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Recall:
Planning Problem
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P = (Σ, s0,G)

Σ:  System Description

S0:  Initial state(s) 
E.g., Initial state = s0

G: Objective
Goal state, 
Set of goal states, 
Set of tasks, 
“trajectory” of states, 
Objective function, …
E.g., Goal state = s5 The Dock Worker Robots (DWR) domain
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Σ = (S,A,E,γ)

S = {states}
A = {actions}
E = {exogenous events}
State-transition function γ : S x (A ∪ E) → 2S

Example:  Dock Workers Robots from previous slide
S = {s0, …, s5}
A = {move1, move2, put, take, load, unload}
E = {}
γ: as captured by the arrows mapping states and 
actions to successor states

Further Recall:
System Description (as a state transition system)
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Representational Challenge
How do we represent our planning problem is a way 
that supports exploration of the principles and practice 
of automated planning?

Approach:
There isn’t one answer.
The textbook proposes representations that are suitable 
for generating classical plans.
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Broad Perspective on Plan Representation
The right representation for the right objective.  
Distinguish representation schemes for:
1. studying the principles of planning and related tasks.
2. specifying planning domains
3. direct use within (classical) planners
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Summary:  Broad Perspective
1. Studying the formal principles of planning and other related task

(First-order) logical languages 
(e.g., situation calculus, A languages, event calculus, fluent calculus, PDL)

Properties:
well-defined semantics, representational issues must be addressed in the 
language (not in the algorithm that interprets and manipulates them)
excellent for study and proving properties.  Not ideal for 3 below.

2. Specifying planning domains
PDDL-n  (PDDL2.1, PDDL2.2, PDDL3, ….)

Properties:
(reasonably) well-defined semantics
designed for input to planners – translate to an internal representation for 
specific planners.  Translators exist for most state-of-the-art planners

3. Direct use within (classical) planners 
Classical representation (e.g., STRIPS)
Set-theoretic representation (basis for rep’ns used w/ SAT solvers)
State-variable representation (e.g., SAS, SAS+)

Variants of these exist for particular planners (e.g., SAT solvers, model 
checkers, etc.)
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This Lecture:
1. Studying the formal principles of planning and other related task

(First-order) logical languages 
(e.g., situation calculus, A languages, event calculus, fluent calculus, PDL)

Properties:
well-defined semantics, representational issues must be addressed in the 
language (not in the algorithm that interprets and manipulates them)
excellent for study and proving properties.  Not ideal for 3 below.

2. Specifying planning domains
PDDL-n  (PDDL2.1, PDDL2.2, PDDL3, ….)

Properties:
(reasonably) well-defined semantics
designed for input to planners – translate to an internal representation for 
specific planners.  Translators exist for most state-of-the-art planners

3. Direct use within (classical) planners (what’s in the text)
Classical representation (e.g., STRIPS)
Set-theoretic representation (basis for rep’ns used w/ SAT solvers)
State-variable representation (e.g., SAS, SAS+)

Variants of these exist for particular planners (e.g., SAT solvers, model 
checkers, etc.)

WILL COVER LATER        
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Outline
Representation schemes for classical planning
1. Classical representation
2. Set-theoretic representation
3. State-variable representation
Examples: DWR and the Blocks World
Comparisons
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Quick Review of Classical Planning
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8 restrictive assumptions req’d:
A0: Finite
A1: Fully observable
A2: Deterministic
A3: Static
A4: Attainment goals
A5: Sequential plans
A6: Implicit time
A7: Offline planning
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Representation:  Motivation for Approach
Default view:

represent state explicitly
represent actions as a transition system (e.g., as an incidence matrix)

Problem: 
explicit graph corresponding to transition system is huge
direct manipulation of transition system is cumbersome

Solution:  
Provide compact representation of transition system & induced graph

1. Explicate the structure of the “states”
e.g., states specified in terms of state variables

2. Represent actions not as transition system/incidence matrices but as 
functions (e.g., operators) specified in terms of the state variables

An action is applicable  to a state when some state variables 
have certain values. When applicable, it will change the values of 
certain (other) state variables 

3. To plan, 
Just give the initial state
Use the operators to generate the other states as needed
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Why is this more compact? 

