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Abstract

Current heuristic estimators for classical domain-independent
planning are usually based on one of four ideas: delete relax-
ations, critical paths, abstractions, and, most recently, land-
marks. Previously, these different ideas for deriving heuristic
functions were largely unconnected.

We prove that admissible heuristics based on these ideas are
in fact very closely related. Exploiting this relationship, we
introduce a new admissible heuristic called the landmark cut
heuristic, which compares favourably with the state of the art
in terms of heuristic accuracy and overall performance.

Introduction

Heuristic search, either in the space of world states reached
through progression or in the space of subgoals reached
through regression, is a common and successful approach
to classical planning. For example, at the recent 6th Inter-
national Planning Competition (IPC-2008), the three best-
performing satisficing planners and two of the three best-
performing optimal planners in the sequential planning
tracks followed this paradigm.1 Apart from the choice of
search algorithm, the main feature that distinguishes heuris-
tic planners is their heuristic estimator. Most current heuris-
tic functions are based on one of the following four ideas:

1. delete relaxations: e. g., h+, hmax, hadd, hFF, hpmax, hsa

2. critical paths: the hm heuristic family

3. abstractions: pattern databases, merge-and-shrink ab-
stractions, and structural patterns

4. landmarks: LAMA’s hLM, and the admissible landmark
heuristics hL and hLA

We discuss these heuristics in detail and provide literature
references later. For now, we remark that these four ideas
have been developed in relative isolation. Indeed, apart from
Haslum and Geffner’s (2000) result that hmax is a special
case of the hm family (hmax = h1), we are not aware of any
published formal connections.

In this paper, we prove further results that relate the qual-
ity of heuristics from the above four families. We limit our
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1See http://ipc.informatik.uni-freiburg.de.

attention to admissible heuristics because it is hard to define
a notion of “heuristic quality” for inadmissible heuristics
that is independent of the search algorithm being used. Ad-
missible heuristics, in contrast, have a clear notion of domi-
nance: if h1(s) ≥ h2(s) for all states s, then h1 is superior
or equal to h2 in terms of heuristic quality, with provable
consequences for the performance of optimal search algo-
rithms. In the theoretical part of this paper, we establish
several such dominance results:

• Landmark heuristics dominate additive hmax heuristics.

• Additive hmax heuristics dominate landmark heuristics.

• Additive critical path heuristics with m ≥ 2 strictly dom-
inate landmark heuristics and additive hmax heuristics.

• Merge-and-shrink abstractions strictly dominate land-
mark heuristics and additive hmax heuristics.

• Pattern database abstractions are incomparable with land-
mark heuristics and additive hmax heuristics.

These statements are informal summaries, and some restric-
tions apply. In particular, the results for landmark heuristics
only apply to relaxation-based landmarks which are verifi-
able by a relaxed planning graph criterion. (All landmark
heuristics considered in the literature fall into this class.) On
the positive side, all results are constructive, showing how to
compute a dominating heuristic in polynomial time.

As a result of our dominance proofs, we obtain a new ad-
missible heuristic called the landmark cut heuristic hLM-cut,
which can alternatively be viewed as a landmark heuristic,
a cost partitioning scheme for additive hmax, or an approx-
imation to the (intractable) optimal relaxation heuristic h+.
We experimentally demonstrate that hLM-cut gives excellent
approximations to h+ and compares favourably to other ad-
missible heuristics in terms of accuracy. Moreover, we show
an optimal planner based on the landmark cut heuristic to be
highly competitive with the state of the art.

Preliminaries

STRIPS planning. For the theoretical results of this pa-
per, we use the propositional STRIPS formalism augmented
with non-negative actions costs (e. g., Keyder and Geffner,
2008). Some of the heuristics we discuss were originally in-
troduced for the more general SAS+ formalism (Bäckström
and Nebel 1995), to which our results apply equally.
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Definition 1 (planning task)
A planning task is a 4-tuple Π = 〈V, O, I, G〉, where

• V is a finite set of propositional state variables,

• O is a finite set of operators, each with associated pre-
conditions pre(o) ⊆ V , add effects add(o) ⊆ V , delete

effects del(o) ⊆ V and cost cost(o) ∈ R
+
0 ,

• I ⊆ V is the initial state, and

• G ⊆ V is the set of goals.

State variables of planning tasks are also called propo-
sitions or facts. A state in our formalism is a subset of
facts, representing the propositions which are currently true.
States can alternatively be defined as assignments to state
variables, but set notation is more convenient for the pur-
poses of this paper. Applying an operator o in s results in
state (s\del(o))∪add(o), which we denote as s[o]. The nota-
tion is only defined if o is applicable in s, i. e., if pre(o) ⊆ s.

Applying a sequence o1, . . . , on of operators to a state
is defined inductively as s[ε] := s and s[o1, . . . , on+1] :=
(s[o1, . . . , on])[on+1]. A plan for a state s (s-plan, or plan
when s is clear from context) is an operator sequence π such
that s[π] is defined and satisfies all goals (i. e., G ⊆ s[π]).
The cost of plan π is cost(π) :=

∑n

i=1 cost(oi). The objec-
tive of optimal planning is to find an I-plan of minimal cost
(called an optimal I-plan) or prove that no plan exists.

