
Relaxed Planning Graph Heuristic

Excerpt from CSC384, winter 2014

74 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Planning

• We will look at one technique:

Relaxed Plan heuristics used with heuristic search.

The heuristics are domain independent. As such they are

part of a class of so-called

 domain-independent heuristic search for planning

75 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Reachability Analysis.

• The idea is to consider what happens if we ignore

the delete lists of actions.

• This is yields a “relaxed problem” that can produce

a useful heuristic estimate.

76 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Reachability Analysis

• In the relaxed problem actions add new facts, but

never delete facts.

• Then we can do reachability analysis, which is

much simpler than searching for a solution.

77 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Reachability

• We start with the initial state S0.

• We alternate between state and action layers.

• We find all actions whose preconditions are contained in S0.
These actions comprise the first action layer A0.

• The next state layer contains:

• S0 U all states added by the actions in A0.

• In general:

• Ai … set of actions whose preconditions are in Si.

• Si = Si-1 U the add lists of all of the actions in Ai

78 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

STRIPS Blocks World Operators.
• pickup(X)

Pre: {handempty, ontable(X), clear(X)}
Add: {holding(X)}
Del: {handempty, ontable(X), clear(X)}

• putdown(X)
Pre: {holding(X)}
Add: {handempty, ontable(X), clear(X)}
Del: {holding(X)}

• unstack(X,Y)
Pre: {handempty, clear(X), on(X,Y)}
Add: {holding(X), clear(Y)}
Del: {handempty, clear(X), on(X,Y)}

• stack(X,Y)
Pre: {holding(X),clear(Y)}
Add: {handempty, clear(X), on(X,Y)}
Del: {holding(X),clear(Y)}

79 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example

a

b

c d

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty

unstack(a,b)
pickup(d)

a
b

c d

S0 A0

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
handempty,
clear(d),
holding(a),
clear(b),
holding(d)

a
d

this is not
a state as
some of
these
facts

cannot be
true at the
same time! S1

80 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty,
holding(a),
clear(b),
holding(d)

S1

unstack(a,b)
pickup(d)

putdown(a),
putdown(d),
stack(a,b),
stack(a,a),
stack(d,a),
stack(d,b),
stack(d,d),
unstack(b,c)
…

A1

a
b

c d

a
d A0

from

Impossible,
but we don’t
know because
we ignore dels.

81 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example

a

b

c d

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty

unstack(a,b)
pickup(d)

a
b

c d

S0 A0

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
handempty,
clear(d),
holding(a),
clear(b),
holding(d)

a
d

this is not
a state!

S1

82 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty,
holding(a),
clear(b),
holding(d)

S1

putdown(a),
putdown(d),
stack(a,b),
stack(a,a),
stack(d,b),
stack(d,a),
pickup(d),
…
unstack(b,c)
…

A1

83 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Reachabilty

• We continue until:

• the goal G is contained in the state layer, or

• until the state layer no longer changes (reached fix point).

• Intuitively:

• the actions at level Ai are the actions that could be

executed at the i-th step of some plan, and

• the facts in level Si are the facts that could be made true

within a plan of length i.

• Some of the actions/facts have this property.

But not all!

84 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Reachability

a

b c

on(a,b),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty

unstack(a,b)
pickup(c)

S0 A0

on(a,b),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty,
holding(a),
clear(b),
holding(c)

S1

stack(c,b)
…

A1

on(c,b),
…

but
stack(c,b)
cannot be
executed
after one

step

to reach
on(c,b)

requires 4
actions

 a

b c

on(a,b),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty

85 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Heuristics from Reachability Analysis

Grow the levels until the goal is contained in the final

state level SK.

• If the state level stops changing and the goal is not

present: The goal is unachievable under the assumption

that (a) the goal is a set of positive facts, and (b) all

preconditions are positive facts.

• Then do the following

86 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Heuristics from Reachability Analysis

CountActions(G,SK):

/* Compute the number of actions contained in a relaxed plan

achieving the goal. */

• Split G into facts in SK-1 and elements in SK only.

• GP contains the previously achieved (in SK-1) and

• GN contains the just achieved parts of G (only in SK).

• Find a minimal set of actions A whose add effects cover GN.

• may contain no redundant actions,

• but may not be the minimum sized set (computing the minimum

sized set of actions is the set cover problem and is NP-Hard)

• NewG := SK-1 U preconditions of A.

• return CountAction(NewG,SK-1) + size(A)

87 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Heuristics from Reachability Analysis

CountActions(G,SK):

/* Compute the number of actions contained in a relaxed plan

achieving the goal. */

• Split G into facts in SK-1 and elements in SK only.

• GP contains the previously achieved (in SK-1) and

• GN contains the just achieved parts of G (only in SK).

• Find a minimal set of actions A whose add effects cover GN.

• may contain no redundant actions,

• but may not be the minimum sized set (computing the minimum

sized set of actions is the set cover problem and is NP-Hard)

• NewG := GP U preconditions of A.

