

Acknowledgements

Some the slides used in this course are modifications of Dana Nau's lecture slides for the textbook Automated Planning, licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:
http://creativecommons.org/licenses/by-nc-sa/2.0/
Other slides are modifications of slides developed by Malte Helmert, Bernhard Nebel, and Jussi Rintanen

I have also used some material prepared by P@trick Haslum and Rao Kambhampati.

I would like to gratefully acknowledge the contributions of these researchers, and thank them for generously permitting me to use aspects of their presentation material.

Further Recall:

System Description (as a state transition system)

$\Sigma=(S, A, E, \gamma)$

- $S=\{$ states $\}$
- $A=\{$ actions $\}$
- $E=\{$ exogenous events $\}$
- State-transition function $\gamma: S \times(A \cup E) \rightarrow 2^{S}$

Example: Dock Workers Robots from previous slide

- $S=\left\{\mathrm{s}_{0}, \ldots, \mathrm{~s}_{5}\right\}$
- $A=\{$ move1, move2, put, take, load, unload $\}$
- $E=\{ \}$
- γ : as captured by the arrows mapping states and actions to successor states

Representational Challenge

- How do we represent our planning problem is a way that supports exploration of the principles and practice of automated planning?

Approach:

- There isn't one answer.
- The textbook proposes representations that are suitable for generating classical plans.

Summary: Broad Perspective

1. Studying the formal principles of planning and other related task

- (First-order) logical languages
(e.g., situation calculus, A languages, event calculus, fluent calculus, PDL) Properties:
- well-defined semantics, representational issues must be addressed in the
anguage (not in the algorithm that interprets and manipulates them)
- excellent for study and proving properties. Not ideal for 3 below.

2. Specifying planning domains

- PDDL-n (PDDL2.1, PDDL2.2, PDDL3,)

Properties:

- (reasonably) well-defined semantics
- designed for input to planners - translate to an internal representation for specific planners. Translators exist for most state-of-the-art planners

3. Direct use within (classical) planners

- Classical representation (e.g., STRIPS)
- Set-theoretic representation (basis for rep'ns used w/ SAT solvers)
- State-variable representation (e.g., SAS, SAS+)

Variants of these exist for particular planners (e.g., SAT solvers, model checkers, etc.)

Broad Perspective on Plan Representation

The right representation for the right objective.
Distinguish representation schemes for:

1. studying the principles of planning and related tasks.
2. specifying planning domains
3. direct use within (classical) planners

This Lecture:

1. Studying the formal principles of planning and other related task

- (First-order) logical languages

Outline

- Representation schemes for classical planning

1. Classical representation
2. Set-theoretic representation
3. State-variable representation

- Examples: DWR and the Blocks World
- Comparisons

Representation: Motivation for Approach

 Default view:- represent state explicitly
- represent actions as a transition system (e.g., as an incidence matrix)

Problem:

- explicit graph corresponding to transition system is huge
- direct manipulation of transition system is cumbersome

Solution:

Provide compact representation of transition system \& induced graph

1. Explicate the structure of the "states"

- e.g., states specified in terms of state variables

2. Represent actions not as transition system/incidence matrices but as functions (e.g., operators) specified in terms of the state variables

- An action is applicable to a state when some state variables have certain values. When applicable, it will change the values of certain (other) state variables

3. To plan,

- Just give the initial state
- Use the operators to generate the other states as needed

Why is this more compact?

Why is this more compact than an explicit transition system?

- In an explicit transition system, actions are represented as state-tostate transitions. Each action will be represented by an incidence matrix of size $|\mathrm{S}| \times|\mathrm{S}|$
- In the proposed model, actions are represented only in terms of state variables whose values they care about, and whose value they affect. (It exploits the structure of the problem!)
- Consider a state space of 1024 states. It can be represented by $\log _{2} 1024=10$ state variables. If an action needs variable v1 to be true and makes v 7 to be false, it can be represented by just 2 bits (instead of a 1024×1024 matrix)
- Of course, if the action has a complicated mapping from states to states, in the worst case the action rep will be just as large
- The assumption being made here is that the actions will have effects on a small number of state variables.

