CSC2542 State-Space Planning

Sheila McIlraith
Department of Computer Science
University of Toronto
Fall 2010

Acknowledgements

Some the slides used in this course are modifications of Dana Nau's lecture slides for the textbook *Automated Planning*, licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:

http://creativecommons.org/licenses/by-nc-sa/2.0/

Other slides are modifications of slides developed by Malte Helmert, Bernhard Nebel, and Jussi Rintanen.

I have also used some material prepared by P@trick Haslum and Rao Kambhampati.

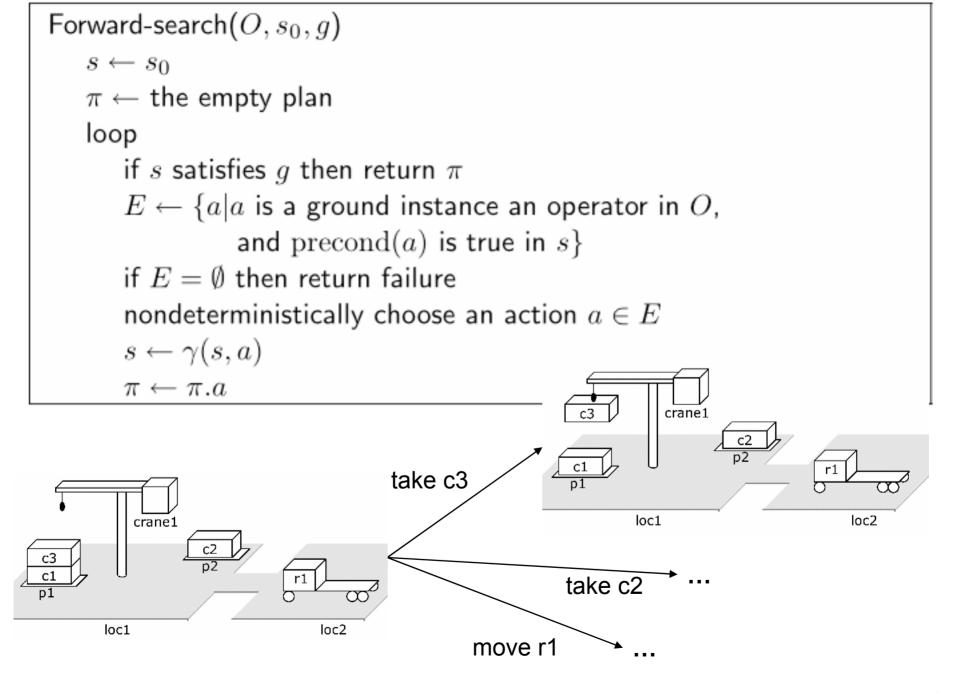
I would like to gratefully acknowledge the contributions of these researchers, and thank them for generously permitting me to use aspects of their presentation material.

Motivation

- Nearly all planning procedures are search procedures
- Different planning procedures have different search spaces
 Two examples:
 - State-space planning
 - Plan-space planning
- State-space planning
 - Each node represents a state of the world
 - A plan is a path through the space
- Plan-space planning
 - Each node is a set of partially-instantiated operators, plus some constraints
 - Impose more and more constraints, until we get a plan

Outline

- State-space planning
 - Forward search
 - Backward search
 - Lifting
 - STRIPS
 - Block-stacking

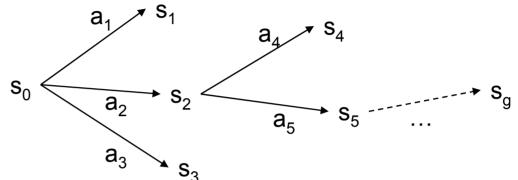


Properties

- Forward-search is sound
 - for any plan returned by any of its nondeterministic traces, this plan is guaranteed to be a solution
- Forward-search also is complete
 - if a solution exists then at least one of Forwardsearch's nondeterministic traces will return a solution.

