Relaxed Planning Graph Heuristic

Excerpt from CSC384, winter 2014

Planning

- We will look at one technique: Relaxed Plan heuristics used with heuristic search.

The heuristics are domain independent. As such they are part of a class of so-called domain-independent heuristic search for planning

Reachability Analysis.

- The idea is to consider what happens if we ignore the delete lists of actions.
- This is yields a "relaxed problem" that can produce a useful heuristic estimate.

Reachability Analysis

- In the relaxed problem actions add new facts, but never delete facts.
- Then we can do reachability analysis, which is much simpler than searching for a solution.

Reachability

- We start with the initial state S_{0}.
- We alternate between state and action layers.
- We find all actions whose preconditions are contained in S_{0}. These actions comprise the first action layer A_{0}.
- The next state layer contains:
- $\mathrm{S}_{0} \mathrm{U}$ all states added by the actions in A_{0}.
- In general:
- $A_{i} \ldots$ set of actions whose preconditions are in S_{i}.
- $\mathrm{S}_{\mathrm{i}}=\mathrm{S}_{\mathrm{i}-1} \mathrm{U}$ the add lists of all of the actions in A_{i}

STRIPS Blocks World Operators.

- pickup(X)

Pre: \{handempty, ontable(X), clear(X)\}
Add: \{holding(X)\}
Dol: [handompty, ontablo(X), olvar(X)]

- putdown(X)

Pre: \{holding(X)\}
Add: \{handempty, ontable(X), clear(X)\}
Pet. \{holeding (x)]

- unstack(X,Y)

Pre: \{handempty, clear(X), on(X,Y)\}
Add: $\{$ holding (X), clear(Y) \}

- stack (X,Y)

Pre: \{holding(X),clear(Y)\}
Add: \{handempty, clear(X), on(X,Y)\}
Dol. (holding(V),oloar(V))

Example

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d).
handempty

S_{0}

unstack(a,b) pickup(d)

on(a,b), on(b,c), ontable(c), ontable(d),
clear(a), handempty, clear(d), holding(a), clear(b), holding(d)
this is not a state as some of these facts cannot be true at the same time!

Example

Example

on(a, b),
on(b, c),
ontable(c),
ontable(d),
clear(a), clear(d),
handempty

S_{0}

unstack(a, b) on(a, b),
pickup(d) on(b,c), ontable(c),
ontable(d),
clear(a), this is not handempty, clear(d), holding(a), clear(b), holding(d) S_{1}

Example

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty,
holding(a),
clear(b),
holding(d)
S_{1}
putdown(a),
putdown(d),
stack(a,b),
stack(a, a),
stack(d,b),
stack(d,a),
pickup(d),
unstack(b,c)

Reachabilty

- We continue until:
- the goal G is contained in the state layer, or
- until the state layer no longer changes (reached fix point).
- Intuitively:
- the actions at level A_{i} are the actions that could be executed at the i-th step of some plan, and
- the facts in level S_{i} are the facts that could be made true within a plan of length i.
- Some of the actions/facts have this property. But not all!

Reachability

to reach on(c, b) requires 4 actions

on(a,b), ontable(c), ontable(b), clear(a), clear(c), handempty
S_{0}
on(a,b), ontable(c), ontable(b), clear(a), clear(c), handempty, holding(a), clear(b), holding(c)
on(c,b),
stack(c,b)

Heuristics from Reachability Analysis

Grow the levels until the goal is contained in the final state level S_{K}.

- If the state level stops changing and the goal is not present: The goal is unachievable under the assumption that (a) the goal is a set of positive facts, and (b) all preconditions are positive facts.
- Then do the following

Heuristics from Reachability Analysis

CountActions($\mathrm{G}, \mathrm{S}_{\mathrm{K}}$):
/* Compute the number of actions contained in a relaxed plan achieving the goal. */