Why is this more compact than an explicit transition system?
In an explicit transition system, actions are represented as state-to-
state transitions.  Each action will be represented by an incidence 
matrix of size |S|x|S| 
In the proposed model, actions are represented only in terms of state 
variables whose values they care about, and whose value they affect. 
(It exploits the structure of the problem!) 
Consider a state space of 1024 states. It can be represented by 
log21024=10 state variables. If an action needs variable v1 to be true 
and makes v7 to be false, it can be represented by just 2 bits (instead 
of a 1024x1024 matrix)

Of course, if the action has a complicated mapping from states to 
states, in the worst case the action rep will be just as large
The assumption being made here is that the actions will have 
effects on a small number of state variables.
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1. Classical Representation
Start with a function-free first-order language

Finitely many predicate symbols and constant symbols,
but no function symbols

Example: the DWR domain
Locations: l1, l2, …
Containers: c1, c2, …
Piles: p1, p2, …
Robot carts: r1, r2, …
Cranes: k1, k2, …
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Quick review of terminology
Atom: predicate symbol and args

Use these to represent both fixed and dynamic (“fluent”) relations
adjacent(l,l’) attached(p,l) belong(k,l) 
occupied(l) at(r,l)
loaded(r,c) unloaded(r)
holding(k,c) empty(k)
in(c,p) on(c,c’)
top(c,p) top(pallet,p)

Ground expression: contains no variable symbols    - e.g.,  in(c1,p3)
Unground expression: at least one variable symbol  - e.g.,  in(c1,x)

Substitution:  θ = {x1 ← v1,  x2 ← v2,  …,  xn← vn}
Each xi is a variable symbol; each vi is a term

Instance of e: result of applying a substitution θ to e
Replace variables of e simultaneously, not sequentially
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States
State: a set s of ground atoms

The atoms represent the things that are true in one of Σ’s states
Only finitely many ground atoms, so only finitely many possible states
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Operators
Operator: a triple o=(name(o), precond(o), effects(o))

name(o) is a syntactic expression of the form n(x1,…,xk)
n: operator symbol - must be unique for each operator
x1,…,xk: variable symbols (parameters)

must include every variable symbol in o
precond(o):  preconditions

literals that must be true in order to use the operator
effects(o): effects

literals the operator will make true
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Actions
Action: ground instance (via 
substitution) of an operator
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Notation
Let a be an operator or action. Then

precond+(a) = {atoms that appear positively in a’s preconditions}
precond–(a) = {atoms that appear negatively in a’s preconditions}
effects+(a) = {atoms that appear positively in a’s effects}
effects–(a) = {atoms that appear negatively in a’s effects}

effects+(take(k,l,c,d,p) = {holding(k,c), top(d,p)}
effects–(take(k,l,c,d,p) = {empty(k), in(c,p), top(c,p), on(c,d)}

E.g.,
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Aside:  Some things to note
The state only explicitly represents what is true.  The 
semantics of this representation is that any fluent not 
included in the state is false – just like a database.
(Recall that one of the assumptions of classical 
planning is complete initial (and subsequent) state. 
The problem would be a lot harder w/o this 
assumption!!)
Terminology:  an action is a ground operator.  In the 
Knowledge Representation (KR) literature the 
concept of an “operator” is not used.  Actions may be 
ground or unground.
Classical planners generally operate over ground 
actions.
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Applicability
An action a is applicable to a state s if s satisfies precond(a),

i.e., if  precond+(a) ⊆ s and  precond–(a) ∩ s = ∅
Here are an action and a state that it’s applicable to:
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Result of Performing an Action
If a is applicable to s, the result of performing it is

γ(s,a) = (s – effects–(a)) ∪ effects+(a)
Delete negative effects, and add positive ones

Set of things
that are true. 
(if not in set 
then false)
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Planning domain: 
language & operators

Operators corresponds to a 
set of state-transition systems

Operators for the DWR Domain
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Planning Problems 
Given a planning domain (language L, operators O)

Encoding of a planning problem: a triple P=(O,s0,g)
O is the collection of operators
s0 is a state (the initial state)
g is a set of literals (the goal formula)

The actual planning problem: P = (Σ,s0, g)
s0 and g are as above
Σ = (S,A,γ) is a state-transition system
S = {all sets of ground atoms in L}
A = {all ground instances of operators in O}
γ = state-transition function determined by the operators



24

Plans and Solutions
Plan: any sequence of actions σ =  〈a1, a2, …, an〉 such that
each ai is a ground instance of an operator in O
The plan is a solution for P=(O,s0,g) if it is executable and 
achieves g

i.e., if there are states s0, s1, …, sn such that
γ (s0,a1) = s1

γ (s1,a2) = s2

…
γ (sn–1,an) = sn

sn satisfies g
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Example
Let P1 = (O, s1, g1), where

O is the set of operators given earlier

g1={loaded(r1,c3),
at(r1,loc2)}
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Example
GOAL STATE:
g1={loaded(r1,c3),at(r1,loc2)}

INITIAL STATE:
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Here are three solutions for P1:
〈take(crane1,loc1,c3,c1,p1),  move(r1,loc2,loc1),  move(r1,loc1,loc2),
move(r1,loc2,loc1),  load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)〉

〈take(crane1,loc1,c3,c1,p1),  move(r1,loc2,loc1),
load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)〉

〈move(r1,loc2,loc1),  take(crane1,loc1,c3,c1,p1),
load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)〉

Each produces:

Example (cont.)
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Example (cont.)

