CSC2542 Introduction to Planning

Sheila McIlraith Department of Computer Science University of Toronto Fall 2010

Acknowledgements

Some of the slides used in this course are modifications of Dana Nau's lecture slides for the textbook *Automated Planning*, licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: <u>http://creativecommons.org/licenses/by-nc-sa/2.0/</u>

Other slides are modifications of slides developed by Malte Helmert, Bernhard Nebel, and Jussi Rintanen.

I have also used some material prepared by P@trick Haslum.

I would like to gratefully acknowledge the contributions of these researchers, and thank them for generously permitting me to use aspects of their presentation material.

plan n.

- 1. A scheme, program, or method worked out beforehand for the accomplishment of an objective: *a plan of attack*.
- 2. A proposed or tentative project or course of action: *had no plans for the evening*.
- 3. A systematic arrangement of elements or important parts; a configuration or outline: *a seating plan; the plan of a story*.

- 4. A drawing or diagram made to scale showing the structure or arrangement of something.
- 5. In perspective rendering, one of several imaginary planes perpendicular to the line of vision between the viewer and the object being depicted.
- 6. A program or policy stipulating a service or benefit: *a pension plan*.
- Synonyms: blueprint, design, project, scheme, strategy

					03	Establish datum point	at bullseye (0.25, 1	
F		.•	6.6		1 1	•	side-milling tool	
[a representation] of future behavior							at (-0.25, 1.25) 0, depth 0.50	
usually a set of actions, with temporal and							t at (-0.25, 1.25)	
other constraints on them, for execution by							0, depth 0.50 at (-0.25, 3.00)	
some agent or agents.							0, depth 0.50	
- Austin Tate							t at (-0.25, 3.00) 0, depth 0.50	
[MIT Encyclopedia of the Cognitive Sciences, 1999]							end-milling tool	
	004	T VMC1	2.50	4.87	01	Total time on VMC1	•	
	005	A EC1	0.00	32.29	01	Pre-clean board (scrub and wash)		
					02	Dry board in oven at 8	35 deg. F	
	005	B EC1	30.00	0.48	01 02	Setup Spread photoresist fro	om 18000 RPM spinner	
	005	C EC1	30.00	2.00	01	Setup		
					02	Photolithography of photoresist using phototool in "real.iges"		
	005	D EC1	30.00	20.00	01	Setup		
	005	T EC1	90.00	54.77	02 01	Etching of copper Total time on EC1		
	006	A MC1	30.00	4.57	01 02	Setup Prepare board for sold	lering	
	006	OD6 B M A portion of a manufacturing process plan						

NG1 20 00

a - + - - -

00C C

UZ Screenprint solder stop on board

- (0.25, 1.00)

Modes of Planning

- Mixed Initiative Planning
- Automated Plan Generation

Example Planning Applications

Autonomous Agents for Space Exploration

- Autonomous planning, scheduling, control
 - NASA: JPL and Ames
- Remote Agent Experiment (RAX)
 - Deep Space 1
- Mars Exploration Rover (MER)

Other Autonomous Systems

Manufacturing Automation

- Sheet-metal bending machines Amada Corporation
 - Software to plan the sequence of bends [Gupta and Bourne, *J. Manufacturing Sci. and Engr.*, 1999]

Games

- E.g., Bridge Baron Great Game Products
 - 1997 world champion of computer bridge [Smith, Nau, and Throop, Al Magazine, 1998]
 - 2004: 2nd place

Other Applications

- Scheduling with Action Choices & Resource Requirements
 - Problems in supply chain management
 - HSTS (Hubble Space Telescope scheduler)
 - Workflow management
- Air Traffic Control
 - Route aircraft between runways and terminals. Crafts must be kept safely separated. Safe distance depends on craft and mode of transport. Minimize taxi and wait time.
- Character Animation
 - Generate step-by-step character behaviour from highlevel spec
- Plan-based Interfaces
 - E.g. NLP to database interfaces
 - Plan recognition

Other Applications (cont.)

- Web Service Composition
 - Compose web services, and monitor their execution
 - Many of the web standards have a lot of connections to action representation languages
 - BPEL; BPEL-4WS allow workflow specifications
 - DAML-S allows process specifications
- Business Process Composition /Workflow Management
 - Including Grid Services/Scientific Workflow Management
- Genome Rearrangement
 - The relationship between different organisms can be measured by the number of "evolution events" (rearrangements) that separate their genomes
 - Find shortest (or most likely) sequence of rearrangements between a pair of genomes

Outline

- → Conceptual model for planning
- Classes of planning problems
- Classes of planners and example instances
- Beyond planning
- Planning research the big picture
- Some of what I hope you'll get from the course