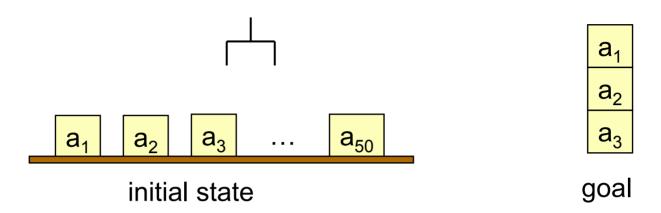
Deterministic Implementations

- Some deterministic implementations of forward search:
 - breadth-first search
 - depth-first search
 - best-first search (e.g., A*)
 - greedy search



- Breadth-first and best-first search are sound and complete
 - But they usually aren't practical, requiring too much memory
 - Memory requirement is exponential in the length of the solution
- In practice, more likely to use depth-first search or greedy search
 - Worst-case memory requirement is linear in the length of the solution
 - In general, sound but not complete
 - But classical planning has only finitely many states
 - Thus, can make depth-first search complete by doing loop-checking

Branching Factor of Forward Search



- Forward search can have a very large branching factor
 - Can have many applicable actions that don't progress toward goal
- Why this is bad:
 - Deterministic implementations can waste time trying lots of irrelevant actions
- Need a good heuristic function and/or pruning procedure (This will be a focus of later discussion)

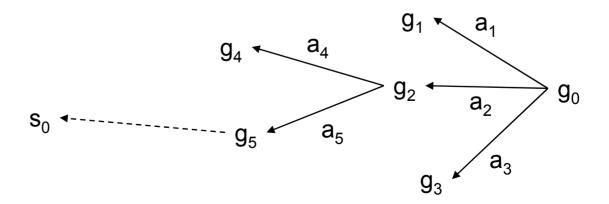
Backward Search

- For forward search, we started at the initial state and computed state transitions
 - new state = $\gamma(s,a)$
- For backward search, we start at the goal and compute inverse state transitions
 - new set of subgoals = $\gamma^{-1}(g,a)$
- To define $\gamma^{-1}(g,a)$, must first define *relevance*:
 - An action a is relevant for a goal g if
 - a makes at least one of g's literals true
 - $g \cap \text{effects}(a) \neq \emptyset$
 - a does not make any of g's literals false
 - $g^+ \cap \text{effects}^-(a) = \emptyset$ and $g^- \cap \text{effects}^+(a) = \emptyset$

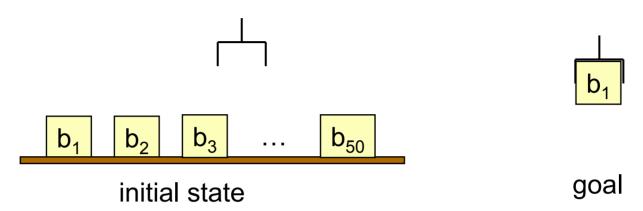
Inverse State Transitions

- If a is relevant for g, then
 - $\gamma^{-1}(g,a) = (g \text{effects}(a)) \cup \text{precond}(a)$
- Otherwise $\gamma^{-1}(g,a)$ is undefined
- Example: suppose that
 - $g = \{on(b1,b2), on(b2,b3)\}$
 - $a = \operatorname{stack}(b1,b2)$
- What is $\gamma^{-1}(g,a)$?

```
Backward-search(O, s_0, g)
   \pi \leftarrow the empty plan
    loop
        if s_0 satisfies g then return \pi
       A \leftarrow \{a | a \text{ is a ground instance of an operator in } O
                    and \gamma^{-1}(g,a) is defined}
        if A = \emptyset then return failure
        nondeterministically choose an action a \in A
        \pi \leftarrow a.\pi
       g \leftarrow \gamma^{-1}(g, a)
```



Efficiency of Backward Search

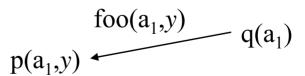


- Backward search can also have a very large branching factor
 - E.g., an operator o that is relevant for g may have many ground instances $a_1, a_2, ..., a_n$ such that each a_i 's input state might be unreachable from the initial state
- As before, deterministic implementations can waste lots of time trying all of them

Lifting

foo(x,y)
precond: p(x,y)effects: q(x) $p(a_1,a_2) \qquad foo(a_1,a_1)$ $p(a_1,a_2) \qquad foo(a_1,a_2)$ $p(a_1,a_3) \qquad foo(a_1,a_3)$ $p(a_1,a_3) \qquad foo(a_1,a_5)$

- Can reduce the branching factor of backward search if we partially instantiate the operators
 - this is called *lifting*



