CSC2542 Representations for (Classical) Planning

Sheila McIlraith Department of Computer Science University of Toronto Fall 2010

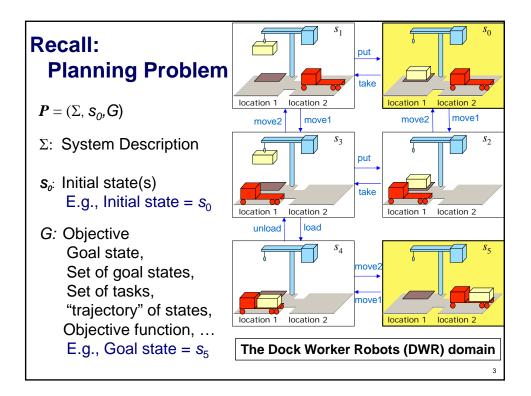
Acknowledgements

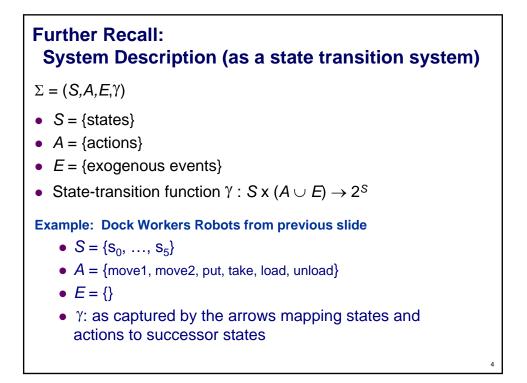
Some the slides used in this course are modifications of Dana Nau's lecture slides for the textbook *Automated Planning*, licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Other slides are modifications of slides developed by Malte Helmert, Bernhard Nebel, and Jussi Rintanen.

I have also used some material prepared by $\mathsf{P}@\mathsf{trick}$ Haslum and Rao Kambhampati.

I would like to gratefully acknowledge the contributions of these researchers, and thank them for generously permitting me to use aspects of their presentation material.





Representational Challenge

 How do we represent our planning problem is a way that supports exploration of the principles and practice of automated planning?

Approach:

- There isn't one answer.
- The textbook proposes representations that are suitable for *generating classical* plans.

Broad Perspective on Plan Representation

The right representation for the right objective. Distinguish representation schemes for:

- 1. studying the principles of planning and related tasks.
- 2. specifying planning domains
- 3. direct use within (classical) planners

Summary: Broad Perspective

1. Studying the formal principles of planning and other related task

• (First-order) logical languages

(e.g., situation calculus, *A* languages, event calculus, fluent calculus, PDL) Properties:

- well-defined semantics, representational issues must be addressed in the language (not in the algorithm that interprets and manipulates them)
- excellent for study and proving properties. Not ideal for 3 below.
- 2. Specifying planning domains
 - PDDL-n (PDDL2.1, PDDL2.2, PDDL3,)

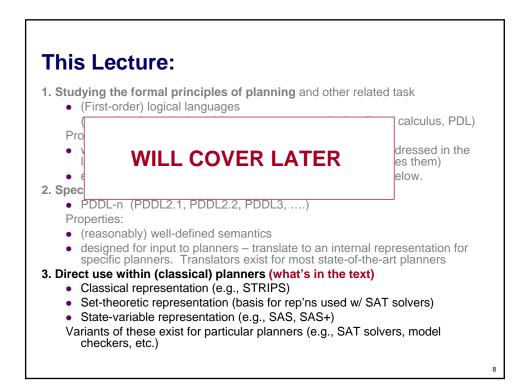
Properties:

- (reasonably) well-defined semantics
- designed for input to planners translate to an internal representation for specific planners. Translators exist for most state-of-the-art planners

3. Direct use within (classical) planners

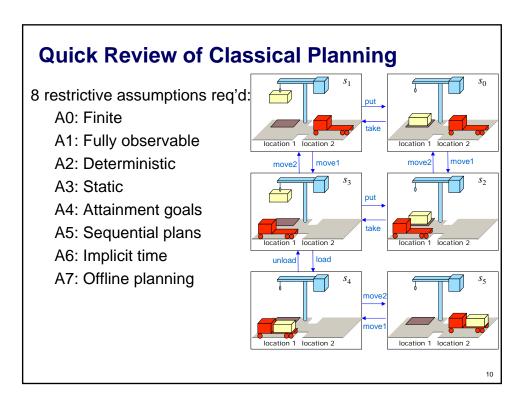
- Classical representation (e.g., STRIPS)
- Set-theoretic representation (basis for rep'ns used w/ SAT solvers)
- State-variable representation (e.g., SAS, SAS+)
- Variants of these exist for particular planners (e.g., SAT solvers, model checkers, etc.)