1. Classical Representation

- Start with a function-free first-order language
- Finitely many predicate symbols and constant symbols, but no function symbols
- Example: the DWR domain
- Locations: I1, I2, ...
- Containers: c1, c2,
- Piles: p1, p2, ...
- Robot carts: r1, r2, ...
- Cranes: k1, k2, ...

States

- State: a set s of ground atoms
- The atoms represent the things that are true in one of Σ 's states
- Only finitely many ground atoms, so only finitely many possible states

\{attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1), on(c3, c1), on(c1, pallet), attached(p2,loc1), in(c2,p2), top (c2,p2), on(c2,pallet), belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2), occupied(loc2), unloaded(r1)\}.

Quick review of terminology

- Atom: predicate symbol and args
- Use these to represent both fixed and dynamic ("fluent") relations adjacent $\left(l, l^{\prime}\right) \quad \operatorname{attached}(p, l) \quad$ belong (k, l) occupied (l) at (r, l) loaded $(r, c) \quad$ unloaded (r) holding $(k, c) \quad$ empty (k) in $(c, p) \quad$ on $\left(c, c^{\prime}\right)$ top $(c, p) \quad$ top(pallet,p)
- Ground expression: contains no variable symbols - e.g., in(c1,p3)
- Unground expression: at least one variable symbol - e.g., in(c1,x)
- Substitution: $\theta=\left\{x_{1} \leftarrow v_{1}, x_{2} \leftarrow v_{2}, \ldots, x_{n} \leftarrow v_{n}\right\}$
- Each x_{i} is a variable symbol; each v_{i} is a term
- Instance of e : result of applying a substitution θ to e
- Replace variables of e simultaneously, not sequentially

Operators

- Operator: a triple $o=($ name (o), precond(o), effects(o))
- name (o) is a syntactic expression of the form $n\left(x_{1}, \ldots, x_{k}\right)$ - n : operator symbol - must be unique for each operator $\bullet x_{1}, \ldots, x_{k}$: variable symbols (parameters)
- must include every variable symbol in o
- precond(o): preconditions
- literals that must be true in order to use the operator
- effects(o): effects
- literals the operator will make true
take (k, l, c, d, p)
;; crane k at location l takes c off of d in pile p
precond: belong $(k, l), \operatorname{attached}(p, l), \operatorname{empty}(k), \operatorname{top}(c, p)$, on (c, d)
effects: holding $(k, c), \neg \operatorname{empty}(k), \neg \operatorname{in}(c, p), \neg \operatorname{top}(c, p), \neg \operatorname{on}(c, d), \operatorname{top}(d, p)$

Aside: Some things to note

- The state only explicitly represents what is true. The semantics of this representation is that any fluent not included in the state is false - just like a database. (Recall that one of the assumptions of classical planning is complete initial (and subsequent) state. The problem would be a lot harder w/o this assumption!!)
- Terminology: an action is a ground operator. In the Knowledge Representation (KR) literature the concept of an "operator" is not used. Actions may be ground or unground.
- Classical planners generally operate over ground actions.

Notation

- Let a be an operator or action. Then
- precond $^{+}(a)=$ \{atoms that appear positively in a's preconditions $\}$
- precond $^{-}(a)=\{$ atoms that appear negatively in a's preconditions $\}$
- effects $^{+}(a)=$ \{atoms that appear positively in a's effects\}
- effects $^{-}(a)=$ \{atoms that appear negatively in a 's effects $\}$
E.g.,
take (k, l, c, d, p)
;; crane k at location l takes c off of d in pile p
precond: belong $(k, l), \operatorname{attached}(p, l)$, empty $(k), \operatorname{top}(c, p)$, on (c, d)
effects: holding $(k, c), \neg \operatorname{empty}(k), \neg \operatorname{in}(c, p), \neg \operatorname{top}(c, p), \neg \operatorname{on}(c, d), \operatorname{top}(d, p)$
- effects $^{+}(\operatorname{take}(k, l, c, d, p)=\{$ holding $(k, c), \operatorname{top}(d, p)\}$
- effects-(take $(k, l, c, d, p)=\{\operatorname{empty}(k), \operatorname{in}(c, p), \operatorname{top}(c, p)$, on $(c, d)\}$