Lifted Backward Search

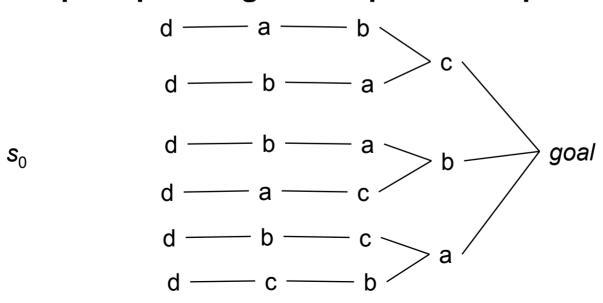
- Basic Idea: Delay grounding of operators until necessary in order to bind variables with those required to realize goal or subgoal
- More complicated than Backward-search
 - Must keep track of what substitutions were performed
- But it has a much smaller branching factor

Lifted Backward Search

```
Lifted-backward-search(O, s_0, g)
    \pi \leftarrow the empty plan
    loop
        if s_0 satisfies g then return \pi
        A \leftarrow \{(o, \theta) | o \text{ is a standardization of an operator in } O,
                     \theta is an mgu for an atom of g and an atom of effects<sup>+</sup>(o),
                     and \gamma^{-1}(\theta(g), \theta(o)) is defined}
        if A = \emptyset then return failure
        nondeterministically choose a pair (o, \theta) \in A
        \pi \leftarrow the concatenation of \theta(o) and \theta(\pi)
        g \leftarrow \gamma^{-1}(\theta(g), \theta(o))
```

The Search Space is Still Too Large

- Lifted-backward-search generates a smaller search space than Backward-search, but it still can be quite large
 - Suppose actions a, b, and c are independent, action d must precede all of them, and there's no path from s₀ to d's input state
 - We'll try all possible orderings of a, b, and c before realizing there is no solution
 - Plan-space planning can help with this problem



Pruning the Search Space

Pruning the search space can really help.

Two techniques we will discuss:

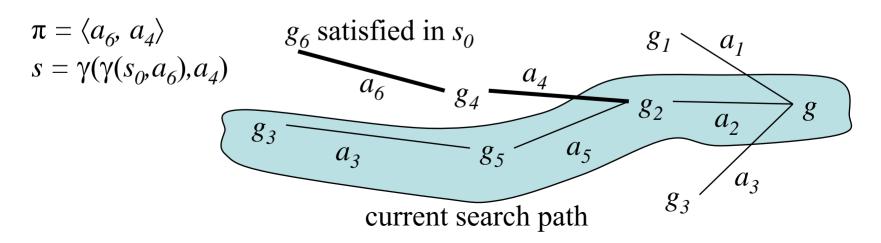
- Sound pruning using branch-and-bound heuristic search
- Domain customization that prunes actions and states

For now, just two examples:

- STRIPS
- Block stacking

STRIPS

- One of the first planning algorithms (Shakey the robot)
- π ← the empty plan
- do a modified backward search from g
 - ** each new subgoal is precond(a) (instead of $\gamma^{-1}(s,a)$)
 - when you find an action that's executable in the current state, then go forward on the current search path as far as possible, executing actions and appending them to π
 - repeat until all goals are satisfied



Quick Review of Blocks World

unstack(x,y)

Pre: on(x,y), clear(x), handempty

Eff: \sim on(x,y), \sim clear(x), \sim handempty,

holding(x), clear(y)

stack(x,y)

Pre: holding(x), clear(y)

Eff: \sim holding(x), \sim clear(y),

on(x,y), clear(x), handempty

pickup(x)

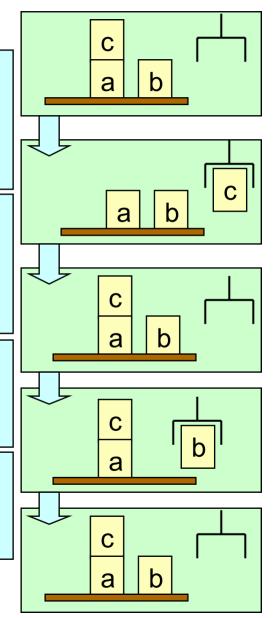
Pre: ontable(x), clear(x), handempty

Eff: \sim ontable(x), \sim clear(x), \sim handempty, holding(x)

putdown(x)

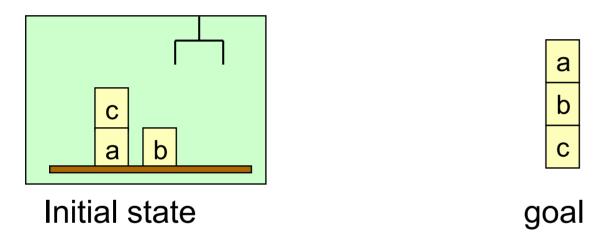
Pre: holding(x)

Eff: \sim holding(x), ontable(x), clear(x), handempty



Limitations of STRIPS

Example 1. The Sussman Anomaly



- On this problem, STRIPS cannot produce an irredundant solution.
 - Try it and see. Start with the goal {on(b,c), on(a,b)}.

