∐₀f [

Planning

- · We will look at one technique: Relaxed Plan heuristics used with heuristic search.
 - The heuristics are domain independent. As such they are part of a class of so-called domain-independent heuristic search for planning

Reachability Analysis.

- The idea is to consider what happens if we ignore the delete lists of actions.
- This is yields a "relaxed problem" that can produce a useful heuristic estimate.

Excerpt from CSC384, winter 2014

Relaxed Planning Graph Heuristic

74 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Sheila McIlraith, CSC384, University of Toronto, Winter 2014

75

78

Reachability Analysis

. In the relaxed problem actions add new facts, but never delete facts.

Sheila McIlraith, CSC384, University of Toronto, Winter 2014

• Then we can do reachability analysis, which is much simpler than searching for a solution.

Reachability

- We start with the initial state S₀.
- We alternate between state and action layers.
- We find all actions whose preconditions are contained in S₀. These actions comprise the first action layer A₀.
- The next state layer contains:
 - S₀ U all states added by the actions in A₀.
- In general:

76

- A_i ... set of actions whose preconditions are in S_i.
- S_i = S_{i-1} U the add lists of all of the actions in A_i

Sheila McIlraith, CSC384, University of Toronto, Winter 2014

77

Del:

Dol

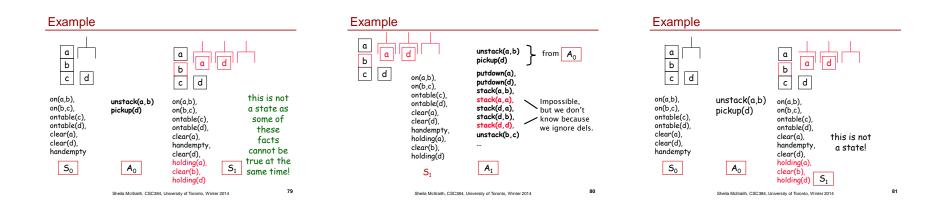
stack(X,Y)

putdown(X)

unstack(X,Y)

Sheila McIlraith, CSC384, University of Toronto, Winter 2014

STRIPS Blocks World Operators. pickup(X)
 Pre: {handempty, ontable(X), clear(X)}
 Add: {holding(X)}


Pre: {holding(X)} Add: {handempty, ontable(X), clear(X)} Del: {holding(X)}

Pre: {handempty, clear(X), on(X,Y)} Add: {holding(X), clear(Y)}

Add: {handempty, clear(X), on(X,Y)}

Pre: {holding(X),clear(Y)

1

Example			Reachabilty	Reachability	to reach
on(a,b), on(b,c), ontable(c), ontable(d), clear(a), clear(d), handempty, holding(d), clear(b), holding(d)	putdown(a), putdown(d), stack(a,b), stack(d,b), stack(d,b), stack(d,a), pickup(d), unstack(b,c) A 1		 We continue until: the goal G is contained in the state layer, or until the state layer no longer changes (reached fix point). Intuitively: the actions at level A_i are the actions that could be executed at the i-th step of some plan, and the facts in level S_i are the facts that could be made true within a plan of length i. Some of the actions/facts have this property. But not all! 	a c on(a,b), ontable(c), ontable(c), clear(a), clear(c), handempty ontable(c) handempty ontable(c) handempty ontable(c) holding(p), stack(c,b) ty, but stack(c,b) ty, stack(c,b) connot be executed after one
	Sheila Mollraith, CSC384, University of Toronto, Winter 2014	82	Shella McIlraith, CSC384, University of Toronto, Winter 2014 83	S ₀ A ₀ S ₁	A1 step

Heuristics from Reachability Analysis

Grow the levels until the goal is contained in the final state level S_{κ} .

