
The FF Planning System

Jorge A. Baier

Department of Computer Science
University of Toronto

Toronto, Ontario, Canada

CSC2542 – Topics in Knowledge Representation and Reasoning



The Fast Forward (FF) Planning System

Was proposed by Hoffmann & Nebel (2001).

Was the winner of the 2000 planning competition.

Its novel elements are the following:

Heuristic based on relaxed plans.
Enforced Hill Climbing Used as the Search Strategy.

Its core ideas have had substantial impact.

J. Baier: The FF Planning System 2 / 13



The Fast Forward (FF) Planning System: Approach

1 Compile problem into grounded STRIPS.

2 Perform Enforced-Hill-Climbing (EHC) until either solved or
no further progress can be made.

Sound, not complete.

3 Perform Best-First-Search

Sound, complete.

J. Baier: The FF Planning System 3 / 13



The Relaxed Plan Heuristic: Basic Definitions

Definition (STRIPS planning problem)

Let P = 〈Init,Ops,Goal〉 be a STRIPS planning problem where:

Init is the initial state.

Goal is the goal condition.

Each o ∈ Ops of the form o = (prec(o), add(o), del(o))

Definition (Delete-Relaxation)

The delete relaxation of P , denoted P+, is a instance just like P

but in which operators in Ops have an empty delete list.

Definition (Relaxed Plan)

A relaxed plan for P is any plan for P+.

J. Baier: The FF Planning System 4 / 13



Computing a Relaxed Plan

For a planning state s:

hFF (s) = “number of actions in a relaxed plan from s”

The relaxed plan computed by FF:

Is obtained using a version of Graphplan on P+.

Is not a shortest relaxed plan (since this is already NP-hard).

J. Baier: The FF Planning System 5 / 13



Computing a Relaxed Plan: Intuition

For the general picture, we use Bryce & Kambhampati’s figure:

Highlights of the relaxed plan extraction algorithm:

Plan is extracted by regressing the goals (i.e. backwards)

Iterates from the highest to the lowest level.

Earliest achievers are always preferred.

J. Baier: The FF Planning System 6 / 13



Computing a Relaxed Plan: Algorithm

Extraction algorithm (Hoffmann & Nebel, 2001)

1: function ExtractPlan(plan graph P0A0P1 · · ·An−1Pn, goal G )
2: for i = n . . . 1 do

3: Gi ← goals reached at level i
4: end for

5: for i = n . . . 1 do

6: for all g ∈ Gi not marked TRUE at time i do

7: Find min-cost a ∈ Ai−1 such that g ∈ add(Ai−1)
8: RPi−1 ← RPi−1 ∪ {a}
9: for all f ∈ prec(a) do

10: Glayerof (f ) = Glayerof (f ) ∪ {f }
11: end for

12: for all f ∈ add(a) do
13: mark f as TRUE at times i − 1 and i .
14: end for

15: end for

16: end for

17: return RP
18: end function J. Baier: The FF Planning System 7 / 13



“Min-Cost” Actions

The “min-cost” action referred to in line 7 is the one that
minimizes the following function:

Cost(a) =
∑

p∈Prec(a)

level(p),

where level(p) is the first layer at which p appears, and Prec(a)
are the preconditions of a.

J. Baier: The FF Planning System 8 / 13



Helpful Actions

Helpful actions are essential for FF’s performance. Helpful actions
are those that appear at the first level of the relaxed plan.

Definition (Helpful action)

An action a of a relaxed plan from s is helpful iff if is a member of
RP0.

Note that helpful actions are a subset of the actions executable in
s.

J. Baier: The FF Planning System 9 / 13



Enforced Hill Climbing

Enforced Hill Climbing (EHC) (Hoffmann & Nebel, 2001)

1: function EHC(initial state I , goal G )
2: plan← EMPTY

3: s ← I

4: while h(s) 6= 0 do

5: from s, search for s ′ such that h(s ′) < h(s).
6: if no such state is found then

7: return fail
8: end if

9: plan← plan ◦ “actions on the path to s ′”
10: s ← s ′

11: end while

12: return plan

13: end function

J. Baier: The FF Planning System 10 / 13



Breadth-First Search for a New State

The breadth-first search (line 5) from s is implemented as follows:

1: queue ← empty-queue
2: closed ← {states visited by the plan}
3: push(queue,{helpful successors of s})
4: while queue is not empty do

5: t ← pop(queue)
6: if t ∈ closed then

7: continue ⊲ discard t and continue the iteration
8: end if

9: if h(t) < h(s) then
10: s ′ ← t

11: break ⊲ better state found, exit loop
12: end if

13: push(queue,{helpful successors of t})
14: closed ← closed ∪ {t}
15: end while

J. Baier: The FF Planning System 11 / 13



FF’s search strategy

EHC is an incomplete search algorithm and thus prone to failure.
If EHC fails, FF falls back into best-first search (A∗ search), in
which the evaluation function for a state is:

f (s) = hFF (s)

Note that this search is complete but greedy since the length of
the plan is not considered.

Now let’s see how FF works in practice !

J. Baier: The FF Planning System 12 / 13



References I

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic search. Journal

of Artificial Intelligence Research, 14, 253–302.

J. Baier: The FF Planning System 13 / 13


	References

