
1

CSC2542
State-Space Planning

Sheila McIlraith
Department of Computer Science
University of Toronto
Fall 2010

2

Acknowledgements
Some the slides used in this course are modifications of Dana Nau’s lecture
slides for the textbook Automated Planning, licensed under the Creative
Commons Attribution-NonCommercial-ShareAlike License:
http://creativecommons.org/licenses/by-nc-sa/2.0/

Other slides are modifications of slides developed by Malte Helmert,
Bernhard Nebel, and Jussi Rintanen.

I have also used some material prepared by P@trick Haslum and Rao
Kambhampati.

I would like to gratefully acknowledge the contributions of these researchers,
and thank them for generously permitting me to use aspects of their
presentation material.

3

Motivation
Nearly all planning procedures are search procedures
Different planning procedures have different search spaces
Two examples:

State-space planning
Plan-space planning

State-space planning
Each node represents a state of the world
A plan is a path through the space

Plan-space planning
Each node is a set of partially-instantiated operators, plus
some constraints
Impose more and more constraints, until we get a plan

4

Outline
State-space planning

Forward search
Backward search
Lifting
STRIPS
Block-stacking

5

Forward Search

take c3

move r1

take c2 …

…

6

Properties

Forward-search is sound
for any plan returned by any of its nondeterministic
traces, this plan is guaranteed to be a solution

Forward-search also is complete
if a solution exists then at least one of Forward-
search’s nondeterministic traces will return a solution.

7

Deterministic Implementations
Some deterministic implementations of forward search:

breadth-first search
depth-first search
best-first search (e.g., A*)
greedy search

Breadth-first and best-first search are sound and complete
But they usually aren’t practical, requiring too much memory
Memory requirement is exponential in the length of the solution

In practice, more likely to use depth-first search or greedy search
Worst-case memory requirement is linear in the length of the solution
In general, sound but not complete

But classical planning has only finitely many states
Thus, can make depth-first search complete by doing loop-checking

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …

8

Branching Factor of Forward Search

Forward search can have a very large branching factor
Can have many applicable actions that don’t progress
toward goal

Why this is bad:
Deterministic implementations can waste time trying lots of
irrelevant actions

Need a good heuristic function and/or pruning procedure
(This will be a focus of later discussion)

a3

a1

a2

…a1 a2 a50a3

initial state goal

9

Backward Search
For forward search, we started at the initial state and
computed state transitions

new state = γ(s,a)
For backward search, we start at the goal and compute
inverse state transitions

new set of subgoals = γ–1(g,a)
To define γ-1(g,a), must first define relevance:

An action a is relevant for a goal g if
a makes at least one of g’s literals true

g ∩ effects(a) ≠ ∅
a does not make any of g’s literals false

g+ ∩ effects–(a) = ∅ and g– ∩ effects+(a) = ∅

10

Inverse State Transitions
If a is relevant for g, then

γ–1(g,a) = (g – effects(a)) ∪ precond(a)
Otherwise γ–1(g,a) is undefined

Example: suppose that
g = {on(b1,b2), on(b2,b3)}
a = stack(b1,b2)

What is γ–1(g,a)?

11

g0

g1

g2

g3

a1

a2

a3

g4

g5
s0

a4

a5

12

Efficiency of Backward Search

Backward search can also have a very large branching factor
E.g., an operator o that is relevant for g may have many
ground instances a1, a2, …, an such that each ai’s input
state might be unreachable from the initial state

As before, deterministic implementations can waste lots of
time trying all of them

b1

…b1 b2 b50b3

initial state goal

13

Lifting

Can reduce the branching factor of backward search if we
partially instantiate the operators

this is called lifting
q(a1)

foo(a1,y)
p(a1,y)

q(a1)

foo(x,y)
precond: p(x,y)
effects: q(x)

foo(a1,a1)
foo(a1,a2)

foo(a1,a3). . .

p(a1,a1)

p(a1,a2)

p(a1,a3)

p(a1,a50) foo(a1,a50)

14

Lifted Backward Search
Basic Idea: Delay grounding of operators until necessary
in order to bind variables with those required to realize
goal or subgoal

More complicated than Backward-search

Must keep track of what substitutions were performed

But it has a much smaller branching factor

15

Lifted Backward Search

16

The Search Space is Still Too Large
Lifted-backward-search generates a smaller search space
than Backward-search, but it still can be quite large