Heuristics. Heuristic functions or heuristics are a key in-
gredient of heuristic search planners. A heuristic is a func-
tion h : 2V → R

+
0 ∪ {∞} with the intuition that h(s) esti-

mates the cost of an s-plan. The perfect heuristic h∗ maps
each state to the cost of an optimal s-plan (infinite if no s-
plan exists). A heuristic h is admissible if h(s) ≤ h∗(s) for
all states s. All common heuristic search algorithms for opti-
mal planning require admissible heuristics. If h(s) ≥ h′(s)
for all states s, we say that h dominates h′.

Cost partitioning. If h1, . . . , hk are admissible heuris-
tics, then their pointwise maximum is an admissible heuristic
dominating each individual heuristic. Under certain condi-
tions, their pointwise sum, which dominates the maximum,
is also admissible. Many recent advances in the accuracy of
admissible planning heuristics are due to better, more fine-
grained methods for finding admissible additive heuristics.

Katz and Domshlak (2008a) introduced a very gen-
eral criterion for admissible additive combinations. Let
Π, Π1, . . . ,Πk be planning tasks which are identical except
for the operator costs. Let cost : O → R

+
0 denote the op-

erator cost function for Π and costi : O → R
+
0 denote the

operator cost functions for Πi. If
∑k

i=1 costi(o) ≤ cost(o)
for all operators o ∈ O, then the sum of arbitrary admissible
heuristics for Πi is an admissible heuristic for Π. We call
such a separation of Π into planning tasks Π1, . . . ,Πk with
smaller operator costs a cost partitioning of Π.

Cost partitioning offers a very flexible way of additively
combining different heuristic estimates in an admissible
way. In particular, it subsumes earlier additivity criteria for
pattern database heuristics by Edelkamp (2001) and for gen-
eral admissible heuristics by Haslum et al. (2005).

Of course, different cost partitionings for the same com-
ponent heuristics lead to overall heuristics of different qual-

ity, and the question of how to automatically derive a good
cost partitioning has attracted considerable interest. At least
theoretically, this question has recently been fully resolved
for abstraction heuristics (Katz and Domshlak 2008a) and
landmark heuristics (Karpas and Domshlak 2009) with the
development of algorithms that compute an optimal cost par-
titioning for a given state and component heuristic set in
polynomial time. Practically, it is still an interesting ques-
tion how to reduce the time requirements of these optimal
partitioning algorithms or come up with approximate results
quickly. For relaxation heuristics and critical path heuris-
tics, the question of optimal cost partitioning remains open.
Suboptimal algorithms have been presented by Haslum et al.
(2005) and by Coles et al. (2008).

Planning Heuristics

We now formally introduce the heuristic functions we con-
sider in our analysis.

Relaxation heuristics. Relaxation heuristics estimate the
cost of reaching a goal state by considering a relaxed task
Π+ derived from the actual planning task Π by ignoring all
delete effects of operators, i. e., replacing each operator o by
a new operator o+ with the same preconditions, add effects
and cost as o and del(o+) = ∅. (Notation: if S is an operator
set, S+ denotes the set { o+ | o ∈ S }.)

The idealized h+ heuristic (Hoffmann and Nebel 2001)
uses the cost of an optimal s-plan in Π+ as the heuris-
tic estimate for state s. This is an admissible heuristic
that is often very informative (Hoffmann 2005; Helmert and
Mattmüller 2008; Betz 2009), but NP-hard to compute (By-
lander 1994). Due to its computational complexity, the h+

heuristic has not been used in a domain-independent plan-
ning system. Instead, inadmissible estimates of h+ such as
the additive heuristic (Bonet and Geffner 2001), FF heuristic
(Hoffmann and Nebel 2001), pairwise max heuristic (Mirkis
and Domshlak 2007) or set-additive heuristic (Keyder and
Geffner 2008) are commonly used. Inadmissible estimates
of h+ cannot be admissible heuristics (consider the case
Π = Π+), and hence we do not discuss them further.

Instead, we focus on the max heuristic hmax (Bonet
and Geffner 2001), which provides an admissible esti-
mate for h+. The hmax value of a state s of planning
task 〈V, O, I, G〉 is defined in terms of proposition costs
cs(v), with hmax(s) = maxv∈G cs(v). The proposition
costs are defined as the maximal solution to the recur-
sive equations costs(v) = 0 for v ∈ s and cs(v) =
mino∈O with v∈add(o)(cost(o) + maxp∈pre(o) cs(p)) for v /∈ s.
(Empty minima are defined as ∞ here, empty maxima as 0.)

The max heuristic is often not very informative, but this
weakness can be overcome to a large extent by using suitable
cost partitioning (e. g., Coles et al., 2008). In this case, all
component heuristics are copies of the hmax heuristic with
different cost functions. We will call such heuristics additive
hmax heuristics. Note that all additive hmax heuristics are
admissible heuristics for Π+ and hence dominated by h+.

Critical path heuristics. The hm heuristics (Haslum and
Geffner 2000) estimate goal distances by computing lower-
bound estimates on the cost of achieving sets of facts of car-
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dinality m, where m ∈ N1 is a parameter. Roughly speak-
ing, the underlying simplifying assumption is that a set of
facts is reachable with cost K iff all its m-subsets are reach-
able with cost K . Computing hm(s) requires polynomial
time for fixed m, but exponential time in m.

We call the hm family critical path heuristics because
their heuristic estimate is based on the length of the most
expensive branch in a tree-shaped plan (not unlike a partial-
order plan) for the simplified problem. All hm heuristics are
admissible. In typical planning benchmarks, the hm heuris-
tics have unbounded relative error (Helmert and Mattmüller
2008), but as with hmax = h1 this weakness can be overcome
by suitable cost partitioning. For all m ≥ 2, hm dominates
hm−1 and is incomparable with h+.

