Relaxed Planning Graph Heuristic

Excerpt from CSC384, winter 2014

Planning

* We will look at one technique:
Relaxed Plan heuristics used with heuristic search.

The heuristics are domain independent. As such they are
part of a class of so-called

domain-independent heuristic search for planning

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

74

Reachability Analysis.

* The idea Is to consider what happens if we ignore
the delete lists of actions.

* This is yields a “relaxed problem” that can produce
a useful heuristic estimate.

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014 75

Reachability Analysis

* In the relaxed problem actions add new facts, but
never delete facts.

* Then we can do reachabillity analysis, which Is
much simpler than searching for a solution.

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014 76

Reachability

* We start with the initial state S,.

* We alternate between state and action layers.

* We find all actions whose preconditions are contained in S,.

These actions comprise the first action layer A,,.

* The next state layer contains:
* S, U all states added by the actions in A,.

* In general:
* A ... set of actions whose preconditions are in S,.
* S, =S5, ;U the add lists of all of the actions in A,

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

77

STRIPS Blocks World Operators.

* pickup(X)
Pre: {handempty, ontable(X), clear(X)}
Add: {holding(X)}

* putdown(X)
Pre: {holding(X)}
Add: {handempty, ontable(X), clear(X)}

* unstack(X,Y)
Pre: {handempty, clear(X), on(X,Y)}
Add: {holding(X), clear(Y)}

* stack(X,Y)
Pre: {holding(X),clear(Y)}
Add: {handempty, clear(X), on(X,Y)}

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

78

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty

So

unstack(a,b)
pickup(d)

Ao

a

d

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
handempty,
clear(d),
holding(a),
clear(b),
holding(d)

S1

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

this is not
a state as
some of
these
facts
cannot be
true at the
same timel!

79

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty,
holding(a),
clear(b),
holding(d)

51

unstack(a,b) from| A
pickup(d) 2

putdown(a),

putdown(d),

stack(a,b),

stack(a,q), Impossible,
stack(d,a), \ but we don’t

stack(d,b), _~ know because
stack(d,d), we ignhore dels.

unstack(b,c)

Aq

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014 80

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty

So

unstack(a,b)
pickup(d)

Ao

I

d

on(a,b),
on(b,c),
ontable(c),
ontable(d),

clear(a), this is not

handempty, |
clear(d), a state!

holding(a),
clear(b),
holding(d) | S

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014 81

Example

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty,
holding(a),
clear(b),
holding(d)

St

putdown(a),
putdown(d),
stack(a,b),
stack(a,a),
stack(d,b),
stack(d,a),
pickup(d),

.L.l.nS'l‘Cle(b,C)

A

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

82

Reachabilty

* We continue until:
* the goal G Is contained in the state layer, or

* until the state layer no longer changes (reached fix point).

* Intuitively:
* the actions at level A, are the actions that could be
executed at the I-th step of some plan, and
* the facts in level S, are the facts that could be made true
within a plan of length i.
* Some of the actions/facts have this property.
But not all!

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

83

Reachability

to reach

on(c,b)
requires 4
actions

HT

a on(c,b)
b||c on(a,b),
ontable(c),
table(b
on(a,b), unstack(a,b) zlnec?r(:)() stack(c,b)
on’;alg:e(ct:)), pickup(c) clear(c),
Zlnec?r'(c?)() handempty,
clear(c)' holding(a), t bIST b
handem"r clear(b), et
& oling e
after one
So Ao S A1 step

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014 84

Heuristics from Reacha

nility Analysis

Grow the levels until the goa
state level S,.

IS contained In the final

* |f the state level stops changing and the goal is not
present: The goal is unachievable under the assumption
that (a) the goal is a set of positive facts, and (b) all
preconditions are positive facts.

* Then do the following

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

85

Heuristics from Reachability Analysis

CountActions(G,Sy):
[* Compute the number of actions contained in a relaxed plan
achieving the goal. */

* Split G into facts in S,_; and elements in S, only.
* Gy contains the previously achieved (in S, ;) and
* G, contains the just achieved parts of G (only in S;).

* Find a minimal set of actions A whose add effects cover Gy,.
* may contain no redundant actions,

* but may not be the minimum sized set (computing the minimum
sized set of actions is the set cover problem and is NP-Hard)

* NewG = S ; U preconditions of A.
* return CountAction(NewG,S, ;) + size(A)

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

86

Heuristics from Reachability Analysis

CountActions(G,Sy):
[* Compute the number of actions contained in a relaxed plan
achieving the goal. */

* Split G into facts in S,_; and elements in S, only.
* Gy contains the previously achieved (in S, ;) and
* G, contains the just achieved parts of G (only in S;).

