The FF Planning System

Jorge A. Baier

Department of Computer Science
University of Toronto

Toronto, Ontario, Canada

CSC2542 — Topics in Knowledge Representation and Reasoning

Computer Science
2 UNIVERSITY OF TORONTO

The Fast Forward (FF) Planning System

m Was proposed by Hoffmann & Nebel (2001).

m Was the winner of the 2000 planning competition.
m Its novel elements are the following:

m Heuristic based on relaxed plans.

m Enforced Hill Climbing Used as the Search Strategy.

m lts core ideas have had substantial impact.

£
34 Computer Science
UNIVERSITY OF TORONTO

J. Baier: The FF Planning System 2/13

The Fast Forward (FF) Planning System: Approach

Compile problem into grounded STRIPS.
Perform Enforced-Hill-Climbing (EHC) until either solved or
no further progress can be made.
m Sound, not complete.
Perform Best-First-Search
m Sound, complete.

£
34 Computer Science
UNIVERSITY OF TORONTO

J. Baier: The FF Planning System 3/13

The Relaxed Plan Heuristic: Basic Definitions

Definition (STRIPS planning problem)

Let P = (Init, Ops, Goal) be a STRIPS planning problem where:
m /nit is the initial state.
m Goal is the goal condition.
m Each o € Ops of the form o = (prec(o), add(0), del(0))

Definition (Delete-Relaxation)

The delete relaxation of P, denoted P, is a instance just like P
but in which operators in Ops have an empty delete list.

Definition (Relaxed Plan)
A relaxed plan for P is any plan for PT.

£
34 Computer Science
UNIVERSITY OF TORONTO

J. Baier: The FF Planning System 4/13

Computing a Relaxed Plan

For a planning state s:

her(s) = “number of actions in a relaxed plan from s”

The relaxed plan computed by FF:
m Is obtained using a version of Graphplan on P+.

m Is not a shortest relaxed plan (since this is already NP-hard).

£
34 Computer Science
UNIVERSITY OF TORONTO

J. Baier: The FF Planning System 5/13

Computing a Relaxed Plan: Intuition

For the general picture, we use Bryce & Kambhampati's figure:

o Ay 1 A > A, 3
avail(soil, o) ~g-=z==—-——---~ avail(soll,) =~sm=--==-----———— - avail(soil, @) ==z==-===—----—-—- > avail(soil,
il(soil, o) I(soil, @) I(soil, a) I(soil, o)
. sample(soil, o) ; sample(soil, a) ;
availrock,) —/ = = avail(rock,) < - - > — -~~~ avail(rock,) -~ avail(rock, p)
" Z drive(s, 1)) " drive(d, 1))) 0
at(o) = - at(a) TN - =——=== -\ - 1 at(a) T N = -
sample(image,)] d ‘ sample(image, 1) veteol
have(soih) /Y sample(rock, B) l_ \ N4 ave(soil) Sample(rock, B) ave(soil
B i have(image)
; commun(soil) haverock)
————————— ave(roc|
B drive(, 1) aat
t(p) E=f - - ======== p e ——————— I
a® drive(p, @) «® i o | drive. o) | e
drive(y, o) drive(y, o)
ap == S R i i

|——> comm(image}

> comm@rock
Highlights of the relaxed plan extraction algorithm:
m Plan is extracted by regressing the goals (i.e. backwards)
m lterates from the highest to the lowest level.
m Earliest achievers are always preferred.

2 Computer Science
UNIVERSITY OF TORONTO

J. Baier: The FF Planning System 6 /13

Computing a Relaxed Plan: Algorithm

Extraction algorithm (Hoffmann & Nebel, 2001)

1: function EXTRACTPLAN(plan graph PoAgPs - - - Ap—1 Py, goal G)
2 fori=n...1do
3 G; < goals reached at level /
4 end for

5: fori=n...1do
6: for all g € G; not marked TRUE at time / do

7 Find min-cost a € A;_1 such that g € add(A;_1)
8 RP;_1+ RP;_1 U {3}

9: for all f € prec(a) do

10: Glayerof(f) = G/ayerof(f) U {f}

11: end for

12: for all f € add(a) do

13: mark f as TRUE at times / — 1 and /.
14: end for

15: end for

16: end for
@ 17: return RP

W Compter Science

UNIVEB?“@M ‘ﬁ}ﬁ‘tﬁon J. Baier: The FF Planning System 7/13

“Min-Cost” Actions

The “min-cost” action referred to in line 7 is the one that
minimizes the following function:

Cost(a) = Z level(p),

pE Prec(a)

where level(p) is the first layer at which p appears, and Prec(a)
are the preconditions of a.

£
34 Computer Science
UNIVERSITY OF TORONTO

J. Baier: The FF Planning System 8 /13

Helpful Actions

Helpful actions are essential for FF's performance. Helpful actions
are those that appear at the first level of the relaxed plan.

Definition (Helpful action)

An action a of a relaxed plan from s is helpful iff if is a member of
RPy.

Note that helpful actions are a subset of the actions executable in
s.

£
34 Computer Science
UNIVERSITY OF TORONTO

J. Baier: The FF Planning System 9/13

Enforced Hill Climbing

Enforced Hill Climbing (EHC) (Hoffmann & Nebel, 2001)

1: function EHC(initial state /, goal G)

2 plan < EMPTY

3 s« |

4 while h(s) # 0 do

5: from s, search for s’ such that h(s") < h(s).
6: if no such state is found then

7 return fail

8 end if

9: plan < plan o "actions on the path to s”
10: s+« s

11: end while

12: return plan

13: end function

£
34 Computer Science
UNIVERSITY OF TORONTO

J. Baier: The FF Planning System 10 /13

Breadth-First Search for a New State

The breadth-first search (line 5) from s is implemented as follows:

1: queue < empty-queue

2: closed + {states visited by the plan}

3: pusH(queue,{helpful successors of s})

4: while queue is not empty do

5: t < pop(queue)

6: if t € closed then

7: continue > discard t and continue the iteration
8: end if

o: if h(t) < h(s) then
10: s+t
11: break > better state found, exit loop
12: end if
13: pUSH(queue, {helpful successors of t})
14: closed + closed U {t}
15: end while

3 Computer Science

UNIVERSITY OF TORONTO J. Baier: The FF Planning System 11/13

FF's search strategy

EHC is an incomplete search algorithm and thus prone to failure.
If EHC fails, FF falls back into best-first search (A* search), in
which the evaluation function for a state is:

f(s) = hFF(S)

Note that this search is complete but greedy since the length of
the plan is not considered.

Now let’s see how FF works in practice !

34 Computer Science
UNIVERSITY OF TORONTO J. Baier: The FF Planning System 12 /13

References |

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research, 14, 253-302.

35 Computer Science
UNIVERSITY OF TORONTO

J. Baier: The FF Planning System 13 /13

	References