Abstraction heuristics. Abstraction heuristics map each
state s of Π to an abstract state α(s) through a homomor-
phism function α. The heuristic value hα(s) is then the dis-
tance from α(s) to the nearest abstract goal state in the tran-
sition system induced by α on the transition system of Π.
This always leads to an admissible heuristic because each
plan for Π has a corresponding abstract plan with the same
cost. The real cost can be underestimated because α is gen-
erally not injective and hence not every abstract plan corre-
sponds to a plan for Π.

Different abstraction mappings lead to heuristics of differ-
ent quality. Examples include pattern databases (Edelkamp
2001; Haslum, Bonet, and Geffner 2005; Haslum et al.
2007), merge-and-shrink abstractions (Helmert, Haslum,
and Hoffmann 2007) and structural patterns (Katz and
Domshlak 2008b). Katz and Domshlak (2008a) showed that
optimal cost partitions for an ensemble of abstraction heuris-
tics can be computed in polynomial time. However, finding
an abstraction mapping that is compactly representable and
leads to an informative heuristic remains difficult.

Landmark heuristics. A fact landmark for a state s is
a fact that is true at some point in every s-plan. The first
planning algorithm exploiting fact landmarks was presented
by Porteous et al. (2001). The first (inadmissible) landmark-
based heuristic is due to Richter et al. (2008), and several
admissible landmark heuristics have recently been defined
by Karpas and Domshlak (2009). The latter papers use ex-
tended notions of landmarks which are subsumed by dis-
junctive action landmarks: sets of actions of which at least
one is part of every s-plan. Since this is the most general and
(for this paper) useful notion of landmarks, we simply refer
to disjunctive action landmarks for a state s as s-landmarks.

Deciding whether an operator set L ⊆ O is an s-landmark
in a planning task Π is PSPACE-hard (Porteous, Sebas-
tia, and Hoffmann 2001) and therefore existing landmark
heuristics employ a sufficient criterion based on relaxed
planning graphs. This criterion is equivalent to testing
whether L+ is an s-landmark in the delete relaxation Π+.
For this reason, the existing landmark heuristics assign the
same heuristic value to states of Π and Π+, and therefore
they are relaxation heuristics in the sense that they are dom-
inated by h+ (if they are admissible). We only consider
relaxation-based landmarks in this paper, but more general
landmarks are certainly conceivable, for example based on

reachability criteria for higher-order critical path heuristics.
The elementary landmark heuristic for planning task Π

and operator subset L assigns the estimate mino∈L cost(o)
to a state s if L+ is an s-landmark of Π+ and 0 otherwise.
This is clearly admissible: if L+ is an s-landmark, one of
its elements must be contained in every plan for Π+ and
hence at least the cost of the cheapest operator in L must be
paid. The admissible heuristics of Karpas and Domshlak can
be understood as cost partitionings over sets of elementary
landmark heuristics. This is a slightly idealized view be-
cause their search algorithm does not actually test for each
search state whether an operator set is a landmark but rather
uses a more efficiently computable sufficient criterion that
loses some heuristic accuracy.

Landmarks vs. h
max vs. Abstractions

We now present the main theorems relating admissible land-
mark heuristics to additive hmax heuristics and abstraction
heuristics. All our results take on the form of per-state com-
pilations: given a state s, a planning task Π and an additive
ensemble of heuristics h1, . . . , hk from a given class (e. g.,
elementary landmark heuristics), we show how to compute
an additive ensemble of heuristics from another class (e. g.,
merge-and-shrink abstraction heuristics) h′

1, . . . , h
′

m with∑m

i=1 h′

i(s) ≥
∑k

i=1 hi(s). We only discuss the case k = 1,
which suffices: general results follow by compiling the com-
ponent heuristics individually. Our algorithms are polyno-
mial in ‖Π‖, which prevents some trivial compilations. (For
example, exponential-size abstractions can always represent
the perfect heuristic h∗, which dominates everything.)

Throughout this section, Π = 〈V, O, I, G〉 is the given
planning task and we assume that the heuristic value is to be
computed for the state I .

From Landmarks to Abstractions

We first consider compilations from elementary land-
mark heuristics to abstraction heuristics, namely to pattern
databases and merge-and-shrink abstractions. The converse
compilations are clearly not possible in general because,
unlike elementary landmark heuristics, neither of these ab-
straction heuristics are bounded by h+. For pattern database
heuristics, we prove a negative result.

Theorem 1 (Landmarks to pattern databases)
There is no polynomial-time compilation of elementary
landmark heuristics into pattern database heuristics.

Proof sketch: Consider the planning task family (Πn)n∈N1

where Πn has state variables {v1, . . . , vn, g}, initial state
∅, goal {g} and an operator set containing, for each i ∈
{1, . . . , n}, one “setup operator” of cost 1 that achieves {vi}
with no preconditions and one “goal operator” of cost 0 that
achieves the goal {g} with precondition {vi}.

The set of all setup operators forms an I-landmark in Πn,
and we get h(I) = 1 for the associated elementary landmark
heuristic. However, all pattern database heuristics h′ for Πn

that project away at least one state variable yield h′(I) =
0, and the polynomial-time requirement demands that some
variables need to be projected away for large n.
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The weakness of pattern databases exploited in our proof
is that their capabilities for representing “disjunctive re-
sources” like the facts vi are very limited. We remark that
this does not apply to symbolic pattern databases (Edelkamp
2002), which have exponentially more compact representa-
tions than traditional pattern databases on some planning
tasks. Merge-and-shrink abstractions (Helmert, Haslum,
and Hoffmann 2007) are another class of abstraction heuris-
tics that do not share this weakness. Indeed, they are power-
ful enough to completely capture landmark heuristics.