- Split G into facts in $\mathrm{S}_{\mathrm{K}-1}$ and elements in S_{K} only.
- G_{P} contains the previously achieved (in $\mathrm{S}_{\mathrm{K}-1}$) and
- G_{N} contains the just achieved parts of G (only in S_{K}).
- Find a minimal set of actions A whose add effects cover G_{N}.
- may contain no redundant actions,
- but may not be the minimum sized set (computing the minimum sized set of actions is the set cover problem and is NP-Hard)
- NewG := $\mathrm{S}_{\mathrm{K}-1} \mathrm{U}$ preconditions of A .
- return CountAction(NewG, $\mathrm{S}_{\mathrm{K}-1}$) $+\operatorname{size}(\mathrm{A})$

Heuristics from Reachability Analysis

CountActions($\mathrm{G}, \mathrm{S}_{\mathrm{K}}$):
/* Compute the number of actions contained in a relaxed plan achieving the goal. */

- Split G into facts in $\mathrm{S}_{\mathrm{K}-1}$ and elements in S_{K} only.
- G_{P} contains the previously achieved (in $\mathrm{S}_{\mathrm{K}-1}$) and
- G_{N} contains the just achieved parts of G (only in S_{K}).
- Find a minimal set of actions A whose add effects cover G_{N}.
- may contain no redundant actions,
- but may not be the minimum sized set (computing the minimum sized set of actions is the set cover problem and is NP-Hard)
- NewG := $G_{p} U$ preconditions of A.
- return CountAction(NewG, $\mathrm{S}_{\mathrm{K}-1}$) $+\operatorname{size}(\mathrm{A})$

Example

legend: [pre]act[add]

$$
\begin{aligned}
& S_{0}=\left\{f_{1}, f_{2}, f_{3}\right\} \\
& A_{0}=\left\{\left[f_{1}\right] a_{1}\left[f_{4}\right],\left[f_{2}\right] a_{2}\left[f_{5}\right]\right\}
\end{aligned}
$$

Goal: $\mathbf{f}_{6}, \mathfrak{f}_{5}, \mathbf{f}_{1}$ Actions:

$$
\begin{aligned}
& {\left[f_{1}\right] a_{1}\left[f_{4}\right]} \\
& {\left[f_{2}\right] a_{2}\left[f_{5}\right]} \\
& {\left[f_{2}, f_{4}, f_{5}\right] a_{3}\left[f_{6}[6\right.}
\end{aligned}
$$

Example

legend: [pre]act[add]

$$
\begin{aligned}
& \mathrm{S}_{0}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right\} \\
& \mathrm{A}_{0}=\left\{\left[\mathrm{f}_{1}\right] \mathrm{a}_{1}\left[\mathrm{f}_{4}\right],\left[\mathrm{f}_{2}\right] \mathrm{a}_{2}\left[\mathrm{f}_{5}\right]\right\} \\
& \mathrm{S}_{1}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}\right\}
\end{aligned}
$$

Goal: $\mathfrak{f}_{6}, \mathfrak{f}_{5}, \mathbf{f}_{1}$ Actions:

$$
\begin{aligned}
& {\left[f_{1}\right] a_{1}\left[f_{4}\right]} \\
& {\left[f_{2}\right] a_{2}\left[f_{5}\right]} \\
& {\left[f_{2}, f_{4}, f_{5}\right] a_{3}\left[f_{6}[6\right.}
\end{aligned}
$$

Example

legend: [pre]act[add]

$$
\begin{aligned}
& \mathrm{S}_{0}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right\} \\
& \mathrm{A}_{0}=\left\{\left[\mathrm{f}_{1}\right] \mathrm{a}_{1}\left[\mathrm{f}_{4}\right],\left[\mathrm{f}_{2}\right] \mathrm{a}_{2}\left[\mathrm{f}_{5}\right]\right\} \\
& \mathrm{S}_{1}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}\right\} \\
& \left.\mathrm{A}_{1}=\left\{\left[\mathrm{f}_{2}, \mathrm{f}_{4}, \mathrm{f}_{5}\right] \mathrm{a}_{3}\left[\mathrm{f}_{6}\right]\right]\right\}
\end{aligned}
$$

Goal: $\mathbf{f}_{6}, \mathbf{f}_{5}, \mathbf{f}_{1}$ Actions:

$\left[\mathrm{f}_{1}\right] \mathrm{a}_{1}\left[\mathrm{f}_{4}\right]$
$\left[\mathrm{f}_{2}\right] \mathrm{a}_{2}\left[\mathrm{f}_{5}\right]$
$\left[f_{2}, f_{4}, f_{5}\right] a_{3}\left[f_{6}\right.$

Example

legend: [pre]act[add]

$$
\begin{aligned}
& \mathrm{S}_{0}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right\} \\
& \mathrm{A}_{0}=\left\{\left[\mathrm{f}_{1}\right] \mathrm{a}_{1}\left[\mathrm{f}_{4}\right],\left[\mathrm{f}_{2}\right] \mathrm{a}_{2}\left[\mathrm{f}_{5}\right]\right\} \\
& \mathrm{S}_{1}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}\right\} \\
& \mathrm{A}_{1}=\left\{\left[\mathrm{f}_{2}, \mathrm{f}_{4} \mathrm{f}_{5}\right] \mathrm{a}_{3}\left[\mathrm{f}_{6}\right]\right\} \\
& \mathrm{S}_{2}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}, \mathrm{f}_{6}\right\}
\end{aligned}
$$

Goal: $\mathbf{f}_{6}, \mathbf{f}_{5}, \mathbf{f}_{1}$ Actions:

$\left[\mathrm{f}_{1}\right] \mathrm{a}_{1}\left[\mathrm{f}_{4}\right]$
$\left[\mathrm{f}_{2}\right] \mathrm{a}_{2}\left[\mathrm{f}_{5}\right]$
$\left[f_{2}, f_{4}, f_{5}\right] a_{3}\left[f_{6}\right.$

Example

legend: [pre]act[add]

$$
\begin{aligned}
& \mathrm{S}_{0}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right\} \\
& \mathrm{A}_{0}=\left\{\left[\mathrm{f}_{1}\right] \mathrm{a}_{1}\left[\mathrm{f}_{4}\right],\left[\mathrm{f}_{2}\right] \mathrm{a}_{2}\left[\mathrm{f}_{5}\right]\right\} \\
& \mathrm{S}_{1}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}\right\} \\
& \mathrm{A}_{1}=\left\{\left[\mathrm{f}_{2}, \mathrm{f}_{4}, \mathrm{f}_{5}\right] \mathrm{a}_{3}\left[\mathrm{f}_{6}\right]\right\} \\
& \mathrm{S}_{2}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}, \mathrm{f}_{6}\right\} \\
& \mathrm{G}=\left\{\mathrm{f}_{6}, \mathrm{f}_{5}, \mathrm{f}_{1}\right\}
\end{aligned}
$$

Example

legend: [pre]act[add]

$$
\begin{aligned}
& \mathrm{S}_{0}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right\} \\
& \mathrm{A}_{0}=\left\{\left[\mathrm{f}_{1}\right] \mathrm{a}_{1}\left[\mathrm{f}_{4}\right],\left[\mathrm{f}_{2}\right] \mathrm{a}_{2}\left[\mathrm{f}_{5}\right]\right\} \\
& \mathrm{S}_{1}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3} \mathrm{f}_{4}, \mathrm{f}_{5}\right\} \\
& \mathrm{A}_{1}=\left\{\left[\mathrm{f}_{2}, \mathrm{f}_{4} \mathrm{f}_{5}\right] \mathrm{a}_{3}\left[\mathrm{f}_{6}\right]\right\} \\
& \mathrm{S}_{2}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}, \mathrm{f}_{6}\right\}
\end{aligned}
$$

Goal: $\boldsymbol{f}_{6}, \boldsymbol{f}_{5}, \mathbf{f}_{1}$ Actions:

$\left[\mathrm{f}_{1}\right] \mathrm{a}_{1}\left[\mathrm{f}_{4}\right]$
[$\left.\mathrm{f}_{2}\right] \mathrm{a}_{2}\left[\mathrm{f}_{5}\right]$
$\left[f_{2}, f_{4}, f_{5}\right] a_{3}\left[f_{6}\right.$
$G=\left\{f_{6}, f_{5}, f_{1}\right\}$

We split G into G_{P} and G_{N} :