- If the state level stops changing and the goal is not present: The goal is unachievable under the assumption that (a) the goal is a set of positive facts, and (b) all preconditions are positive facts.
- Then do the following

Heuristics from Reachability Analysis

CountActions(G,S_K):

- /* Compute the number of actions contained in a relaxed plan achieving the goal. */
- Split G into facts in $S_{K\text{-}1}$ and elements in S_K only. • G_P contains the previously achieved (in $S_{K\text{-}1}$) and
 - + G_N contains the just achieved parts of G (only in S_K).
- Find a minimal set of actions A whose add effects cover G_N.
 - · may contain no redundant actions,
 - but may not be the minimum sized set (computing the minimum sized set of actions is the set cover problem and is NP-Hard)

Sheila McIlraith, CSC384, University of Toronto, Winter 2014

- NewG := S_{K-1} U preconditions of A.
- return CountAction(NewG,S_{K-1}) + size(A)

Heuristics from Reachability Analysis

CountActions(G, S_{κ}):

86

89

- /* Compute the number of actions contained in a relaxed plan achieving the goal. */
- Split G into facts in S_{K-1} and elements in S_K only.
 G_P contains the previously achieved (in S_{K-1}) and
 G_N contains the just achieved parts of G (only in S_K).
- Find a minimal set of actions A whose add effects cover G_N.
 - may contain no redundant actions,
 - but may not be the minimum sized set (computing the minimum sized set of actions is the set cover problem and is NP-Hard)

Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Sheila McIlraith, CSC384, University of Toronto, Winter 2014

87

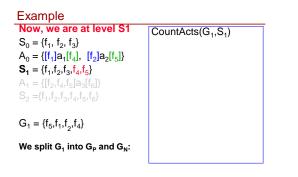
90

- NewG := G_P U preconditions of A.
- return CountAction(NewG,S_{K-1}) + size(A)

Sheila McIlraith, CSC384, University of Toronto, Winter 2014

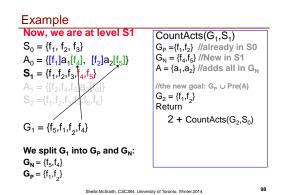
85

88


legend: [pre]act[add]		legend: [pre]act[add]		legend: [pre]act[add]	
$\begin{split} &S_0 = \{f_1, f_2, f_3\} \\ &A_0 = \{[f_1]a_1[f_4], \ [f_2]a_2[f_5]\} \end{split}$	$\begin{array}{c} \textbf{Goal: } f_6, f_5, f_1 \\ \textbf{Actions:} \\ [f_1]a_1[f_4] \\ [f_2]a_2[f_5] \\ [f_2, f_4, f_5]a_3[f_6 \end{array}$	$\begin{split} S_0 &= \{f_1, f_2, f_3\} \\ A_0 &= \{[f_1]a_1[f_4], [f_2]a_2[f_5]\} \\ S_1 &= \{f_1, f_2, f_3, f_4, f_5\} \end{split}$	$\begin{array}{c} \textbf{Goal: } \textbf{f}_{6}\textbf{,}\textbf{f}_{5}\textbf{,}\textbf{f}_{1} \\ \textbf{Actions:} \\ [f_{1}]a_{1}[f_{4}] \\ [f_{2}]a_{2}[f_{5}] \\ [f_{2}\textbf{,}\textbf{f}_{4}\textbf{,}\textbf{f}_{5}]a_{3}[f_{6} \end{array}$	$\begin{split} S_0 &= \{f_1, f_2, f_3\} \\ A_0 &= \{[f_1]a_1[f_4], [f_2]a_2[f_5]\} \\ S_1 &= \{f_1, f_2, f_3, f_4, f_5\} \\ A_1 &= \{[f_2, f_4, f_5]a_3[f_6]\} \end{split}$	$\begin{array}{c} \textbf{Goal: } f_6, f_5, f_1 \\ \textbf{Actions:} \\ [f_1]a_1[f_4] \\ [f_2]a_2[f_5] \\ [f_2, f_4, f_5]a_3[f_6] \end{array}$

Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Sheila McIlraith, CSC384, University of Toronto, Winter 2014