'



Outline

- Representation schemes for classical planning
 - 1. Classical representation
 - 2. Set-theoretic representation
 - 3. State-variable representation
- Examples: DWR and the Blocks World
- Comparisons



Representation: Motivation for Approach

Default view:

represent state explicitly

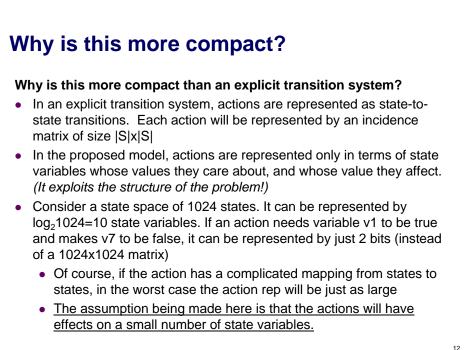
• represent actions as a transition system (e.g., as an incidence matrix) Problem:

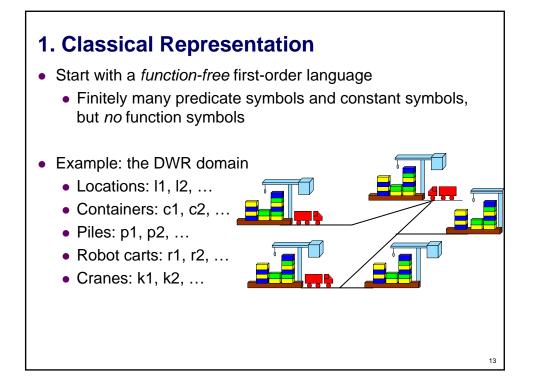
- explicit graph corresponding to transition system is huge
- direct manipulation of transition system is cumbersome

Solution:

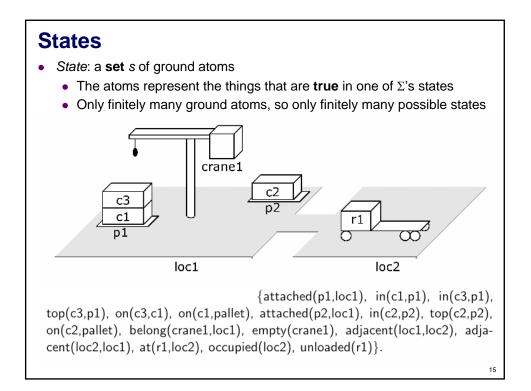
Provide compact representation of transition system & induced graph

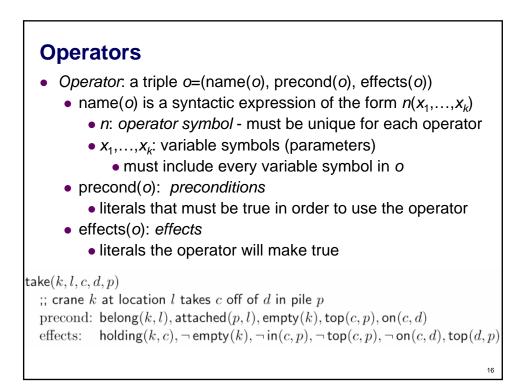
- 1. Explicate the structure of the "states"
 - e.g., states specified in terms of state variables
- 2. Represent actions not as transition system/incidence matrices but as functions (e.g., operators) specified in terms of the state variables
 - An action is applicable to a state when some state variables have certain values. When applicable, it will change the values of certain (other) state variables
- 3. To plan,
 - Just give the initial state
 - Use the operators to generate the other states as needed