Conceptual Model

1. Environment

State Transition System

- $\boldsymbol{\Sigma} = \left(\boldsymbol{S}, \boldsymbol{A}, \boldsymbol{E}, \boldsymbol{\gamma}\right)$
- *S* = {states}
- *A* = {actions}
- *E* = {exogenous events}
- State-transition function $\gamma : S \times (A \cup E) \rightarrow 2^{S}$
 - $S = \{s_0, ..., s_5\}$
 - A = {move1, move2, put, take, load, unload}
 - $E = \{\}$
 - γ: see the arrows

Dock Worker Robots (DWR):

Conceptual Model

3. Planner's Input

Planning Problem

 $\boldsymbol{P} = (\boldsymbol{\Sigma}, \, \boldsymbol{S}_0, \boldsymbol{G})$

- Σ : System Description
- $s_{o^{:}}$ Initial state(s) E.g., Initial state = s_0
- G: Objective Goal state, Set of goal states, Set of tasks, "trajectory" of states, Objective function, ... E.g., Goal state = s_5

The Dock Worker Robots (DWR) domain

Conceptual Model

4. Planner's Output

Plans

Classical plan:

a sequence of actions E.g., $\langle take, move1, load, move2 \rangle$

Policy:

partial function from S into A

E.g.,

 $\{(s_0, take),$

 $(s_1, move1),$

- $(s_3, \text{load}),$
- $(s_4, move2)$

The Dock Worker Robots (DWR) domain

Outline

- Conceptual model for planning
- → Classes of planning problems
- Classes of planners and example instances
- Beyond planning
- Planning research the big picture
- Some of what I hope you'll get from the course

. . .

Varying components of the planning problem specification yields different classes of problems. E.g.,

dynamics: deterministic, nondeterministic, probabilistic
observability: full, partial, none
horizon: finite, infinite
objective requirement: satisfying, optimizing

dynamics: deterministic, nondeterministic, probabilistic observability: full, partial, none horizon: finite, infinite objective requirement: satisfying, optimizing

classical planning

- conditional planning with full observability
- conditional planning with partial observability
- conformant planning
- markov decision processes (MDP)
- partial observable MDP (POMDP)
- preference-based/over-subscription planning

dynamics: deterministic, nondeterministic, probabilistic observability: full, partial, none horizon: finite, infinite objective requirement: satisfying, optimizing

- classical planning
- conditional planning with full observability
- conditional planning with partial observability
- conformant planning
- markov decision processes (MDP)
- partial observable MDP (POMDP)
- preference-based/over-subscription planning

dynamics: deterministic, nondeterministic, probabilistic observability: full, partial, none horizon: finite, infinite objective requirement: satisfying, optimizing

- classical planning
- conditional planning with full observability
- conditional planning with partial observability
- conformant planning
- markov decision processes (MDP)
- partial observable MDP (POMDP)
- preference-based/over-subscription planning

dynamics: deterministic, nondeterministic, probabilistic observability: full, partial, none horizon: finite, infinite objective requirement: satisfying, optimizing

- classical planning
- conditional planning with full observability
- conditional planning with partial observability
- conformant planning
- markov decision processes (MDP)
- partial observable MDP (POMDP)
- preference-based/over-subscription planning

dynamics: deterministic, nondeterministic, probabilistic observability: full, partial, none horizon: finite, infinite objective requirement: satisfying, optimizing

- classical planning
- conditional planning with full observability
- conditional planning with partial observability
- conformant planning
- markov decision processes (MDP)
- partial observable MDP (POMDP)
- preference-based/over-subscription planning

dynamics: deterministic, nondeterministic, probabilistic observability: full, partial, none horizon: finite, infinite objective requirement: satisfying, optimizing

- classical planning
- conditional planning with full observability
- conditional planning with partial observability
- conformant planning
- markov decision processes (MDP)
- partial observable MDP (POMDP)
- preference-based/over-subscription planning

dynamics: deterministic, nondeterministic, probabilistic observability: full, partial, none horizon: finite, infinite objective requirement: satisfying, optimizing

- classical planning
- conditional planning with full observability
- conditional planning with partial observability
- conformant planning
- markov decision processes (MDP)
- partial observable MDP (POMDP)
- preference-based/over-subscription planning

Other Dimensions

dynamics: deterministic, nondeterministic, probabilistic

- : explicit time, implicit time
- : instantaneous, durative
- : continuous, discrete, hybrid

perception: perfect, noisy

horizon: finite, infinite

objective requirement: satisfying, optimizing

objective form: final-state goal, temporally-extended goal, control knowledge, hierarchical task network (HTN), script/program (Golog)

plan form: sequential plan, partial order plan, controller, generalized plan, program...