Theorem 2 (Landmarks to merge-and-shrink abstractions)
Elementary landmark heuristics can be compiled into
merge-and-shrink heuristics in polynomial time.

Proof sketch: We are given the elementary landmark
heuristic h for the operator subset L. Let V ′ be the set of
facts that can be reached from I in Π+ without using the
operators L+. The set V ′ can be computed in polynomial
time by a standard relaxed exploration. Now consider the
abstraction heuristic h′ induced by

α(s) =

{
s̃1 if s ⊆ V ′

s̃2 if s ⊆ V ′

(where the abstract state space consists of only two states).
We must show that α can be computed as a merge-and-

shrink abstraction in polynomial time. But this is easy to
see: we can use a linear merge strategy with an arbitrary
variable order and shrink all intermediate abstract transition
graphs to two abstract states, one corresponding to all states
where the state variables not in V ′ that were considered so
far in the heuristic construction all have value 0, and the
other corresponding to all other states.

Now let us compare h′(I) to h(I). If L+ is not an I-
landmark of Π+, then h(I) = 0 and hence clearly h′(I) ≥
h(I). So consider the case where L+ is an I-landmark of
Π+. This implies that G ⊆ V ′, and hence s∗ ⊆ V ′ for
all goal states s∗, which shows that α(s∗) = s̃2 for all goal
state. Therefore, s̃2 is the only abstract goal state. Moreover,
α(I) = s̃1, as clearly I ⊆ V ′. All abstract plans must
therefore perform a transition from s̃1 to s̃2, and h′(I) is
the minimal cost of all such transitions.

Assume that there is a state transition in Π from a state
s1 ⊆ V ′ (i. e., a state with α(s1) = s̃1) to a state s2 ⊆ V ′

(i. e., a state with α(s2) = s̃2) by an operator o /∈ L.
Then the relaxation of o is applicable in state s1 in Π+ and
leads to a state s′2 ⊆ V ′, which contradicts the definition
of V ′. Hence, all abstract transitions from s̃1 to s̃2 are in-
duced by some operator from L and thus have cost at least
mino∈L cost(o). Because all abstract solutions must contain
such a transition, we get h′(I) ≥ mino∈L cost(o) = h(I).

This concludes our comparison of landmark heuristics
and abstraction heuristics: landmark heuristics are strictly
less powerful than merge-and-shrink abstractions and in-
comparable to pattern database heuristics.

From Landmarks to hmax and Back

We now move away from abstraction heuristics and consider
the relationship between landmark heuristics and the max
heuristic. Our first result has a simple proof.

Theorem 3 (Landmarks to hmax)
Elementary landmark heuristics can be compiled into addi-
tive hmax heuristics in polynomial time.

Proof sketch: We are given the elementary landmark
heuristic h for the operator subset L. We directly compile
h to the hmax heuristic for the same planning task (i. e., we
do not perform additional cost partitioning). Again, let L+

be the relaxed operators induced by L.
As in the proof of Theorem 2, if L+ is not an I-landmark

of Π+, then clearly hmax(I) ≥ 0 = h(I). If L+ is an
I-landmark of Π+, then Π+ is not solvable without using
some operator in L+, which means that hmax(I) would be
infinite if the operators in L did not exist. This implies that
if hmax(I) = ∞, then the cost computation for hmax(I) must
make use of at least one of the operators in L, and hence
hmax(I) ≥ mino∈L cost(o) = h(I).

Extending this result to arbitrary cost partitionings, we
observe that additive hmax heuristics are at least as powerful
as admissible landmark heuristics. We now show (maybe
somewhat more surprisingly) that the converse is also true
under a small additional condition.

Theorem 4 (hmax to landmarks)
For states with finite hmax value, the hmax heuristic can be
compiled into additive elementary landmark heuristics in
polynomial time.

Proof sketch: If hmax(I) = 0, there is nothing to prove.
Otherwise, we show how to find a cost partitioning cost =
cost1 + cost2 for Π with two heuristics h1 and h2 such that

• hmax(I) ≤ h1(I) + h2(I),

• h1 is an elementary landmark heuristic with cost function
cost1, and

• h2 is the hmax heuristic with cost function cost2.

The reduction is then applied recursively to h2 if h2(I) > 0.
As we show later, the set of zero cost operators is strictly
larger for cost2 than for cost, so that the process terminates
in polynomially many (at most |O|) steps. We now describe
how to find the landmark that defines heuristic h1 and how
to perform the cost partitioning of cost into cost1 and cost2.