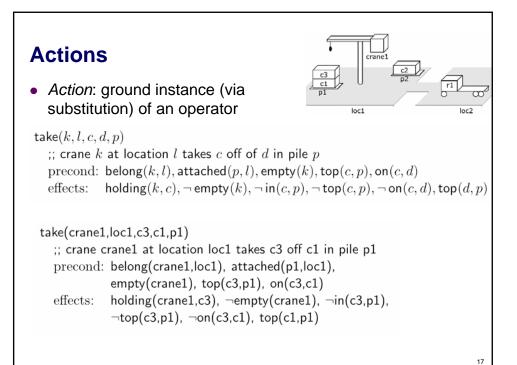




Outok roviow		
Quick review of terminology		
• Atom: predicate sym	bol and args	
 Use these to represent both fixed and dynamic ("fluent") relations 		
adjacent(1,1')	attached(p,l) belong(k,l)	
occupied(<i>I</i>)	at(<i>r</i> , <i>l</i>)	
loaded(r,c)	unloaded(<i>r</i>)	
holding(<i>k,c</i>)	empty(<i>k</i>)	
in(<i>c,p</i>)	on(<i>c,c</i>)	
top(<i>c,p</i>)	top(pallet, <i>p</i>)	
 Ground expression: contains no variable symbols - e.g., in(c1,p3) 		
 Unground expression: at least one variable symbol - e.g., in(c1,x) 		
 Each x_i is a varial Instance of e: result of 	$\leftarrow v_1, x_2 \leftarrow v_2, \dots, x_n \leftarrow v_n$ ble symbol; each v_i is a term of applying a substitution θ to e s of e simultaneously, not sequentially	







Notation
Let a be an operator or action. Then

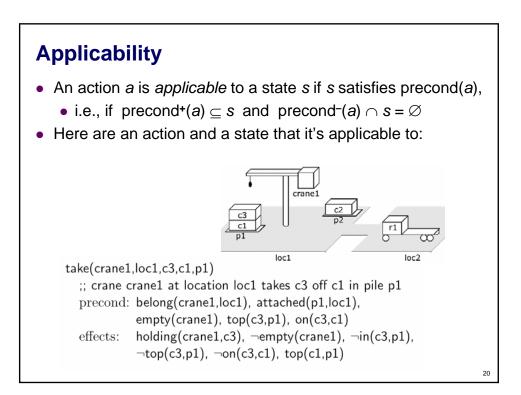
precond*(a) = {atoms that appear positively in a's preconditions}
precond⁻(a) = {atoms that appear negatively in a's preconditions}
effects*(a) = {atoms that appear positively in a's effects}
effects⁻(a) = {atoms that appear negatively in a's effects}

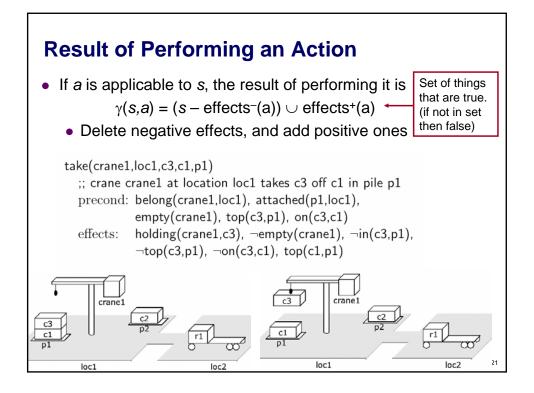
E.g.,

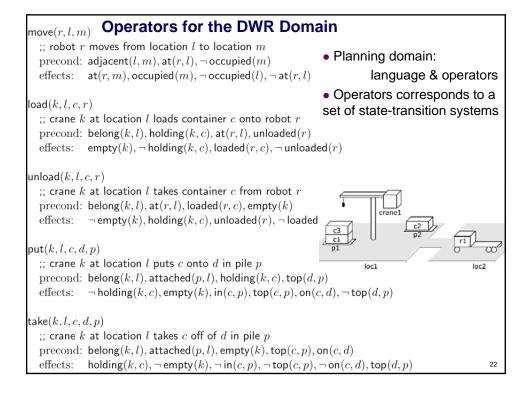
take(k, l, c, d, p)
;; crane k at location l takes c off of d in pile p
precond: belong(k, l), attached(p, l), empty(k), top(c, p), on(c, d)
effects: holding(k, c), ¬ empty(k), ¬ in(c, p), ¬ top(c, p), ¬ on(c, d), top(d, p)
effects*(take(k,l,c,d,p) = {holding(k,c), top(d,p)}
effects⁻(take(k,l,c,d,p) = {empty(k), in(c,p), top(c,p), on(c,d)}