Example legend: [pre]act[add]		Example	Example		
		legend: [pre]act[add]		legend: [pre]act[add]	
$\begin{split} S_0 &= \{f_1, f_2, f_3\} \\ A_0 &= \{[f_1]a_1[f_4], [f_2]a_2[f_5]\} \\ S_1 &= \{f_1, f_2, f_3, f_4, f_5\} \\ A_1 &= \{[f_2, f_4, f_5]a_3[f_6]\} \\ \textbf{S}_2 &= \{f_1, f_2, f_3, f_4, f_5, f_6\} \end{split}$		$\begin{split} S_0 &= \{f_1, f_2, f_3\} \\ A_0 &= \{[f_1]a_1[f_4], [f_2]a_2[f_5]\} \\ S_1 &= \{f_{1,5}f_3, f_4, f_5\} \\ A_1 &= \{[f_2, f_4, f_5]a_3[f_6]\} \\ \textbf{S_2} &= \{f_1, f_2, f_3, f_4, f_5, f_6\} \end{split}$			
		$G = \{f_6, f_5, f_1\}$		$G = {f_6, f_5, f_1}$	
				We split G into G_P and G_N :	
Shella McIlraith, CSC384, University of Toronto, Winter 2014 91		Sheila McIlraith, CSC384, University of Toronto, Winter 2014	92	Shella McIlraith, CSC384, University of Toronto, Winter 2014	93

Example	Example	Example
legend: [pre]act[add]		Now, we are at level S1 $S_0 = \{f_1, f_2, f_3\}$ CountActs(G ₁ ,S ₁)
$S_{0} = \{f_{1}, f_{2}, f_{3}\}$ $A_{0} = \{[f_{1}]a_{1}[f_{4}], [f_{2}]a_{2}[f_{5}]\}$ $S_{1} = \{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\}$ $A_{1} = \{[f_{2}, f_{4}, f_{5}]a_{3}[f_{6}]\}$ $S_{2} = \{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\}$	$\begin{array}{l} G_{0} = \{[f_{1}]a_{1}[f_{4}], \ [f_{2}]a_{2}[f_{5}]\} \\ A_{0} = \{[f_{1}]a_{1}[f_{4}], \ [f_{2}]a_{2}[f_{5}]\} \\ S_{1} = \{f_{1},f_{2},f_{3},f_{4},f_{5}\} \\ A_{1} = \{[f_{2},f_{4},f_{5}]a_{3}[f_{6}]\} \end{array} \qquad \begin{array}{l} G_{N} = \\ A = \{a,b\} \\ (here,a) \\ G_{N} = a \} \end{array}$	
$G = \{f_6, f_5, f_1\}$ $G_N = \{f_6\} \text{ (newly achieved)}$	$S_{2} = \{f_{1}, f_{2}, f_{3}, f_{6}, f_{6}\}$ $G = \{f_{6}, f_{5}, f_{1}\}$	rm CountActs(G ₁ ,S ₁) $G_1 = \{f_5, f_1, f_2, f_4\}$
$\mathbf{G}_{p} = \{\mathbf{f}_{5}, \mathbf{f}_{1}\}$ (achieved before)	We split G into G _P and G _N :	
Shella McIlraith, CSC384, University of Toronto, Winter 2014	94 Sheila McIlraith, CSC384, University of Toronto, W	Winter 2014 95 Shella McIlinaith, CSC384, University of Toronto, Winter 2014