First is redundant: can remove actions and still have a solution

1. 〈take(crane1,loc1,c3,c1,p1),  move(r1,loc2,loc1),  move(r1,loc1,loc2),
move(r1,loc2,loc1),  load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)〉

2. 〈take(crane1,loc1,c3,c1,p1),  move(r1,loc2,loc1),
load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)〉

3. 〈move(r1,loc2,loc1),  take(crane1,loc1,c3,c1,p1),
load(crane1,loc1,c3,r1),  move(r1,loc1,loc2)〉

2nd and 3rd are irredundant and shortest
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2. Set-Theoretic Representation
Like classical rep’n, but restricted to propositional logic.

States: 
Instead of a collection of ground atoms …

{on(c1,pallet), on(c1,r1), on(c1,c2), …, at(r1,l1), at(r1,l2), …}

… use a collection of propositions (boolean variables):
{on-c1-pallet, on-c1-r1, on-c1-c2, …, at-r1-l1, at-r1-l2, …}
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Instead of operators like this one,

take-crane1-loc1-c3-c1-p1
precond: belong-crane1-loc1, attached-p1-loc1,empty-crane1, top-c3-p1, on-c3-c1
delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1
add: holding-crane1-c3, top-c1-p1

Take all of the operator instances, E.g.:

And rewrite ground atoms as propositions, E.g.:



31

Comparison
A set-theoretic representation is equivalent to a classical 
representation in which all of the atoms are ground

Problem:  Exponential blowup
If a classical operator contains n atoms and each atom has arity k,
then it corresponds to cnk actions where c = |{constant symbols}|
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Non-fluents (properties that don’t change) are ground relations:
e.g., adjacent(loc1,loc2)

Fluents are functions: 
i.e., for properties that can change, assign values to state variables
Classical and state-variable rep’ns take similar amounts of space
each can be translated into the other in low-order polynomial time

3. State-Variable Representation

{top(p1)=c3,
cpos(c3)=c1,
cpos(c1)=pallet,
holding(crane1)=nil,
rloc(r1)=loc2,
loaded(r1)=nil, …}
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Captures further information about the state.  E.g., that 
state variables can only take on one of the values in the 
domain.  This helps reduce the search space.  

Basis for the SAS and SAS+ formalisms (used most 
recently in the FastDownward Planner (FD)

Basis for encodings further plan properties such as 
domain transition graphs (DTGs) and causal graphs 
(CG)

State-Variable Representation (cont.)
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Example: The Blocks World
(Review on your own)
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Example: The Blocks World

Infinitely wide table, finite number of children’s blocks
Ignore where a block is located on the table
A block can sit on the table or on another block
Want to move blocks from one configuration to another

e.g.,

initial state goal

Classical, set-theoretic, and state-variable formulations for 
the case of FIVE BLOCKS follow.

c

a
bc

a b e

d
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1. Example Classical Representation

Constant symbols:
The blocks: a, b, c, d, e

Predicates:
ontable(x) - block x is on the table
on(x,y) - block x is on block y
clear(x) - block x has nothing on it
holding(x) - the robot hand is holding block x
handempty- the robot hand isn’t holding anything

c
a b e

d
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unstack(x,y)
Precond:  on(x,y), clear(x), handempty
Effects:  ~on(x,y), ~clear(x), ~handempty,

holding(x), clear(y)

stack(x,y)
Precond:   holding(x), clear(y)
Effects:   ~holding(x), ~clear(y),

on(x,y), clear(x), handempty

pickup(x)
Precond:  ontable(x), clear(x), handempty
Effects:  ~ontable(x), ~clear(x),

~handempty, holding(x)

putdown(x)
Precond:   holding(x)
Effects:  ~holding(x), ontable(x),

clear(x), handempty

Classical Operators c
a b

c
a b

c
a b

c
a

b

c
a b
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For five blocks, 36 propositions, 50 actions

E.g.,
ontable-a - block a is on the table
on-c-a - block c is on block a
clear-c - block c has nothing on it
holding-d - the robot hand is holding block d
handempty - the robot hand isn’t holding anything
… (31 more)

c
a b

d

e

2. Example Set-Theoretic Representation
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Set-Theoretic Actions
E.g., unstack-c-a

Pre: on-c,a, clear-c, handempty
Del: on-c,a, clear-c, handempty
Add: holding-c, clear-a

stack-c-a
Pre: holding-c, clear-a
Del: holding-c, clear-a
Add: on-c-a, clear-c, handempty

pickup-c
Pre: ontable-c, clear-c, handempty
Del: ontable-c, clear-c, handempty
Add: holding-c

putdown-c
Pre: holding-c
Del: holding-c
Add: ontable-c, clear-c, handempty

c
a b

c
a b

c
a b

c
a

b

c
a b. . . (46 more)
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Constant symbols:
a, b, c, d, e of type block
0, 1, table, nil of type other