Aside: Some things to note

- The state only explicitly represents what is true. The semantics of this representation is that any fluent not included in the state is false just like a database. (Recall that one of the assumptions of classical planning is complete initial (and subsequent) state. The problem would be a lot harder w/o this assumption!!)
- **Terminology:** an action is a ground operator. In the Knowledge Representation (KR) literature the concept of an "operator" is not used. Actions may be ground or unground.
- Classical planners generally operate over ground actions.





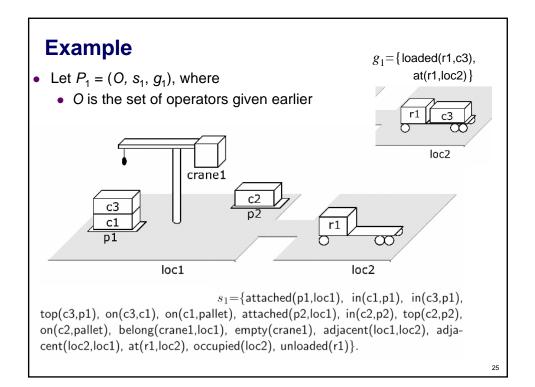


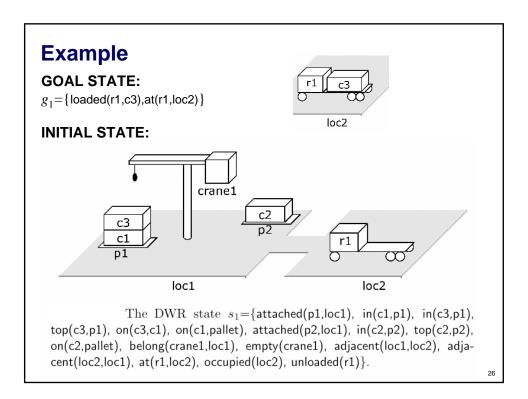
Planning Problems

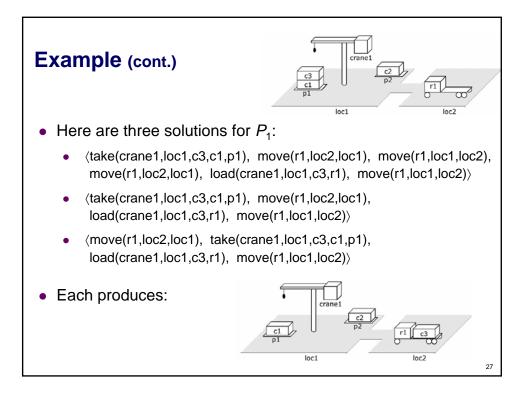
Given a planning domain (language L, operators O)

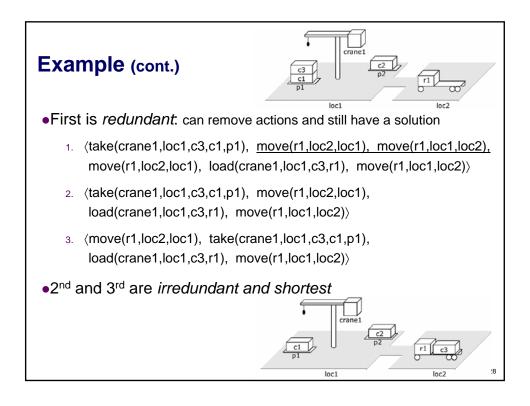
- *Encoding* of a planning problem: a triple $P=(O,s_0,g)$
 - O is the collection of operators
 - s_0 is a state (the initial state)
 - g is a set of literals (the goal formula)
- The actual planning problem: $P = (\Sigma, S_0, g)$
 - *s*₀ and *g* are as above
 - $\Sigma = (S, A, \gamma)$ is a state-transition system
 - *S* = {all sets of ground atoms in *L*}
 - *A* = {all ground instances of operators in *O*}
 - γ = state-transition function determined by the operators