Without loss of generality, we assume that there exists
at least one fact in I , at least one fact in G, and that each
operator has at least one precondition. (If necessary, add a
“dummy fact” d to I , G and all preconditions.) We first de-
termine the hmax cost values of all facts V and then compute
a modified planning task Π′ obtained from Π+ by two trans-
formations. First, we turn the goal set and all operator pre-
conditions into singleton sets by keeping only one fact with
maximal hmax cost among the set elements. This is a further
relaxation of Π+ because we drop goals and operator pre-
conditions while leaving all else identical. Because we keep
the hmax cost maximizers in each condition, hmax(I) is not
changed by this transformation. In the second transforma-
tion step, we replace each operator o with pre(o) = {p} and
add(o) = {a1, . . . , ak} with k operators o1, . . . , ok with
pre(oi) = {p} and add(oi) = {ai} for i ∈ {1, . . . , k}.
That is, operators are split up according to their add effects.
Again, it is easy to verify that this transformation does not
affect the hmax value.
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The resulting planning task, which we call Π′, has a sin-
gleton goal set and all operators have exactly one precondi-
tion, exactly one add effect, and no delete effects. Based on
Π′, we define a directed weighted graph GΠ′ whose vertices
are the facts of Π and which has an arc from u to v with
weight w iff Π′ has an operator with precondition u, add ef-
fect v and cost w. (Parallel arcs are possible for multiple
operators with identical precondition and effect.) We call
this graph a justification graph for Π because, even though
it describes a planning task much simpler than Π, it retains
enough information to justify the hmax costs of Π. The hmax

cost of a fact v is the length of a shortest path in the justifi-
cation graph from some fact in I to v.

A cut in the justification graph is a set of arcs of GΠ′ such
that all paths from some fact in I to the goal fact g traverse
at least one such arc. Cuts in the justification graph are guar-
anteed to exist: for example, the set of all arcs clearly forms
a cut. (We cannot have g ∈ I because hmax(I) > 0.) Cuts
in the justification graph correspond to I-landmarks of Π′:
without the operators of Π′ that define the cut, Π′ cannot be
solved. Due to the construction of Π′ as a further relaxation
of Π+, this implies that the operators L+ that induce the cut
form a landmark of Π+.

Given a cut, we can compile hmax into an elementary
landmark heuristic h1 that represents the cut and a remain-
ing hmax heuristic h2 that represents everything else. In
detail, we choose as h1 the elementary landmark heuris-
tic for the landmark L that corresponds to the cut, and
associate with it the cost function cost1 that assigns cost
cmin := mino∈L cost(o) to all operators o ∈ L and cost 0
to all other operators. The heuristic h2 is the hmax heuristic
with cost function cost2 := cost − cost1. To complete the
proof, we need to find a cut that guarantees

(a) cmin > 0 and

(b) h1(I) + h2(I) ≥ hmax(I).

Condition (a) ensures that cost2 has more zero-cost actions
than cost and hence the partitioning process eventually ter-
minates. Condition (b) ensures that we obtain a heuristic
value at least as large as the initial hmax(I) estimate.

To find a suitable cut, we partition the facts of Π into three
sets:

• the goal zone V ∗, consisting of all facts from which the
goal fact g can be reached in GΠ′ through a path of cost
0. The goal zone is disjoint from I because otherwise we
would have hmax(I) = 0.

• the before-goal zone V 0, consisting of all facts that can be
reached from I in GΠ′ without ever entering V ∗, and

• the beyond-goal zone, consisting of everything else.

As our cut, we choose the set of all arcs from facts in V 0

to facts in V ∗. Let L be the set of operators inducing the cut.
We now show that this satisfies conditions (a) and (b) above.

For (a), assume that cmin = 0, i. e., cost(o) = 0 for some
o ∈ L. Then there is an arc of weight 0 from some v0 ∈ V 0

to some v∗ ∈ V ∗. But this violates the definition of the goal
zone V ∗, because then there would be a 0-cost path from v0

to the goal fact g and v0 should be included in V ∗. This is a
contradiction, and we can conclude that cmin > 0.

additive h1

= additive hmax

= additive landmarks

additive pattern
databases

additive
merge-and-shrink

additive hm

(m ≥ 2)
?

Figure 1: Summary of compilation results. Arrows indicate
that heuristics in one class can be compiled into dominat-
ing heuristics in the other class in polynomial time. Dotted
lines indicate that such compilations are not possible in ei-
ther direction. Additive merge-and-shrink heuristics cannot
be compiled into additive hm heuristics in polynomial time;
the converse question is open.

For (b), we know that L+ is an I-landmark of Π+ and
hence h1(I) = mino∈L cost1(o) = cmin. It remains to be
shown that h2(I) ≥ hmax(I)−cmin. In words, we must show
that reducing the cost of the operators in L by cmin does not
decrease the hmax value of the task by more than cmin. To
see this, observe that we can require that every “reasonable”
path in the justification graph from I to the goal fact only
passes from V 0 to V ∗ (and hence uses an operator from L)
once: as soon as the goal zone is reached, the goal fact can be
reached free of cost, and thus, once the goal zone is reached,
it should not be left again. Hence, reducing the costs of the
operators in L by cmin cannot reduce the goal distances in
the justification graph by more than cmin. Since the goal
distances correspond to the hmax costs of Π′ and Π′ is a re-
laxation of Π+ in terms of hmax value, we can conclude that
the cost reduction only reduces the hmax value of Π by at
most cmin. This concludes the proof.

We remark that the restriction of the theorem to states with
finite hmax values is necessary because elementary landmark
heuristic values – and hence there admissible additive com-
binations – are always finite. However, in practical appli-
cations of the compilation algorithm this restriction is not
problematic because infinite hmax estimates can be detected
in the first compilation step.

Discussion of the Compilation Results

Our compilation results are summarized in Fig. 1.2 There are
two results we consider quite surprising, namely the equiv-
alence of additive hmax and additive landmarks, and the fact
that these heuristics are strictly dominated by merge-and-
shrink heuristics. Besides being an academic curiosity, do

2For space reasons, we do not provide a proof for one of the
results shown in the figure, namely that pattern database heuristics
cannot be compiled to general additive h

m heuristics. The proof is
quite simple and exploits the fact that h

m is bounded by O(Nm)
in uniform-cost domains, where N is the set of atoms of the task.
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these results have any further implications for the study of
admissible planning heuristics?