State variables:
pos(x) = y if block x is on block y
pos(x) = table if block x is on the table
pos(x) = nil if block x is being held
clear(x) = 1 if block x has nothing on it
clear(x) = 0 if block x is being held or has a block on it
holding = x if the robot hand is holding block x
holding = nil if the robot hand is holding nothing

c
a b e

d

3. Example State-Variable Representation
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State-Variable Operators
unstack(x : block, y : block)

Precond:  pos(x)=y, clear(y)=0, clear(x)=1, holding=nil
Effects:  pos(x)=nil, clear(x)=0, holding=x, clear(y)=1

stack(x : block, y : block)
Precond:   holding=x, clear(x)=0, clear(y)=1
Effects:   holding=nil, clear(y)=0, pos(x)=y, clear(x)=1

pickup(x : block)
Precond:  pos(x)=table, clear(x)=1, holding=nil
Effects:  pos(x)=nil, clear(x)=0, holding=x

putdown(x : block)
Precond:  holding=x
Effects:  holding=nil, pos(x)=table, clear(x)=1

c
a b

c
a b

c
a b

c
a

b

c
a b
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Representational Equivalence
Any problem that can be represented in one representation 
can also be represented in the other two
Can convert in linear time and space, except when 
converting to set-theoretic (where we get an exponential 
blowup)

Classical
representation

State-variable
representation

Set-theoretic
representation

trivial

P(x1,…,xn)
becomes

fP(x1,…,xn)=1

write all of
the ground
instances

f(x1,…,xn)=y
becomes

Pf(x1,…,xn,y)



43

Comparison
Classical representation

Most popular for classical planning, basis of PDDL

Set-theoretic representation
Can take much more space than classical representation
Useful in algorithms that manipulate ground atoms directly

e.g., planning graphs, SAT
Useful for certain kinds of theoretical studies

State-variable representation (e.g., SAS, SAS+)
Equivalent to classical representation in expressive power
Arguably less natural to conceive
Useful in non-classical planning problems as a way to 
handle numbers, functions, time
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Extending Expressivity:  ADL

Previous representations were so-called “STRIPS” rep’ns.  
These have useful properties for automatically generating 
classical plans, but are not always sufficient to express the 
behaviour of more complex domains.
ADL is a richer, and thus more compact, representation 
language that allows for 

Disjunction and Quantification in preconditions and goals
Effects that are Quantified, and/or Conditional (effect is 
conditioned on state)

PDDL supports STRIPS and ADL, but not all planners 
support ADL, and not all planners even support a so-called 
Classical Representation
In the KR community ADL or greater is common.
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Pros/Cons:  Compiling to Canonical Action Rep’n
Possible to compile down ADL actions into STRIPS actions

Quantification -> conjunctions/disjunctions over finite universes
Actions with conditional effects -> multiple (exponentially more) 
actions without conditional effects
Actions with disjunctive effects -> multiple actions, each of which 
take one of the disjuncts as their preconditions
Domain axioms (ramifications) -> the individual effects of the  
actions; so all actions satisfy STRIPS assumption

Compilation is not always a win-win.
By compiling down to canonical form, we can concentrate on 
highly efficient planning for canonical actions

However, often compilation leads to an exponential blowup 
and makes it harder to exploit the structure of the domain

By leaving actions in non-canonical form, we can often do more 
compact encoding of the domains as well as more efficient search

However, we will have to continually extend planning 
algorithms to handle these representations


	CSC2542�Representations �			for (Classical) Planning��Sheila McIlraith�Department of Computer Science�University of Toronto�Fa
	Acknowledgements
	Recall:�   Planning Problem
	Further Recall:�  System Description (as a state transition system)
	Representational Challenge
	Broad Perspective on Plan Representation
	Summary:  Broad Perspective
	This Lecture:
	Outline
	Quick Review of Classical Planning
	Representation:  Motivation for Approach
	Why is this more compact? 
	1. Classical Representation
	Quick review of terminology
	States
	Operators
	Actions
	Notation
	Aside:  Some things to note
	Applicability
	Result of Performing an Action
	Planning Problems 
	Plans and Solutions
	Example
	Example
	Example (cont.)
	2. Set-Theoretic Representation
	Comparison
	3. State-Variable Representation
	State-Variable Representation (cont.)
	Example: The Blocks World�(Review on your own)
	Example: The Blocks World
	1. Example Classical Representation
	Classical Operators
	2. Example Set-Theoretic Representation
	Set-Theoretic Actions
	3. Example State-Variable Representation
	State-Variable Operators
	Representational Equivalence
	Comparison
	Extending Expressivity:  ADL
	Pros/Cons:  Compiling to Canonical Action Rep’n