• return CountAction(NewG,SK-1) + size(A)

88 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example

 legend: [pre]act[add]

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4], [f2]a2[f5]}

Goal: f6,f5,f1

Actions:

 [f1]a1[f4]

 [f2]a2[f5]

 [f2,f4,f5]a3[f6

89 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example

 legend: [pre]act[add]

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4], [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

Goal: f6,f5,f1

Actions:

 [f1]a1[f4]

 [f2]a2[f5]

 [f2,f4,f5]a3[f6

90 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example

 legend: [pre]act[add]

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4], [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

A1 = {[f2,f4,f5]a3[f6]}

Goal: f6,f5,f1

Actions:

 [f1]a1[f4]

 [f2]a2[f5]

 [f2,f4,f5]a3[f6

91 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example

 legend: [pre]act[add]

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4], [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

A1 = {[f2,f4,f5]a3[f6]}

S2 ={f1,f2,f3,f4,f5,f6}

Goal: f6,f5,f1

Actions:

 [f1]a1[f4]

 [f2]a2[f5]

 [f2,f4,f5]a3[f6

92 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example

 legend: [pre]act[add]

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4], [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

A1 = {[f2,f4,f5]a3[f6]}

S2 ={f1,f2,f3,f4,f5,f6}

G = {f6,f5,f1}

93 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example

 legend: [pre]act[add]

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4], [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

A1 = {[f2,f4,f5]a3[f6]}

S2 ={f1,f2,f3,f4,f5,f6}

G = {f6,f5, f1}

We split G into GP and GN:

Goal: f6,f5,f1

Actions:

 [f1]a1[f4]

 [f2]a2[f5]

 [f2,f4,f5]a3[f6

94 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example

 legend: [pre]act[add]

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4], [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

A1 = {[f2,f4,f5]a3[f6]}

S2 ={f1,f2,f3,f4,f5,f6}

G = {f6,f5,f1}

GN = {f6} (newly achieved)

Gp = {f5, f1} (achieved before)

95 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example

CountActs(G,S2)

GP ={f5, f1
} //already in S1

GN = {f6} //New in S2

A = {a3} //adds all in GN

//the new goal: GP  Pre(A)

G1 = {f5,f1,f2,f4}

Return
 1 + CountActs(G1,S1)

 legend: [pre]act[add]

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4], [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

A1 = {[f2,f4,f5]a3[f6]}

S2 ={f1,f2,f3,f4,f5,f6}

G = {f6,f5, f1}

We split G into GP and GN:

96 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example
Now, we are at level S1

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4], [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

A1 = {[f2,f4,f5]a3[f6]}

S2 ={f1,f2,f3,f4,f5,f6}

G1 = {f5,f1,f2
,f4}

CountActs(G1,S1)

97 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example
Now, we are at level S1

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4], [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

A1 = {[f2,f4,f5]a3[f6]}

S2 ={f1,f2,f3,f4,f5,f6}

G1 = {f5,f1,f2
,f4}

We split G1 into GP and GN:

CountActs(G1,S1)

98 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example
Now, we are at level S1

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4], [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

A1 = {[f2,f4,f5]a3[f6]}

S2 ={f1,f2,f3,f4,f5,f6}

G1 = {f5,f1,f2
,f4}

We split G1 into GP and GN:

GN = {f5,f4}

GP = {f1,f2
}

CountActs(G1,S1)
GP ={f1,f2} //already in S0

GN = {f4,f5} //New in S1

A = {a1,a2} //adds all in GN

//the new goal: GP  Pre(A)

G2 = {f1,f2
}

Return

 2 + CountActs(G2,S0)

99 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example
Now, we are at level S1

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4], [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

A1 = {[f2,f4,f5]a3[f6]}

S2 ={f1,f2,f3,f4,f5,f6}

G2 = {f1,f2
}

We split G2 into GP and GN:

GN = {f1,f2
}

GP = {}

CountActs(G2,S0)

GN ={f1,f2} //already in S0

GP = {} //New in S1

A = {} //No actions needed.

Return

 0

100 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Example
Now, we are at level S1

S0 = {f1, f2, f3}

A0 = {[f1]a1[f4], [f2]a2[f5]}

S1 = {f1,f2,f3,f4,f5}

A1 = {[f2,f4,f5]a3[f6]}

S2 ={f1,f2,f3,f4,f5,f6}

G2 = {f1,f2
}

We split G2 into GP and GN:

GN = {f1,f2
}

GP = {}

CountActs(G2,S0)

GN ={f1,f2} //already in S0

GP = {} //New in S1

A = {} //No actions needed.

Return

 0

So, in total CountActs(G,S2)=1+2+0=3

101 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Using the Heuristic

• First, build a layered structure from a state S that reaches a

goal state.

• CountActions: counts how many actions are required in a

relaxed plan.

• Use this as our heuristic estimate of the distance of S to the

goal.

• This heuristic tends to work better with greedy best-first

search rather than A* search

• That is when we ignore the cost of getting to the current

state.

102 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Admissibility

• A minimum sized plan in the delete relaxed problem
would be a lower bound on the optimal size of a
plan in the real problem. And could serve as an
admissible heuristic for A*.

• However, CountActions does NOT compute the
length of the optimal relaxed plan.
• The choice of which action set to use to achieve GP

(“just achieved part of G”) is not necessarily optimal
– it is minimal, but not necessary a minimum.

• Furthermore even if we picked a true minimum set A at
each stage of CountActions, we might not obtain a
minimum set of actions for the entire plan---the set A
picked at each state influences what set can be used at
the next stage!

103 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Admissibility

• It is NP-Hard to compute the optimal length plan
even in the relaxed plan space.
• So CountActions cannot be made into an admissible

heuristic without making it much harder to compute.

• Empirically, refinements of CountActions performs very
well on a number of sample planning domains.