Applicability

- An action a is applicable to a state s if s satisfies precond(a),
- i.e., if precond ${ }^{+}(a) \subseteq s$ and precond-(a) $\cap s=\varnothing$
- Here are an action and a state that it's applicable to:

> take(crane1,loc1,c3,c1,p1)
> ; crane cranel at location loc1 takes c 3 off c 1 in pile p 1 precond: belong(crane1,loc1), attached(p1,loc1),
> empty(crane1), top(c3,p1), on(c3,c1)
> effects: holding(crane1,c3), ᄀempty(crane1), $ᄀ$ in(c3,p1),
> \rightarrow top(c3.p1), ᄀon(c3, c1), top(c1,p1)

Planning Problems

Given a planning domain (language L, operators O)

- Encoding of a planning problem: a triple $P=\left(O, s_{0}, g\right)$
- O is the collection of operators
- s_{0} is a state (the initial state)
- g is a set of literals (the goal formula)
- The actual planning problem: $\mathcal{P}=\left(\Sigma, s_{0}, g\right)$
- s_{0} and g are as above
- $\Sigma=(S, A, \gamma)$ is a state-transition system
- $S=\{$ all sets of ground atoms in $L\}$
- $A=\{$ all ground instances of operators in $O\}$
- $\gamma=$ state-transition function determined by the operators

Plans and Solutions

- Plan: any sequence of actions $\sigma=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ such that each a_{i} is a ground instance of an operator in O
- The plan is a solution for $P=\left(O, s_{0}, g\right)$ if it is executable and achieves g
- i.e., if there are states $s_{0}, s_{1}, \ldots, s_{n}$ such that
- $\gamma\left(s_{0}, a_{1}\right)=s_{1}$
- $\gamma\left(s_{1}, a_{2}\right)=s_{2}$
- ...
- $\gamma\left(s_{n-1}, a_{n}\right)=s_{n}$
- s_{n} satisfies g

Example

GOAL STATE:
$g_{1}=\{$ loaded(r1,c3),at(r1,loc2) $\}$
INITIAL STATE:

The DWR state $s_{1}=\{$ attached $(\mathrm{p} 1, \mathrm{loc} 1)$, in($\mathrm{c} 1, \mathrm{p} 1)$, in($\left.\mathrm{c} 3, \mathrm{p} 1\right)$,
 top (c3, p1), on (c3, c1), on(c1, pallet), attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2), adjacent(loc2, loc1), at(r1,loc2), occupied(loc2), unloaded(r1)\}.

2. Set-Theoretic Representation

Like classical rep'n, but restricted to propositional logic.

- States:
- Instead of a collection of ground atoms ...
\{on(c1,pallet), on(c1,r1), on(c1,c2), ..., at(r1,l1), at(r1,l2), ...\}
... use a collection of propositions (boolean variables):
\{on-c1-pallet, on-c1-r1, on-c1-c2, ..., at-r1-11, at-r1-I2, ...\}

```
Instead of operators like this one,
    take(k,l,c,d,p)
        ;: crane }k\mathrm{ at location l takes c off of d in pile p
        precond: belong}(k,l),\operatorname{attached}(p,l),\mathrm{ empty (k), top (c,p),on(c,d)
```



```
Take all of the operator instances, E.g.:
    take(crane1,loc1,c3,c1,p1)
        :; crane crane1 at location loc1 takes c3 off c1 in pile p1
        precond: belong(cranel,loc1), attached(p1,loc1).
            empty(crane1), top(c3,pl), on(c3,c1)
        effects: holding(crane1,c3), ᄀempty(crane1), -in(c3,p1),
            \negop(c3,p1), ᄀon(c3,c1), top(c1,p1)
```

And rewrite ground atoms as propositions, E.g.:
take-crane1-loc1-c3-c1-p1
precond: belong-crane1-loc1, attached-p1-loc1,empty-crane1, top-c3-p1, on-c3-c1
delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1
add: holding-crane1-c3, top-c1-p1

3. State-Variable Representation

- Non-fluents (properties that don't change) are ground relations:
e.g., adjacent(loc1,loc2)
- Fluents are functions:
i.e., for properties that can change, assign values to state variables
- Classical and state-variable rep'ns take similar amounts of space each can be translated into the other in low-order polynomial time

move $(r, l, m$)