For the compilation of additive hmax/landmarks to merge-
and-shrink heuristics, we do not see any immediate appli-
cation. The reduction in Theorem 2 appears too costly to
use for every state of a search, and also it typically leads
to a heuristic estimate that is no larger than for the original
landmark heuristic. Still, it is worth noting that our results
imply that the scaling behaviour of abstraction heuristics can
be at least as good as that of landmark heuristics – opposite
to recent experimental evidence (cf. the scaling experiments
by Karpas and Domshlak, 2009). This suggests that there
is scope for improving the current methods for generating
merge-and-shrink abstractions. However, we have no imme-
diate insights on how such improvements could be obtained.

Regarding the equivalence of additive hmax and admissi-
ble landmark heuristics, however, there are some immediate
consequences of our result which we consider to be of inter-
est. Firstly, we get some insights into the problem of com-
puting optimal additive hmax heuristics, about which very
little was known previously (cf. the discussion of Katz and
Domshlak, 2008a). We now know that this problem is equiv-
alent to finding an optimal admissible landmark heuristic,
for which we can at least provide a brute force algorithm:
generate all possible disjunctive fact landmark heuristics,
then compute an optimal cost decomposition. Since there
are exponentially many possible disjunctive fact landmarks,
this is an exponential algorithm and hence not practical, but
this is still an improvement over the previous situation where
no algorithm for optimal additive hmax was known.

Secondly, the reduction used in Theorem 4 can actually be
used in practice to improve the heuristic estimates of a given
additive hmax heuristic. The computation of a single cut can
be performed in O(‖Π‖), the same asymptotic time it takes
to compute a single hmax estimate. The overall runtime of
the procedure is then bounded by O(|O| · ‖Π‖), no worse
than the time required for computing h2.

Landmark Cut Heuristic
One way to make use of the reduction from additive hmax

to landmarks is to apply it to the simplest possible additive
hmax heuristic, namely to standard hmax without any cost de-
composition. This results in a heuristic that estimates goal
distances by repeatedly computing landmarks that constitute
cuts in justification graphs, until the generated landmarks
have eroded so much cost from the original hmax heuristic
that no further cuts of nonzero cost can be found. We have
implemented the resulting heuristic, which we call the land-
mark cut heuristic hLM-cut, and performed two experiments
with it. In the first experiment, we focus on heuristic ac-
curacy, without regard for computation time. In the second
experiment, we consider the use of the heuristic within an
A∗-based optimal planning algorithm.

Our planner implementation is built on the implemen-
tation of merge-and-shrink abstractions by Helmert et
al. (2007). We evaluate on all IPC benchmark domains sup-
ported by that system.

All experiments were conducted on Linux computers with
3 GHz Intel E8400 CPUs using a 30 minute timeout. We set

Domain h+ hmax HBG CFLS hLA hLM-cut

Airport (37) 114.38 36.68 n/a 110.49 108.97 114.38

Blocks (35) 17.37 7.54 16.86 12.00 17.37 17.37

Gripper (20) 47.00 2.00 n/a 47.00 47.00 47.00

Logistics-2000 (26) 35.12 5.85 31.42 33.81 35.00 35.12

Miconic-STRIPS (150) 50.47 2.99 5.11 32.00 50.47 50.47

Pathways (5) 15.60 5.80 5.80 9.00 7.60 15.60

PSR-Small (50) 3.14 1.46 2.78 2.46 3.14 3.14

TPP (18) 32.17 6.39 n/a n/a 17.61 32.17

Depot (10) 20.90 4.70 14.80 17.40 17.50 20.50

Driverlog (14) 15.50 4.71 10.71 12.00 13.43 15.00

Grid (2) 15.00 10.50 10.50 11.50 11.50 14.00

Logistics-1998 (10) 27.90 5.30 n/a 22.10 23.50 27.70

MPrime (24) 5.42 3.54 n/a 4.38 3.42 4.92

Rovers (14) 18.21 3.71 12.21 11.43 11.64 18.00

Satellite (9) 17.11 3.00 4.22 9.33 15.89 16.89

Zenotravel (13) 11.62 2.85 9.08 9.46 11.00 11.54

FreeCell (6) 8.33 3.00 7.00 3.33 7.67 7.17

Mystery (18) 6.44 3.56 n/a 4.72 3.67 5.39

Openstacks (5) 21.00 4.00 12.00 17.00 21.00 17.20

Pipesworld-NoTankage (18) 10.28 4.33 n/a 4.50 7.17 8.28

Pipesworld-Tankage (11) 8.36 3.91 n/a 3.91 6.27 6.82

Trucks (10) 21.70 4.00 20.50 9.90 14.60 20.50

avg. additive error compared to h+ 27.99 17.37 8.05 1.94 0.28

avg. relative error compared to h+ 68.5% 40.9% 25.2% 9.5% 2.5%

Table 1: Comparison of heuristic accuracy of relaxation
heuristics. Domains are annotated with the number of in-
stances considered, and the following columns show the av-
erage h values for the initial states of these instances. En-
tries n/a indicate running out of memory or time on some in-
stances. Best approximations to h+ are highlighted in bold.

a 1.5 GB memory limit except for runs with the Gamer plan-
ner, which for technical reasons required 2 GB of memory.