Example 2. Register Assignment Problem

State-variable formulation:

Initial state: {value(r1)=3, value(r2)=5, value(r3)=0}

Goal: $\{value(r1)=5, value(r2)=3\}$

Operator: assign(*r*,*v*,*r*',*v*')

precond: value(r)=v, value(r')=v'

effects: value(r)=v'

STRIPS cannot solve this problem at all

How to Handle Problems like These?

Several ways:

- Do something other than state-space search
 - e.g., Chapters 5–8
- Use forward or backward state-space search, with domain-specific knowledge to prune the search space
 - Can solve both problems quite easily this way
 - Example: block stacking using forward search

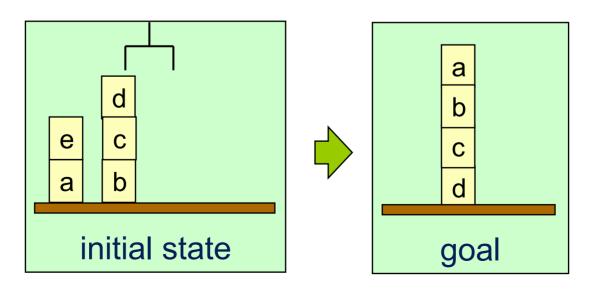
Domain-Specific Knowledge

- A blocks-world planning problem $P = (O, s_0, g)$ is solvable if s_0 and g satisfy some simple consistency conditions
 - g should not mention any blocks not mentioned in s₀
 - a block cannot be on two other blocks at once
 - etc.
 - Can check these in time O(n log n)
- If P is solvable, can easily construct a solution of length O(2m), where m is the number of blocks
 - Move all blocks to the table, then build up stacks from the bottom
 - Can do this in time O(n)
- With additional domain-specific knowledge can do even better ...

Additional Domain-Specific Knowledge

A block x needs to be moved if any of the following is true:

- s contains ontable(x) and g contains on(x,y) see a below
- s contains on(x,y) and g contains ontable(x) see d below
- s contains on(x,y) and g contains on(x,z) for some $y\neq z$ see c below
- s contains on(x,y) and y needs to be moved see e below



Domain-Specific Algorithm

loop

if there is a clear block x such that

x needs to be moved and

x can be moved to a place where it won't need to be moved

then move x to that place

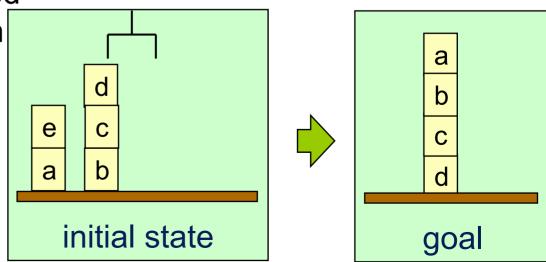
else if there is a clear block *x* such that *x* needs to be moved **then** move *x* to the table

else if the goal is satisfied

then return the plan

else return failure

repeat



Easily Solves the Sussman Anomaly

```
loop
```

if there is a clear block x such that

x needs to be moved and

x can be moved to a place where it won't need to be moved

then move x to that place

else if there is a clear block x such that

x needs to be moved

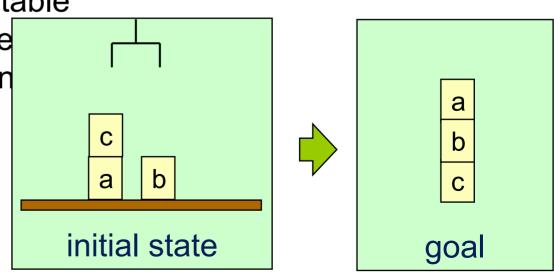
then move x to the table

else if the goal is satisfie

then return the plan

else return failure

repeat



Properties

The block-stacking algorithm:

- Sound, complete, guaranteed to terminate
- Runs in time $O(n^3)$
 - Can be modified to run in time O(n)
- Often finds optimal (shortest) solutions
- But sometimes only near-optimal