Example

legend: [pre]act[add]

$$
\begin{aligned}
& \mathrm{S}_{0}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right\} \\
& \mathrm{A}_{0}=\left\{\left[\mathrm{f}_{1}\right] \mathrm{a}_{1}\left[\mathrm{f}_{4}\right],\left[\mathrm{f}_{2}\right] \mathrm{a}_{2}\left[f_{5}\right]\right\} \\
& \mathrm{S}_{1}=\left\{f_{1}, f_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}\right\} \\
& \mathrm{A}_{1}=\left\{\left[f_{2}, \mathrm{f}_{4} \mathrm{f}_{5}\right] \mathrm{a}_{3}\left[\mathrm{f}_{6}\right]\right\} \\
& \mathrm{S}_{2}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{4}, \mathrm{f}_{5}, \mathrm{f}_{6}\right\} \\
& \mathbf{G}=\left\{\mathrm{f}_{6}, \mathrm{f}_{5}, \mathrm{f}_{1}\right\} \\
& \mathbf{G}_{\mathrm{N}}=\left\{\mathrm{f}_{6}\right\} \text { (newly achieved) } \\
& \mathbf{G}_{\mathrm{p}}=\left\{\mathrm{f}_{5}, \mathrm{f}_{1}\right\} \text { (achieved before) }
\end{aligned}
$$

Example

legend: [pre]act[add]

$$
\text { CountActs }\left(\mathrm{G}, \mathrm{~S}_{2}\right)
$$

$$
\begin{aligned}
& S_{0}=\left\{f_{1}, f_{2}, f_{3}\right\} \\
& A_{0}=\left\{\left[f_{1}\right] a_{1}\left[f_{4}\right],\left[f_{2}\right] a_{2}\left[f_{5}\right]\right\} \\
& S_{1}=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\} \\
& A_{1}=\left\{\left[f_{2}, f_{4}, f_{5}\right] a_{3}\left[f_{5},\right]\right\} \\
& S_{2}=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\}
\end{aligned}
$$

$$
\mathrm{G}_{\mathrm{P}}=\left\{\left\{_{5}, f_{7}\right\} \text { /already in } \mathrm{S} 1\right.
$$

$$
G_{N}=\left\{f_{6}\right\} \quad \text { //New in S2 }
$$

$$
A=\left\{a_{3}\right\} \quad \text { //adds all in } G_{N}
$$

$$
\text { //the new goal: } \mathrm{G}_{\mathrm{p}} \cup \operatorname{Pre}(\mathbf{A})
$$

$$
G_{1}=\left\{f_{5}, f_{1}, f_{2}, f_{4}\right\}
$$

Return

$$
1+\operatorname{CountActs}\left(\mathrm{G}_{1}, \mathrm{~S}_{1}\right)
$$

Example

Now, we are at level S1
$S_{0}=\left\{f_{1}, f_{2}, f_{3}\right\}$
$\mathrm{A}_{0}=\left\{\left[\mathrm{f}_{1}\right] \mathrm{a}_{1}\left[\mathrm{f}_{4}\right],\left[\mathrm{f}_{2}\right] \mathrm{a}_{2}\left[\mathrm{f}_{5}\right]\right\}$
$S_{1}=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$

$\mathrm{G}_{1}=\left\{\mathrm{f}_{5}, \mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{4}\right\}$

CountActs $\left(G_{1}, S_{1}\right)$

Example

Now, we are at level S1
$S_{0}=\left\{f_{1}, f_{2}, f_{3}\right\}$
$\mathrm{A}_{0}=\left\{\left[\mathrm{f}_{1}\right] \mathrm{a}_{1}\left[\mathrm{f}_{4}\right],\left[\mathrm{f}_{2}\right] \mathrm{a}_{2}\left[\mathrm{f}_{5}\right]\right\}$
$S_{1}=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$

$S_{2}=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right.$
$G_{1}=\left\{f_{5}, f_{1}, f_{2}, f_{4}\right\}$
We split G_{1} into G_{P} and G_{N} :