Accuracy. To evaluate its accuracy, we compare the land-
mark cut heuristic to other heuristics from the same class,
i. e., based on hmax or landmarks. In detail, we compare to

• plain hmax (Bonet and Geffner 2001),

• the original additive hmax heuristic (Haslum, Bonet, and
Geffner 2005), abbreviated as HBG,

• the recent ADHG decomposition for additive hmax (Coles
et al. 2008), abbreviated as CFLS, and

• the admissible landmark heuristic hLA (Karpas and
Domshlak 2009).

None of these heuristics take delete effects into account, so
they are all bounded by h+. The objective of our experiment
is to determine how closely each of them approximates h+.
For this purpose, we compute the initial state heuristic val-
ues for all of our benchmark tasks where we were able to
compute the corresponding value for h+.3

Table 1 shows the results of the experiment. We see that
hLM-cut is a significantly more accurate approximation to h+

than the other approaches. The average additive error com-
pared to h+ across all instances is 0.28, implying that for

3It is likely that in cases where we cannot determine h
+, the

heuristic errors are larger for all five heuristics, so the absolute
errors reported are not necessarily indicative of large instances.
The h

+ values were computed through domain-specific techniques
(Betz 2009) and heuristic search in the delete relaxation.

167



Domain hLM-cut hLA hm&s hmax h0 Gamer HSP∗

F

Airport (50) 38 24 16 20 17 11 15

Blocks (35) 28 20 18 18 18 30 30

Depot (22) 7 7 7 4 4 4 4

Driverlog (20) 14 14 12 8 7 11 9

FreeCell (80) 15 28 15 15 14 11 20

Grid (5) 2 2 2 2 1 2 0

Gripper (20) 6 6 7 7 7 20 6

Logistics-2000 (28) 20 20 16 10 10 20 16

Logistics-1998 (35) 6 5 4 2 2 6 3

Miconic-STRIPS (150) 140 140 54 50 50 85 45

MPrime (35) 25 21 21 24 19 9 8

Mystery (19) 17 15 14 15 15 8 9

Openstacks (30) 7 7 7 7 7 7 7

Pathways (30) 5 4 3 4 4 4 4

Pipesworld-NoTankage (50) 17 17 20 17 14 11 13

Pipesworld-Tankage (50) 11 9 13 10 10 6 7

PSR-Small (50) 49 48 50 49 48 47 50

Rovers (40) 7 6 6 6 5 5 6

Satellite (36) 8 7 6 5 4 6 5

TPP (30) 6 6 6 6 5 5 5

Trucks (30) 10 7 6 7 5 3 9

Zenotravel (20) 12 9 11 8 7 10 8

Total 450 422 314 294 273 321 279

Table 2: Comparison of solved tasks. Number of tasks in
each domain is shown in parentheses (11 unsolvable Mys-
tery tasks omitted). Best results are highlighted in bold.

at least 72% of the tasks we obtain the perfect h+ estimate.
The next best heuristic, hLA, has an error of 1.94, almost
7 times the value for hLM-cut. Considering relative error,
hLM-cut outperforms hLA by a factor of 3.8. Looking at indi-
vidual domains, there are eight cases where all hLM-cut esti-
mates are perfect (upper part of the table), eight cases where
the average additive error is at most 1 (middle part) and six
cases where it is larger (bottom part). Compared to the other
heuristics, the estimates of hLM-cut are best in all domains ex-
cept FreeCell and Openstacks, where hLA is more accurate.

In summary, the experiment shows that the hLM-cut heuris-
tic provides excellent heuristic estimates. While we only
compare heuristic estimates to h+-based heuristics, we re-
mark that such heuristics define the state of the art of ad-
missible planning heuristic accuracy. In particular, Karpas
and Domshlak (2009) report that hLA is much more infor-
mative than current merge-and-shrink abstractions on large
IPC benchmarks. Our results suggest that the landmark cut
heuristic is even more informative.

Optimal Planning. To evaluate the usefulness of the
landmark cut heuristic for optimal planning algorithms, we
compare our A∗ implementation to four other heuristics:
hLA, hm&s (merge-and-shrink abstractions of size 10,000),
hmax, and h0 (i. e., blind search). All these heuristics were
implemented within an otherwise identical planning system
except that for hLA we replaced A∗ with LM-A∗, which per-
forms better for this heuristic. (We also ran experiments with
merge-and-shrink abstractions of size 100,000, which per-
formed worse overall than the hm&s results reported here.)

Additionally, we report results for the winner and runner-
up of IPC-2008, Gamer and HSP∗

F. Note that the h0 heuristic
corresponds to the baseline planner used at IPC-2008, which
narrowly outperformed Gamer at the competition.