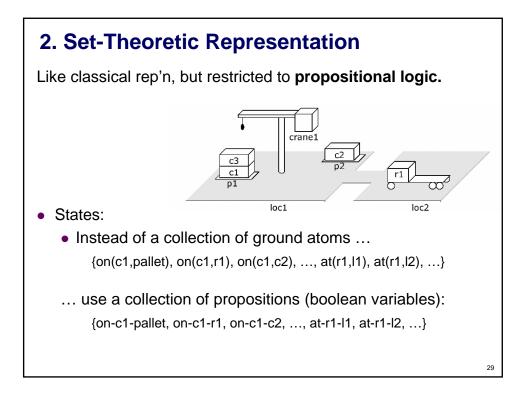
Plans and Solutions
Plan: any sequence of actions σ = ⟨a₁, a₂, ..., a_n⟩ such that each a_i is a ground instance of an operator in O
The plan is a *solution* for P=(O,s₀,g) if it is executable and achieves g
i.e., if there are states s₀, s₁, ..., s_n such that
γ(s₀,a₁) = s₁
γ(s₁,a₂) = s₂
...
γ(s_{n-1},a_n) = s_n
s_n satisfies g











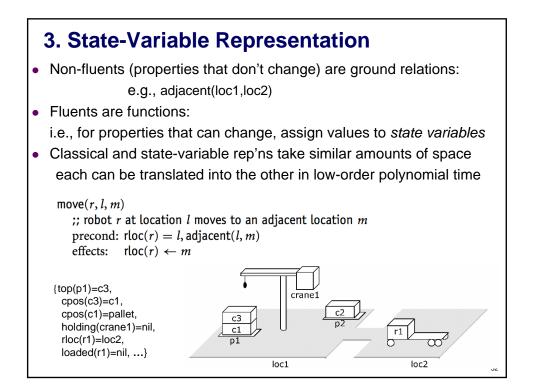
Instead of operators like this one,		
$\begin{array}{l} take(k,l,c,d,p) \\ \texttt{;; crane } k \texttt{ at location } l \texttt{ takes } c \texttt{ off of } d \texttt{ in pile } p \\ \texttt{precond: } belong(k,l), \texttt{attached}(p,l), empty(k), top(c,p), ond \\ \texttt{effects: } holding(k,c), \neg \texttt{empty}(k), \neg \texttt{in}(c,p), \neg \texttt{top}(c,p), \neg \texttt{cond} \end{array}$		
Take all of the operator instances , E.g.:		
<pre>take(crane1,loc1,c3,c1,p1) ;; crane crane1 at location loc1 takes c3 off c1 in pile p1 precond: belong(crane1,loc1), attached(p1,loc1),</pre>		
take-crane1-loc1-c3-c1-p1		
precond: belong-crane1-loc1, attached-p1-loc1,empty-crane1, top-c3-p1, on-c3-c1		
delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1 add: holding-crane1-c3, top-c1-p1		
	30	

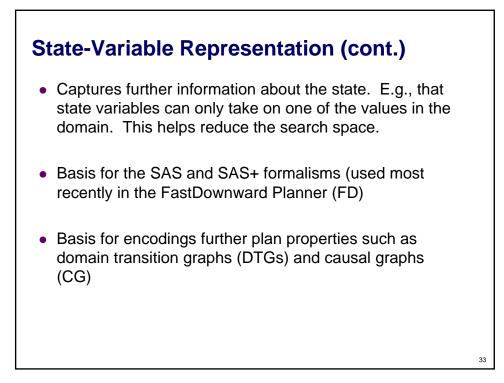
Comparison

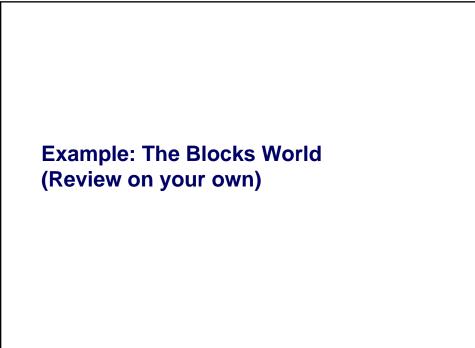
A set-theoretic representation is equivalent to a classical representation in which all of the atoms are ground