Sheila McIlraith, CSC384, University of Toronto, Winter 2014

97

 $\begin{array}{l} \label{eq:spin} \mbox{Example} \\ \hline \mbox{Now, we are at level S1} \\ S_0 = \{f_1, f_2, f_3\} \\ A_0 = \{[f_1]a_1[f_4], [f_2]a_2[f_5]\} \\ S_1 = \{f_1, f_2, f_3, f_4, f_5\} \\ A_1 = \{[f_2, f_4, f_5]a_3[f_6]\} \\ S_2 = \{f_1, f_2, f_3, f_4, f_5, f_6\} \\ \hline \mbox{G}_2 = \{f_1, f_2\} \\ \hline \mbox{We split G}_2 \mbox{ in G}_P \mbox{ and } G_N: \\ G_N = \{f_1, f_2\} \\ \hline \mbox{We split G}_2 \mbox{ in G}_P \mbox{ and } G_N: \\ G_N = \{f_1, f_2\} \\ \hline \mbox{We split G}_2 \mbox{ in G}_P \mbox{ and } G_N: \\ G_N = \{f_1, f_2\} \\ \hline \mbox{We split G}_2 \mbox{ in G}_P \mbox{ and } G_N: \\ G_N = \{f_1, f_2\} \\ \hline \mbox{We split G}_2 \mbox{ in G}_P \mbox{ and } G_N: \\ \hline \mbox{G}_N = \{f_1, f_2\} \\ \hline \mbox{We split G}_2 \mbox{ in G}_P \mbox{ and } G_N: \\ \hline \mbox{G}_N = \{f_1, f_2\} \\ \hline \mbox{We split G}_2 \mbox{ in G}_P \mbox{ and } G_N: \\ \hline \mbox{G}_N = \{f_1, f_2\} \\ \hline \mbox{We split G}_2 \mbox{ in G}_P \mbox{ and } G_N: \\ \hline \mbox{G}_N = \{f_1, f_2\} \\ \hline \mbox{We split G}_2 \mbox{ in G}_P \mbox{ and } G_N: \\ \hline \mbox{G}_N = \{f_1, f_2\} \\ \hline \mbox{We split G}_2 \mbox{ in G}_P \mbox{ and } G_N: \\ \hline \mbox{G}_N = \{f_1, f_2\} \\ \hline \mbox{Here} \mbox{Her$

Sheila McIlraith, CSC384, University of Toronto, Winter 2014

qq

102

Example Now, we are at level S1 CountActs(G₂,S₀) $S_0 = \{f_1, f_2, f_3\}$ $G_N = \{f_1, f_2\}$ //already in S0 $G_P = \{\}$ //New in S1 $\mathbf{S}_1 = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3, \mathbf{f}_4, \mathbf{f}_5\}$ $A = \{\}$ //No actions needed. $A_1 = \{[f_2, f_4, f_5] a_3[f_6]\}$ Return 0 $G_2 = \{f_1, f_1\}$ We split \acute{G}_2 into G_P and G_N : $G_N = \{f_1, f_2\}$ $G_{P} = \{\}$ So, in total CountActs(G.S2)=1+2+0=3 Sheila McIlraith, CSC384, University of Toronto, Winter 2014

Using the Heuristic

- First, build a layered structure from a state S that reaches a goal state.
- CountActions: counts how many actions are required in a relaxed plan.
- Use this as our heuristic estimate of the distance of S to the goal.
- This heuristic tends to work better with greedy best-first search rather than A* search
- That is when we ignore the cost of getting to the current state.

Sheila McIlraith, CSC384, University of Toronto, Winter 2014

101

Admissibility

- A minimum sized plan in the delete relaxed problem would be a lower bound on the optimal size of a plan in the real problem. And could serve as an admissible heuristic for A*.
- However, CountActions **does NOT compute** the length of the optimal relaxed plan.
- The <u>choice of which action set</u> to use to achieve G_P ("just achieved part of G") is not necessarily optimal it is minimal, but not necessary a minimum.
- Furthermore even if we picked a true minimum set A at each stage of CountActions, we might not obtain a minimum set of actions for the entire plan---the set A picked at each state influences what set can be used at the next stage!

Admissibility

- It is NP-Hard to compute the optimal length plan even in the relaxed plan space.
 - So CountActions cannot be made into an admissible heuristic without making it much harder to compute.
 - Empirically, refinements of CountActions performs very well on a number of sample planning domains.