;; robot r at location l moves to an adjacent location m precond: $\operatorname{rloc}(r)=l$, $\operatorname{adjacent}(l, m)$
effects: $\operatorname{rloc}(r) \leftarrow m$
$\{\operatorname{top}(\mathrm{p} 1)=\mathrm{c} 3$,
$\operatorname{cpos}(\mathrm{cc} 3)=\mathrm{c} 1$,
cpos(c1)=pallet,
holding(crane1)=nil,
rloc(r1) $=\operatorname{loc} 2$,
loaded(r1)=nil, ...\}

loc2

State-Variable Representation (cont.)

- Captures further information about the state. E.g., that state variables can only take on one of the values in the domain. This helps reduce the search space.
- Basis for the SAS and SAS+ formalisms (used most recently in the FastDownward Planner (FD)
- Basis for encodings further plan properties such as domain transition graphs (DTGs) and causal graphs (CG)

Example: The Blocks World

1. Example Classical Representation

- Constant symbols:
- The blocks: a, b, c, d, e
- Predicates:
- ontable (x) - block x is on the table
- on $(x, y) \quad$ - block x is on block y
- clear(x) - block x has nothing on it
- holding (x) - the robot hand is holding block x
- handempty- the robot hand isn't holding anything
- Classical, set-theoretic, and state-variable formulations for the case of FIVE BLOCKS follow.

2. Example Set-Theoretic Representation

For five blocks, $\mathbf{3 6}$ propositions, 50 actions

3. Example State-Variable Representation

- Constant symbols:
a, b, c, d, e of type block
0,1 , table, nil of type other
- State variables:
$\operatorname{pos}(x)=y \quad$ if block x is on block y

$\operatorname{pos}(x)=$ table if block x is on the table
$\operatorname{pos}(x)=$ nil if block x is being held
$\operatorname{clear}(x)=1 \quad$ if block x has nothing on it
$\operatorname{clear}(x)=0 \quad$ if block x is being held or has a block on it
holding $=x \quad$ if the robot hand is holding block x
holding $=$ nil \quad if the robot hand is holding nothing

Comparison

- Classical representation
- Most popular for classical planning, basis of PDDL
- Set-theoretic representation
- Can take much more space than classical representation
- Useful in algorithms that manipulate ground atoms directly
- e.g., planning graphs, SAT
- Useful for certain kinds of theoretical studies
- State-variable representation (e.g., SAS, SAS+)
- Equivalent to classical representation in expressive power
- Arguably less natural to conceive
- Useful in non-classical planning problems as a way to handle numbers, functions, time

Representational Equivalence

- Any problem that can be represented in one representation can also be represented in the other two
- Can convert in linear time and space, except when converting to set-theoretic (where we get an exponential blowup)

Extending Expressivity: ADL

- Previous representations were so-called "STRIPS" rep'ns. These have useful properties for automatically generating classical plans, but are not always sufficient to express the behaviour of more complex domains.
- ADL is a richer, and thus more compact, representation language that allows for
- Disjunction and Quantification in preconditions and goals
- Effects that are Quantified, and/or Conditional (effect is conditioned on state)
- PDDL supports STRIPS and ADL, but not all planners support ADL, and not all planners even support a so-called Classical Representation
- In the KR community ADL or greater is common.

Pros/Cons: Compiling to Canonical Action Rep'n
Possible to compile down ADL actions into STRIPS actions

- Quantification -> conjunctions/disjunctions over finite universes
- Actions with conditional effects $->$ multiple (exponentially more) actions without conditional effects
- Actions with disjunctive effects -> multiple actions, each of which take one of the disjuncts as their preconditions
- Domain axioms (ramifications) -> the individual effects of the actions; so all actions satisfy STRIPS assumption
Compilation is not always a win-win.
- By compiling down to canonical form, we can concentrate on highly efficient planning for canonical actions
- However, often compilation leads to an exponential blowup and makes it harder to exploit the structure of the domain
- By leaving actions in non-canonical form, we can often do more compact encoding of the domains as well as more efficient search
- However, we will have to continually extend planning algorithms to handle these representations

