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Example 

      legend:  [pre]act[add] 

 

S0 = {f1, f2, f3} 

A0 = {[f1]a1[f4],  [f2]a2[f5]} 

Goal: f6,f5,f1 

Actions: 

 [f1]a1[f4]   

 [f2]a2[f5]  

 [f2,f4,f5]a3[f6 
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Example 

      legend:  [pre]act[add] 

 

S0 = {f1, f2, f3} 

A0 = {[f1]a1[f4],  [f2]a2[f5]} 

S1 = {f1,f2,f3,f4,f5} 

 

Goal: f6,f5,f1 

Actions: 

 [f1]a1[f4]   

 [f2]a2[f5]  

 [f2,f4,f5]a3[f6 
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Example 

      legend:  [pre]act[add] 

 

S0 = {f1, f2, f3} 

A0 = {[f1]a1[f4],  [f2]a2[f5]} 

S1 = {f1,f2,f3,f4,f5} 

A1 = {[f2,f4,f5]a3[f6]} 

Goal: f6,f5,f1 

Actions: 

 [f1]a1[f4]   

 [f2]a2[f5]  

 [f2,f4,f5]a3[f6 
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Example 

      legend:  [pre]act[add] 

 

S0 = {f1, f2, f3} 

A0 = {[f1]a1[f4],  [f2]a2[f5]} 

S1 = {f1,f2,f3,f4,f5} 

A1 = {[f2,f4,f5]a3[f6]} 

S2 ={f1,f2,f3,f4,f5,f6} 

Goal: f6,f5,f1 

Actions: 

 [f1]a1[f4]   

 [f2]a2[f5]  

 [f2,f4,f5]a3[f6 
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Example 

      legend:  [pre]act[add] 

 

S0 = {f1, f2, f3} 

A0 = {[f1]a1[f4],  [f2]a2[f5]} 

S1 = {f1,f2,f3,f4,f5} 

A1 = {[f2,f4,f5]a3[f6]} 

S2 ={f1,f2,f3,f4,f5,f6} 

 

G = {f6,f5,f1} 
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Example 

      legend:  [pre]act[add] 

 

S0 = {f1, f2, f3} 

A0 = {[f1]a1[f4],  [f2]a2[f5]} 

S1 = {f1,f2,f3,f4,f5} 

A1 = {[f2,f4,f5]a3[f6]} 

S2 ={f1,f2,f3,f4,f5,f6} 

 

G = {f6,f5, f1} 

 

We split G into GP and GN: 

Goal: f6,f5,f1 

Actions: 

 [f1]a1[f4]   

 [f2]a2[f5]  

 [f2,f4,f5]a3[f6 
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Example 

      legend:  [pre]act[add] 

 

S0 = {f1, f2, f3} 

A0 = {[f1]a1[f4],  [f2]a2[f5]} 

S1 = {f1,f2,f3,f4,f5} 

A1 = {[f2,f4,f5]a3[f6]} 

S2 ={f1,f2,f3,f4,f5,f6} 

 

G = {f6,f5,f1} 

GN = {f6} (newly achieved) 

Gp = {f5, f1} (achieved before) 
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Example 

CountActs(G,S2) 

GP ={f5, f1
} //already in S1 

GN = {f6}    //New in S2 

A = {a3}    //adds all in GN 

 

//the new goal: GP   Pre(A) 

G1 = {f5,f1,f2,f4} 

Return 
  1 + CountActs(G1,S1) 

      legend:  [pre]act[add] 

 

S0 = {f1, f2, f3} 

A0 = {[f1]a1[f4],  [f2]a2[f5]} 

S1 = {f1,f2,f3,f4,f5} 

A1 = {[f2,f4,f5]a3[f6]} 

S2 ={f1,f2,f3,f4,f5,f6} 

 

G = {f6,f5, f1} 

 

We split G into GP and GN: 
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Example 
Now, we are at level S1 

S0 = {f1, f2, f3} 

A0 = {[f1]a1[f4],  [f2]a2[f5]} 

S1 = {f1,f2,f3,f4,f5} 

A1 = {[f2,f4,f5]a3[f6]} 

S2 ={f1,f2,f3,f4,f5,f6} 

 

