CSC2542 State-Space Planning

Sheila McIlraith Department of Computer Science University of Toronto Fall 2010

Acknowledgements

Some the slides used in this course are modifications of Dana Nau's lecture slides for the textbook *Automated Planning*, licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Other slides are modifications of slides developed by Malte Helmert, Bernhard Nebel, and Jussi Rintanen.

I have also used some material prepared by P@trick Haslum and Rao Kambhampati.

I would like to gratefully acknowledge the contributions of these researchers, and thank them for generously permitting me to use aspects of their presentation material.

Motivation

- Nearly all planning procedures are search procedures
- Different planning procedures have different search spaces Two examples:
 - State-space planning
 - Plan-space planning
- State-space planning
 - Each node represents a state of the world
 - A plan is a path through the space
- Plan-space planning
 - Each node is a set of partially-instantiated operators, plus some constraints
 - Impose more and more constraints, until we get a plan

Outline

- State-space planning
 - Forward search
 - Backward search
 - Lifting
 - STRIPS
 - Block-stacking

 $\begin{array}{l} \mathsf{Lifted-backward-search}(O,s_0,g)\\ \pi\leftarrow \mathsf{the\ empty\ plan}\\ \mathsf{loop}\\ \mathsf{if\ }s_0\ \mathsf{satisfies\ }g\ \mathsf{then\ return\ }\pi\\ A\leftarrow \{(o,\theta)|o\ \mathsf{is\ }\mathsf{a\ standardization\ of\ }\mathsf{an\ operator\ in\ }O,\\ \theta\ \mathsf{is\ }\mathsf{an\ mgu\ for\ }\mathsf{an\ }\mathsf{at\ }\mathsf{at\ }\mathsf{m\ }\mathsf{f}}\ \mathsf{f} \ A=\emptyset\ \mathsf{then\ return\ }\mathsf{failure}\\ \mathsf{nondeterministically\ choose\ }\mathsf{a\ }\mathsf{pair\ }(o,\theta)\in A\\ \pi\leftarrow \mathsf{th\ concatenation\ of\ }\theta(o)\ \mathsf{an\ }\theta(\pi)\\ g\leftarrow \gamma^{-1}(\theta(g),\theta(o)) \end{array}$

Example 2. Register Assignment Problem

• State-variable formulation:

Initial state: {value(r1)=3, value(r2)=5, value(r3)=0}

Goal: {value(r1)=5, value(r2)=3}

Operator: assign(*r*,*v*,*r*',*v*') precond: value(*r*)=*v*, value(*r*')=*v*' effects: value(*r*)=*v*'

• STRIPS cannot solve this problem at all

How to Handle Problems like These?
Several ways:
Do something other than state-space search

e.g., Chapters 5–8

Use forward or backward state-space search, with *domain-specific* knowledge to prune the search space
Can solve both problems quite easily this way
Example: block stacking using forward search

- A blocks-world planning problem P = (O,s₀,g) is solvable if s₀ and g satisfy some simple consistency conditions
 - g should not mention any blocks not mentioned in s_0
 - a block cannot be on two other blocks at once
 - etc.
 - Can check these in time O(*n* log *n*)
- If P is solvable, can easily construct a solution of length O(2m), where m is the number of blocks
 - Move all blocks to the table, then build up stacks from the bottom
 - Can do this in time O(*n*)
- With additional domain-specific knowledge can do even better ...

Properties

The block-stacking algorithm:

- Sound, complete, guaranteed to terminate
- Runs in time $O(n^3)$
 - Can be modified to run in time O(n)

- Often finds optimal (shortest) solutions
- But sometimes only near-optimal