CountActs $\left(G_{1}, S_{1}\right)$

Example

Now, we are at level S1
$S_{0}=\left\{f_{1}, f_{2}, f_{3}\right\}$
$\left.\mathrm{A}_{0}=\left\{\left[\mathrm{f}_{1}\right] \mathrm{a}_{1}\left[\mathrm{f}_{4}\right],\left[\mathrm{f}_{2}\right] \mathrm{a}_{2}\left[\mathrm{f}_{5}\right]\right]\right\}$
$S_{1}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \hat{\mathrm{f}_{4}}, \mathrm{f}_{5}\right\}$

$\mathrm{G}_{1}=\left\{\mathrm{f}_{5}, \mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{4}\right\}$
We split G_{1} into G_{p} and G_{N} :
$\mathbf{G}_{\mathbf{N}}=\left\{\mathrm{f}_{5}, \mathrm{f}_{4}\right\}$
$\mathbf{G}_{\mathbf{p}}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}\right\}$

CountActs $\left(\mathrm{G}_{1}, \mathrm{~S}_{1}\right)$
$\mathrm{G}_{\mathrm{p}}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}\right\}$ //already in S0
$\mathrm{G}_{\mathrm{N}}=\left\{\mathrm{f}_{4}, \mathrm{f}_{5}\right\} / /$ New in S1
$A=\left\{a_{1}, a_{2}\right\} / / a d d s$ all in G_{N}
//the new goal: $\mathrm{G}_{\mathrm{p}} \cup \operatorname{Pre}(\mathrm{A})$
$\mathrm{G}_{2}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}\right\}$
Return
$2+$ CountActs $\left(\mathrm{G}_{2}, \mathrm{~S}_{0}\right)$

Example

Now, we are at level S1
$S_{0}=\left\{f_{1}, f_{2}, f_{3}\right\}$

$\mathrm{G}_{2}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}\right\}$
We split G_{2} into G_{p} and G_{N} : $\mathbf{G}_{\mathrm{N}}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}\right\}$
$\boldsymbol{G}_{\mathrm{p}}=\{ \}$

CountActs $\left(\mathrm{G}_{2}, \mathrm{~S}_{0}\right)$ $\mathrm{G}_{\mathrm{N}}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}\right\} \quad$ //already in so
$G_{p}=\{ \} / / N e w$ in S 1
$A=\{ \} \quad / / N o$ actions needed.
Return
0

Example

Now, we are at level S1
$S_{0}=\left\{f_{1}, f_{2}, f_{3}\right\}$

$\mathrm{G}_{2}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}\right\}$
We split G_{2} into G_{P} and G_{N} :
$\mathrm{G}_{\mathrm{N}}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}\right\}$
$\mathbf{G}_{\mathrm{p}}=\{ \}$

CountActs $\left(\mathrm{G}_{2}, \mathrm{~S}_{0}\right)$
$\mathrm{G}_{\mathrm{N}}=\left\{\mathrm{f}_{1}, \mathrm{f}_{2}\right\}$ //already in so
$G_{P}=\{ \} / / N e w$ in S 1
$A=\{ \} \quad / / N o$ actions needed.
Return
0

So, in total CountActs $(G, S 2)=1+2+0=3$

Using the Heuristic

- First, build a layered structure from a state S that reaches a goal state.
- CountActions: counts how many actions are required in a relaxed plan.
- Use this as our heuristic estimate of the distance of S to the goal.
- This heuristic tends to work better with greedy best-first search rather than A* search
- That is when we ignore the cost of getting to the current state.

Admissibility

- A minimum sized plan in the delete relaxed problem would be a lower bound on the optimal size of a plan in the real problem. And could serve as an admissible heuristic for A^{*}.
- However, CountActions does NOT compute the length of the optimal relaxed plan.
- The choice of which action set to use to achieve G_{P} ("just achieved part of G") is not necessarily optimal - it is minimal, but not necessary a minimum.
- Furthermore even if we picked a true minimum set A at each stage of CountActions, we might not obtain a minimum set of actions for the entire plan---the set A picked at each state influences what set can be used at the next stage!

Admissibility

- It is NP-Hard to compute the optimal length plan even in the relaxed plan space.
- So CountActions cannot be made into an admissible heuristic without making it much harder to compute.
- Empirically, refinements of CountActions performs very well on a number of sample planning domains.