hLM-cut hLA hmax

Inst. h∗ h Exp. Time h Exp. Time h Exp. Time

Blocks

#9-0 30 16 13162 13.65 16 260857 132.87 9 3840589 85.00

#9-1 28 16 347 0.37 16 14852 7.93 10 1200345 32.06

#9-2 26 17 598 0.67 17 6581 3.40 9 1211463 32.15

#10-0 34 18 239854 316.84 18 9

#10-1 32 19 28989 43.75 19 1393515 919.68 8

#10-2 34 19 82883 131.31 19 10

#11-0 32 19 63891 110.45 19 8

#11-1 30 21 59335 120.92 21 4

#11-2 34 19 53638 91.88 19 9

#12-0 34 22 58123 133.34 22 10

#12-1 34 22 6284 14.20 22 272199 250.78 11

#14-0 38 25 100500 388.30 25 10

#14-1 36 27 160350 762.76 27 6

Satellite

#1 9 8 10 0.00 8 10 0.01 3 59 0.00

#2 13 12 14 0.00 12 14 0.00 3 940 0.00

#3 11 10 16 0.02 9 494 0.09 3 6822 0.11

#4 17 17 26 0.05 17 993 0.47 3 180815 3.37

#5 15 14 41 0.26 11 12013 7.78 3

#6 20 17 2584 9.85 17 24200 25.19 3 10751017 371.43

#7 21 20 934 14.10 20 157984 290.03 3

#9 27 25 19855 673.06 21 3

Openstacks

#1 23 17 1224 0.35 21 601 0.11 4 4016 0.03

#2 23 18 1565 0.38 21 688 0.12 4 4594 0.04

#3 23 17 1224 0.34 21 593 0.10 4 4016 0.03

#4 23 17 1224 0.35 21 601 0.11 4 4016 0.03

#5 23 17 1224 0.34 21 592 0.10 4 4016 0.03

#6 45 36 210469 234.67 41 93267 51.57 4 822514 18.71

#7 46 35 266533 269.67 41 107679 59.41 4 787163 17.81

Table 3: Detailed results (15 smallest Blocks tasks omitted).
For each solved task, we report the optimal plan length h∗

and, for each heuristic, the initial state estimate, number of
node expansions, and search time (in seconds). Best results
are highlighted in bold.

Table 2 shows the number of planning tasks solved by
each planner. The two dominating approaches are A∗ with
hLM-cut and LM-A∗ with hLA, both of which solve more than
400 tasks, while the next best planner, Gamer, solves 312.
To put these numbers in perspective, the margin between the
two best planners and Gamer is about twice as large as the
margin between Gamer and blind search. For 16 of the 22
domains, hLM-cut is one of the top performers, and in the
other cases it usually gets close. The only clear exceptions
are Gripper, where A∗ with imperfect heuristics cannot be
competitive with BDD-based planners like Gamer for rea-
sons discussed by Helmert and Röger (2008), and FreeCell.

Comparing hLM-cut to hLA, we see that hLM-cut solves sig-
nificantly more tasks than hLA (450 vs. 422). Moreover,
it solves more tasks than hLA in 12 domains, while being
worse in only one (FreeCell).

To provide some insights about why hLM-cut outperforms
hLA, Tab. 3 presents detailed experimental data for three do-
mains, chosen as representatives of the three domain classes
distinguished in the first experiment: Blocks (perfect h+

estimates), Satellite (average errors between 0 and 1) and
Openstacks (average errors greater than 1). We report re-
sults for hLM-cut, hLA and, as a baseline, hmax.
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We first discuss the Openstacks results; note that this is
the domain where hLM-cut approximates h+ worst among all
domains in the first experiment. Table 3 shows that this leads
to more expansions than hLA (by a factor of 2.0–2.4) and
consequently longer planning time (by a factor of 3.2–4.6).
Still, both heuristics solve the same set of tasks. The best
performer in this domain is hmax, due to its comparatively
fast heuristic computations and despite requiring many more
node evaluations than hLM-cut and hLA.

In Blocks and Satellite, hLM-cut requires much more time
per node, but ends up faster overall due to better heuristic
guidance, in particular for large instances. The same be-
haviour can be observed in many of the other domains.

The gap in heuristic quality between hLM-cut and hLA in
Blocks is huge: hLM-cut solves eight additional tasks and re-
quires a factor of 43–48 fewer expansions on the two largest
commonly solved tasks. At first glance, this appears surpris-
ing: according to Tab. 1, both heuristics always obtain per-
fect h+ estimates in this domain. The reason for the discrep-
ancy is that hLM-cut recomputes all relevant information for
every search state, while hLA relies on expensive precom-
putations performed only for the initial state. Therefore, the
quality of hLA deteriorates as search moves away from the
initial state. We remark that this strong reliance on the initial
state is not unique to hLA: it is shared by all current abstrac-
tion heuristics and additive hmax partitioning algorithms.

Concluding our discussion of the second experiment, we
think it is fair to say that the landmark cut heuristic advances
the state of the art in optimal sequential planning.

Conclusion
The main motivation for this work was the lack of formal
results that connect different kinds of admissible planning
heuristics. We have contributed towards changing this by
providing several compilation results for delete relaxations,
critical paths, abstractions and landmarks. It turns out that
these concepts are much more closely related than was pre-
viously known. However, open questions remain. In partic-
ular, we still do not know how hard it is to find an optimal
cost decomposition for hmax, although we have made some
progress towards answering this question. We also do not
know if abstraction heuristics are powerful enough to cap-
ture the hm heuristics for larger values of m.

Theoretical results of the kind presented in this paper
are occasionally criticized for not being of practical rele-
vance. We believe these results to be highly relevant be-
cause they open new avenues towards finding better plan-
ning heuristics, combining the strengths of previously dis-
connected concepts. We have explored one such avenue: the
landmark cut heuristic, based on our compilation from ad-
ditive hmax to landmark heuristics, is highly informative and
leads to a very strong optimal planning algorithm. Other
avenues remain to be explored. Our results show that ab-
straction heuristics are theoretically more powerful than re-
laxation heuristics, yet the best-performing heuristics in use
today are relaxation heuristics. Trying to leverage the power
of abstraction heuristics in a way that makes them consis-
tently competitive with good relaxation heuristics remains
an important open problem.
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