•••

- classical planning
- conditional planning with full observability
- conditional planning with partial observability
- conformant planning
- markov decision processes (MDP)
- partial observable MDP (POMDP)
- preference-based/over-subscription planning

Why is Planning Difficult?

- solutions to classical planning problems are paths from an initial state to a goal state in the transition graph
 - Efficiently solvable by Dijkstra's algorithm in
 O(|V| log |V| + |E|) time
 - Why don't we solve all planning problems this way?
- state space may be huge: 10⁹, 10¹², 10¹⁵, ... states
- constructing the transition graph is infeasible!
- planning algorithms try to avoid constructing whole graph
- planning algorithms often are but not guaranteed to be more effiencient that obvious solution methods constructing the transition graph and using e.g., Dijkstra's algorithm

Outline

- Conceptual model for planning
- Classes of planning problems
- → Classes of planners and example instances
- Beyond planning
- Planning research the big picture
- Some of what I hope you'll get from the course

Three Main Classes of Planners

- 1. Domain-specific
- 2. Domain-independent
- 3. Domain-customizable

* Ghallab, Nau, and Traverso's use "configurable" (which I don't like) Also called "Domain-specific" or "Knowledge-Based"

1. Domain-Specific Planners

- Made or tuned for specific domain
- Won't work well (if at all) in any other domain
- Many successful real-world planning systems work this way

2. Domain-Independent Planners

- In principle, a domain-independent planner works in any planning domain
- Uses no domain-specific knowledge except the definitions of the basic actions

2. Domain-Independent Planners

- In practice,
 - Not feasible to develop domain-independent planners that work in *every* possible domain
- Make simplifying assumptions to restrict the set of domains
 - Classical planning
 - Historical focus of most automated-planning research

Very active area of research. Many excellent planning systems.
Restrictive Assumptions

- A0: Finite system:
 - finitely many states, actions, events
- A1: Fully observable:
 - the controller always knows the system's current state
- A2: Deterministic:
 - each action has only one outcome
- A3: Static (no exogenous events):
 - changes only occur as the result of the controller's actions
- A4: Attainment goals:
 - a set of goal states S_g
- A5: Sequential plans:
 - a plan is a linearly ordered sequence of actions (a_1, a_2, \dots, a_n)
- A6: Implicit time:
 - Actions are instantaneous (have no duration)
- A7: Off-line planning:
 - planner doesn't know the execution status

Classical Planning

- Classical planning requires all eight restrictive assumptions
 - Offline generation of action sequences for a deterministic, static, finite system, with complete knowledge, attainment goals, and implicit time
- Reduces to the following problem:
 - Given (Σ , s_0 , G)
 - Find a sequence of actions (a₁, a₂, ..., a_n) that produces a sequence of state transitions (s₁, s₂, ..., s_n) such that G is in s_n.
- This is just path-searching in a graph
 - Nodes = states
 - Edges = actions
- Is this trivial?

Classical Planning (cont.)

It's hard because problems are huge!

- Generalize the earlier example:
 - 5 locations, 3 robot carts, 100 containers, 3 piles
 - Then there are 10²⁷⁷ states
- Number of particles in the universe is only about 10⁸⁷
 - The example is more than 10¹⁹⁰ times as larger!
- Automated planning research has been heavily dominated by domain-independent classical planning
 - Dozens of different algorithms
 - We'll cover the state-of-the-art in this area

Approach: Plan-Space Planning

Approach: Planning Graphs

- Relaxed problem
 [Blum & Furst, 1995]
- Apply all applicable actions at once
- Next "level" contains all the effects of all of those actions

Approach: Heuristic Search

- Can we do an A*-style heuristic search?
- Historically, it was difficult to find a good *h* function
 - Planning graphs make it feasible
 - Can extract h from the planning graph
- Problem: A* quickly runs out of memory
 - So do a greedy search
- Greedy search can get trapped in local minima
 - Greedy search plus local search at local minima
- HSP [Bonet & Geffner], FastForward (FF) [Hoffmann], Fast Downward [Helmert], LAMA [Richter], etc.

Approach: Translation to General Problem Solver

- Translate the planning problem or the planning graph into another kind of problem for which there are efficient solvers
 - Find a solution to that problem
 - Extract the plan from the solution
- SAT solvers
 - SATplan and Blackbox [Kautz & Selman]
- Answer Set Programming (ASP) solvers
 - [Son et al.], [Lifschitz et al.], etc.
- Integer programming solvers such as Cplex
 - [Vossen et al.]