G1 = {f5,f1,f2
,f4} 

 

 

 

 

 

CountActs(G1,S1) 
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Example 
Now, we are at level S1 

S0 = {f1, f2, f3} 

A0 = {[f1]a1[f4],  [f2]a2[f5]} 

S1 = {f1,f2,f3,f4,f5} 

A1 = {[f2,f4,f5]a3[f6]} 

S2 ={f1,f2,f3,f4,f5,f6} 

 

G1 = {f5,f1,f2
,f4} 

 

We split G1 into GP and GN: 

 

 

 

 

CountActs(G1,S1) 
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Example 
Now, we are at level S1 

S0 = {f1, f2, f3} 

A0 = {[f1]a1[f4],  [f2]a2[f5]} 

S1 = {f1,f2,f3,f4,f5} 

A1 = {[f2,f4,f5]a3[f6]} 

S2 ={f1,f2,f3,f4,f5,f6} 

 

G1 = {f5,f1,f2
,f4} 

 

We split G1 into GP and GN: 

GN = {f5,f4} 

GP = {f1,f2
} 

 

 

 

 

CountActs(G1,S1) 
GP ={f1,f2}  //already in S0 

GN = {f4,f5} //New in S1 

A = {a1,a2} //adds all in GN 
 

//the new goal: GP   Pre(A) 

G2 = {f1,f2
} 

Return 

     2 + CountActs(G2,S0) 
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Example 
Now, we are at level S1 

S0 = {f1, f2, f3} 

A0 = {[f1]a1[f4],  [f2]a2[f5]} 

S1 = {f1,f2,f3,f4,f5} 

A1 = {[f2,f4,f5]a3[f6]} 

S2 ={f1,f2,f3,f4,f5,f6} 

 

G2 = {f1,f2
} 

 

We split G2 into GP and GN: 

GN = {f1,f2
} 

GP = {} 

 

 

 

 

CountActs(G2,S0) 

GN ={f1,f2}  //already in S0 

GP = {} //New in S1 

A = {}    //No actions needed. 

 

Return 

     0 
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Example 
Now, we are at level S1 

S0 = {f1, f2, f3} 

A0 = {[f1]a1[f4],  [f2]a2[f5]} 

S1 = {f1,f2,f3,f4,f5} 

A1 = {[f2,f4,f5]a3[f6]} 

S2 ={f1,f2,f3,f4,f5,f6} 

 

G2 = {f1,f2
} 

We split G2 into GP and GN: 

GN = {f1,f2
} 

GP = {} 

 

 

 

 

CountActs(G2,S0) 

GN ={f1,f2}  //already in S0 

GP = {} //New in S1 

A = {}    //No actions needed. 

 

Return 

     0 

   

So, in total CountActs(G,S2)=1+2+0=3 
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Using the Heuristic 

• First, build a layered structure from a state S that reaches a 

goal state. 

 

• CountActions: counts how many actions are required in a 

relaxed plan. 

• Use this as our heuristic estimate of the distance of S to the 

goal. 

• This heuristic tends to work better with greedy best-first 

search rather than A* search 

• That is when we ignore the cost of getting to the current 

state. 
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Admissibility 

• A minimum sized plan in the delete relaxed problem 
would be a lower bound on the optimal size of a 
plan in the real problem. And could serve as an 
admissible heuristic for A*. 

• However, CountActions does NOT compute the 
length of the optimal relaxed plan.  
• The choice of which action set  to use to achieve GP  

(“just achieved part of G”) is not necessarily optimal  
– it is minimal, but not necessary a minimum. 

• Furthermore even if we picked a true minimum set A at 
each stage of CountActions, we might not obtain a 
minimum set of actions for the entire plan---the set A 
picked at each state influences what set can be used at 
the next stage! 
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Admissibility 

• It is NP-Hard to compute the optimal length plan 
even in the relaxed plan space. 
• So CountActions cannot be made into an admissible 

heuristic without making it much harder to compute. 

• Empirically, refinements of CountActions performs very 
well on a number of sample planning domains. 