* Find a minimal set of actions A whose add effects cover Gy,.
* may contain no redundant actions,

* but may not be the minimum sized set (computing the minimum
sized set of actions is the set cover problem and is NP-Hard)

* NewG := G, U preconditions of A.
* return CountAction(NewG,S, ;) + size(A)

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

87

Example

legend: [pre]act/add]

Goal: fg,fz,f;
So = {f1, T2, T3} Actions:
Ao = {[f1]aslfs], [Fo]aslfs]} f,]a,[f.]
folay[fs]

5,14, T5]aslfs

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

88

Example

legend: [pre]act/add]

Goal: fg,fz,f;
S = {1, T, T3} Actions:
Ao = {[f]aqlfs], []alfs]} fila(f,]
2,14, 1s]asfs

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

89

Example

legend: [pre]act/add]

Goal: fg,fc,f;
S, ={f,, T, f3} Actions:
Ao = {lf]aqlfsl, [flaslfs]} f1]a,[f,]
Sy = {f1,15,15,1,,fs} fr]a,[fs]
Ay = {[f2.f4.fslas(fel} 2. f4.f5las(fs

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

90

Example

legend: [pre]act/add]

Sp = {fy, T, 13}

Ao = UTaq[fs], [fo]a,lfs]}
Sy = {fn,f, 15,1415}

A = {[f2.14,15]a3]fe]}

Sy ={1,12:13,14, 15,16}

Goal: fg,fg,f;
Actions:
f1]a,[f,]
,]a,|fs)
5,14, f5]aslfs

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

91

Example

legend: [pre]act/add]

Sp = {fy, T, 13}

Ao = UTaq[fs], [fo]a,lfs]}
Sy = {fn,f, 15,1415}

A = {[f2.14,15]a3]fe]}

Sy ={1,12:13,14, 15,16}

G = {fe. 5,01}

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014 92

Example

legend: [pre]act/add]

So ={fy, o, T3}

Ag = {[flaulfsl, [fo]aslfs]}
Sy = {115,145}

Aq = {[f2,14.15]a5(6]}

S, ={f1, 15,15, 14,15, 16}

G ={fe.f5, T4}

We split G into G, and Gy

Goal: fg,fg,f;
Actions:
f1]a,[f,]
,]a,|fs)
5,14, f5]aslfs

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

93

Example

legend: [pre]act/add]

So ={fy, o, T3}

Ao = {[flaslfsl, [fo]a,[fs]}
Sy = {115,145}

A, = {[f2, 14 T5]a5lf6]}

Sy ={1,12:13,14,15,Te}

G = {fs,f5,f1}
G\ = {fg} (newly achieved)
G, = {fs, T} (achieved before)

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014 94

Example

legend: [pre]act/add]

So = {1, 5, 13}
Ao = lf1]aqlfs], [fo]as[fs]}
Sy = {f1.f5, 13,0415}

Aq = {[T5. 14 5]aslls]}
S, :{fW}

G ={fe.f5, T4}

We split G into G, and Gy

CountActs(G,S,)
Gp ={fs, f)

Gy = {fe}

A ={a}

Gy = {1,154}
Return
1 + CountActs(G,,S,)

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

95

Example

Now, we are at level S1
So = {f, T, fa}

N ACA AR ACHIA)
Sy = {fn,f, 15,1415}

G; = {fs’f1’f2’f4}

CountActs(G4,S;)

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

Example

Now, we are at level S1
So = {f, T, fa}

N ACA AR ACHIA)
Sy = {fn,f, 15,1415}

G; = {fs’f1’f2’f4}

We split G, into G, and Gy

CountActs(G,,S,)

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

Example

Now, we are at level S1 CountActs(G,,S,)

Sy = {fy, Ty, 3} G, ={f,,f,} //already in SO
Ao = {Ifdaylfy], [lalfsl} | Gn= fafeh /New in S1

S, = {fl’fzifﬁmfs} A={a;,a,}//adds all in G

/lthe new goal: Gy U Pre(A)

/ Return
| 2 + CountActs(G,,S,)

G; = {fs’f1’f2’f4}

We split G, into G, and Gy
Gy = {fs.14}

Gp = {fuf)}

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

Example

Now, we are at level S1
So = {fy, 1o, T3}

G, = {fyf}

We split G, into G, and Gy
Gy = {fu.f)}
Gp=1{}

CountActs(G,,S)

GN :{f11f2} /lalready in SO
Gp = {} /mewin st

A= {} /INo actions needed.

Return
0

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014

Example

Now, we are at level S1 CountActs(G.,,S,)

SO = {f11 1:2’ f3} GN :{f11f2} /lalready in SO
Gp = {} /mewin st
A= {} //INo actions needed.

Return
0
G, = {fu.f)}
We split G, into G, and Gy
Gy ={f,.f}
Gp={}

So, 1n total CountActs(G,S2)=1+2+0=3

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014 100

Using the Heuristic

* First, build a layered structure from a state S that reaches a
goal state.

* CountActions: counts how many actions are required in a
relaxed plan.

* Use this as our heuristic estimate of the distance of S to the
goal.

* This heuristic tends to work better with greedy best-first
search rather than A* search

* That is when we ignore the cost of getting to the current
state.

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014 101

Admissibility

* A minimum sized plan in the delete relaxed problem
would be a lower bound on the optimal size of a

plan in the real problem. And could serve as an
admissible heuristic for A*.

* However, CountActions does NOT compute the
length of the optimal relaxed plan.

* The choice of which action set to use to achieve Gp
(“just achieved part of G”) is not necessarily optimal
— It 1Is minimal, but not necessary a minimum.

* Furthermore even if we picked a true minimum set A at
each stage of CountActions, we might not obtain a
minimum set of actions for the entire plan---the set A

picked at each state influences what set can be used at
the next stage!

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014 102

Admissibility

* |t is NP-Hard to compute the optimal length plan
even In the relaxed plan space.

* So CountActions cannot be made into an admissible
heuristic without making it much harder to compute.

* Empirically, refinements of CountActions performs very
well on a number of sample planning domains.

Sheila Mcllraith, CSC384, University of Toronto, Winter 2014 103