Suppose actions a, b, and c are independent, action d
must precede all of them, and there’s no path from s0 to
d’s input state
We’ll try all possible orderings of a, b, and c before
realizing there is no solution
Plan-space planning can help with this problem

c

b

a

goal

a b

b a

b a

a c

b c

c b

d

d

d

d

d

d

s0

17

Pruning the Search Space
Pruning the search space can really help.
Two techniques we will discuss:

Sound pruning using branch-and-bound heuristic search
Domain customization that prunes actions and states

For now, just two examples:
STRIPS
Block stacking

18

STRIPS
One of the first planning algorithms (Shakey the robot)
π← the empty plan
do a modified backward search from g

** each new subgoal is precond(a) (instead of γ-1(s,a))
when you find an action that’s executable in the current
state, then go forward on the current search path as far as
possible, executing actions and appending them to π
repeat until all goals are satisfied

g

g1

g2

g3

a1

a2

a3

g4

g5
g3

a4

a5

current search path

a6

π = 〈a6, a4〉
s = γ(γ(s0,a6),a4)

g6

a3

satisfied in s0

19

unstack(x,y)
Pre: on(x,y), clear(x), handempty
Eff: ~on(x,y), ~clear(x), ~handempty,

holding(x), clear(y)

stack(x,y)
Pre: holding(x), clear(y)
Eff: ~holding(x), ~clear(y),

on(x,y), clear(x), handempty

pickup(x)
Pre: ontable(x), clear(x), handempty
Eff: ~ontable(x), ~clear(x), ~handempty, holding(x)

putdown(x)
Pre: holding(x)
Eff: ~holding(x), ontable(x), clear(x), handempty

Quick Review of Blocks World
c
a b

c
a b

c
a b

c
a b

c
a b

20

Limitations of STRIPS

Example 1. The Sussman Anomaly

Initial state goal

On this problem, STRIPS cannot produce an irredundant
solution.

Try it and see. Start with the goal {on(b,c), on(a,b)}.

c
a b c

a
b

21

Example 2. Register Assignment Problem
State-variable formulation:

Initial state: {value(r1)=3, value(r2)=5, value(r3)=0}

Goal: {value(r1)=5, value(r2)=3}

Operator: assign(r,v,r',v')
precond: value(r)=v, value(r')=v'
effects: value(r)=v'

STRIPS cannot solve this problem at all

22

How to Handle Problems like These?
Several ways:

Do something other than state-space search
e.g., Chapters 5–8

Use forward or backward state-space search, with
domain-specific knowledge to prune the search space

Can solve both problems quite easily this way
Example: block stacking using forward search

23

Domain-Specific Knowledge
A blocks-world planning problem P = (O,s0,g) is solvable
if s0 and g satisfy some simple consistency conditions

g should not mention any blocks not mentioned in s0

a block cannot be on two other blocks at once
etc.

Can check these in time O(n log n)
If P is solvable, can easily construct a solution of length
O(2m), where m is the number of blocks

Move all blocks to the table, then build up stacks from the
bottom

Can do this in time O(n)
With additional domain-specific knowledge can do even
better …

24

Additional Domain-Specific Knowledge
A block x needs to be moved if any of the following is true:

s contains ontable(x) and g contains on(x,y) - see a below
s contains on(x,y) and g contains ontable(x) - see d below
s contains on(x,y) and g contains on(x,z) for some y≠z - see c below
s contains on(x,y) and y needs to be moved - see e below

initial state goal

e

d

d

ba
c c

a
b

25

Domain-Specific Algorithm
loop

if there is a clear block x such that
x needs to be moved and
x can be moved to a place where it won’t need to be

moved
then move x to that place

else if there is a clear block x such that x needs to be moved
then move x to the table

else if the goal is satisfied
then return the plan

else return failure
repeat

initial state goal

e

d

d

ba
c c

a
b

26

Easily Solves the Sussman Anomaly
loop

if there is a clear block x such that
x needs to be moved and
x can be moved to a place where it won’t need to be

moved
then move x to that place

else if there is a clear block x such that
x needs to be moved

then move x to the table
else if the goal is satisfied

then return the plan
else return failure

repeat

initial state goal

ba
c

c

a
b

27

Properties
The block-stacking algorithm:

Sound, complete, guaranteed to terminate

Runs in time O(n3)
Can be modified to run in time O(n)

Often finds optimal (shortest) solutions

But sometimes only near-optimal