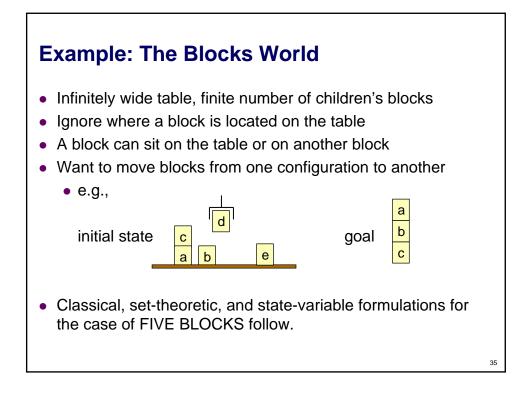
Problem: Exponential blowup

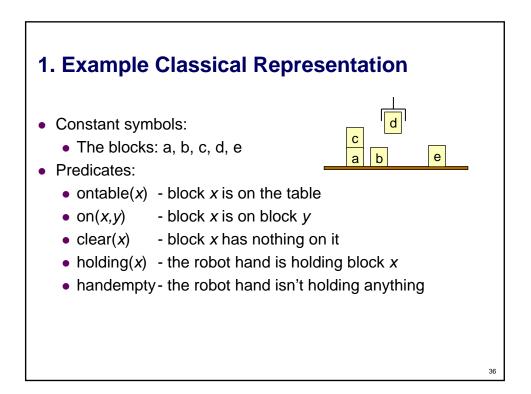
 If a classical operator contains *n* atoms and each atom has arity *k*, then it corresponds to *c^{nk}* actions where *c* = |{constant symbols}|

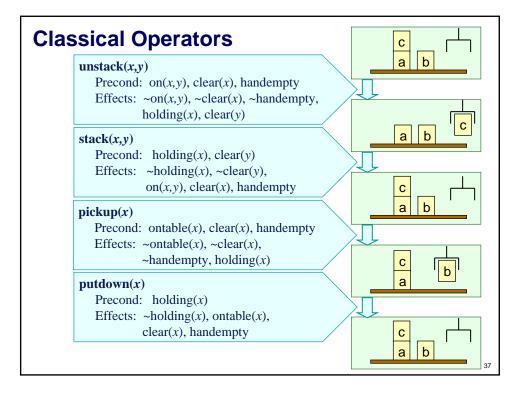


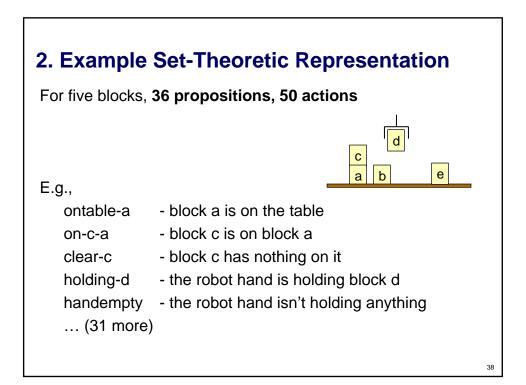


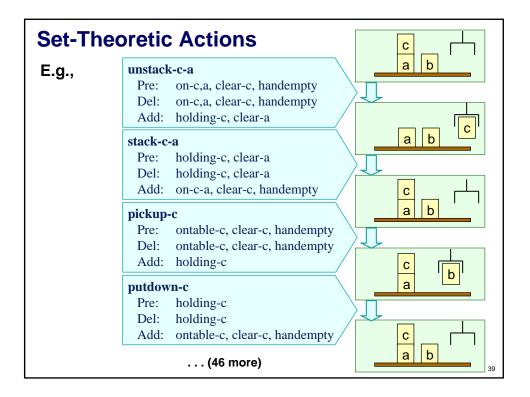


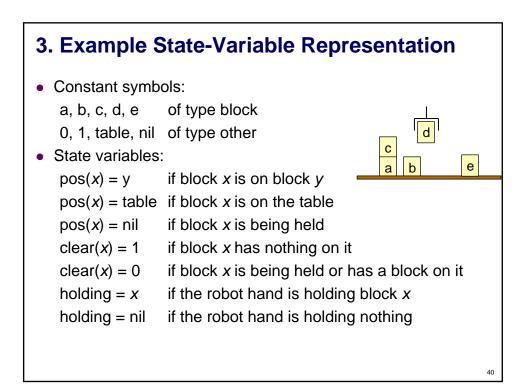


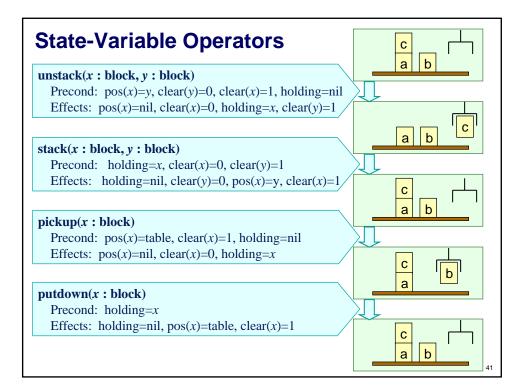


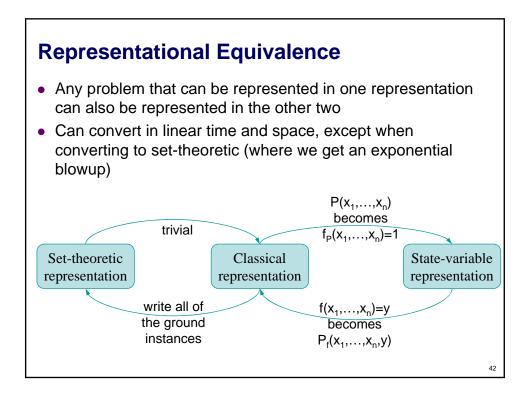








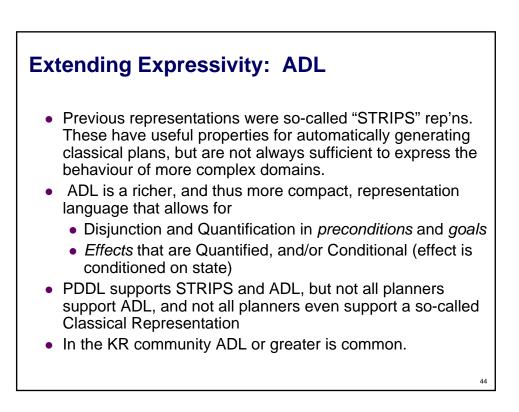




Comparison

- Classical representation
 - Most popular for classical planning, basis of PDDL
- Set-theoretic representation
 - Can take much more space than classical representation
 - Useful in algorithms that manipulate ground atoms directly
 e.g., planning graphs, SAT
 - Useful for certain kinds of theoretical studies
- State-variable representation (e.g., SAS, SAS+)
 - Equivalent to classical representation in expressive power

- Arguably less natural to conceive
- Useful in non-classical planning problems as a way to handle numbers, functions, time



Pros/Cons: Compiling to Canonical Action Rep'n

Possible to compile down ADL actions into STRIPS actions

- Quantification -> conjunctions/disjunctions over finite universes
- Actions with conditional effects -> multiple (exponentially more) actions without conditional effects
- Actions with disjunctive effects -> multiple actions, each of which take one of the disjuncts as their preconditions
- Domain axioms (ramifications) -> the individual effects of the actions; so all actions satisfy STRIPS assumption

Compilation is not always a win-win.

- By compiling down to canonical form, we can concentrate on highly efficient planning for canonical actions
 - However, often compilation leads to an exponential blowup and makes it harder to exploit the structure of the domain
- By leaving actions in non-canonical form, we can often do more compact encoding of the domains <u>as well as more efficient search</u>

45

• However, we will have to continually extend planning algorithms to handle these representations