3. Domain-customizable

- Domain-independent planners are quite slow compared with domain-specific planners
 - Blocks world in linear time [Slaney and Thiébaux, A.I., 2001]
 - Can get analogous results in many other domains
- But don't want to write a new planner for every domain!
- Domain-customizable planners
 - Domain-independent planning engine
 - Input (the "objective") includes info about how to solve problems in the domain.
 - Hierarchical Task Network (HTN) planning
 - Planning with control formulas
 - Planning with a plan script or agent program

Approach: HTN Planning

- Problem reduction
 - Tasks (activities) rather than goals
 - Methods to decompose tasks into subtasks
 - Enforce constraints, backtrack if necessary
- Real-world applications
- Noah, Nonlin, O-Plan, SIPE, SIPE-2, SHOP, SHOP2

Approach: Planning with Control Formulas

goal

• At each state s_i we have a **control formula f**i in linear temporal logic

$$ontable(x) \land \neg \exists [y: GOAL(on(x, y))] \Rightarrow \bigcirc (\neg holding(x))$$

"never pick up x from table unless x needs to be on another block"

- For each successor of s, derive a control formula using logical progression
- Prune any successor state in which the progressed formula is false
 - TLPIan [Bacchus & Kabanza]
 - TALplanner [Kvarnstrom & Doherty]

Approach: Planning w/ Program or Plan Script

E.g., **Golog** [Levesque et al.]

Nondeterministic programs that act as procedural control knowledge, placing constraints on the valid action sequence/plans

E.g., *bookAirTicket(x)*; if *far* then *bookCar(x)* else *bookTaxi(y)*

Three Main Classes of Planners

- 1. Domain-specific
- 2. Domain-independent

E.g.,

Planning graph-based, SAT-based, heuristic search

3. Domain-customizable

E.g.,

HTN, domain control formula, agent programs/scripts

Comparisons (in general)

up-front human effort Domain-specific Configurable Domain-independent

performance

- Domain-specific planner
 - Write an entire computer program lots of work
 - Lots of domain-specific performance improvements
- Domain-independent planner
 - Just give it the basic actions not much effort
 - Can be less efficient (but not always)!

Outline

- Conceptual model for planning
- Classes of planning problems
- Classes of planners and example instances
- → Beyond planning
- Planning research the big picture
- Some of what I hope you'll get from the course

Broad Application of Planning Techniques

Planning algorithms are applicable to a broad range of applications that can roughly be viewed as reachability problems. E.g.,

- Software verification
- Diagnosis of dynamical systems
- Story understanding
- Situation assessment/Plan recognition
- Gene rearrangement

Outline

- Conceptual model for planning
- Classes of planning problems
- Classes of planners and example instances
- Beyond planning
- → Planning research
- Some of what I hope you'll get from the course

Planning Research – The big picture

Two research communities that make fundamental contributions to research in planning:

- 1) Knowledge Representation and Reasoning Community
 - mathematical foundations of planning
 - knowledge representation, formal properties, etc.
- 2) Automated Planning and Scheduling Community
 - Driven largely by the objective of developing fast and effective planning algorithms

We will look at research from both communities.

Planning Research – The big picture

The Landscape: CONFERENCES

ICAPS* (Int. Conf on AI Planning and Scheduling) *merging of AIPS and ECP AAMAS (Int. Conf. on Autonomous Agents and Multiagent Systems) KR IJCAI, AAAI, ECAI

JOURNALS

JAIR, AIJ

BIENNIAL COMPETITION and BENCHMARKING DOMAINS

IPC-*n* (International Planning Competition) PDDL (Planning Domain Definition Language) standard input language for most benchmark problem sets

Planning Research – The big picture

Recent Advances

Very "active" field -- lots of papers in top conferences

- Tremendous strides in deterministic plan synthesis
 - Biennial Intl. Planning Competitions
- Current interest is in exploiting the insights from deterministic planning techniques to other planning scenarios

Some topics of recent focus:

- Better heuristics
- Richer domain customization (including preferences)
- From discrete to timed hybrid and/or continuous systems
- Planning and learning

Outline

- Conceptual model for planning
- Classes of planning problems
- Classes of planners and example instances
- Beyond planning
- Planning research the big picture
- → Some of what I hope you'll get from the course

What will you get from this course?

- big picture of different kinds of planning problems
- logical foundations of planning
- algorithms for solving different problem classes, with an emphasis on the classical ("simplest") setting:
 - algorithms based on heuristic search
 - algorithms based on SAT
 - algorithms that exploit rich objectives (domain control knowledge, temporally extended goals, preferences)
- many of these techniques are applicable to problems outside AI as well
- hands-on experience with a classical planner (optional)

For Next Week (Sept 23)

Skim/review Chapters 1, 2, and 4, 5 in the reference textbook.

(The URL is posted on our course web page.)

Important Announcement

- Please add your name to the list that is circulating
- We may change classrooms (though perhaps not imminently). Watch the web announcements.
- From time to time we will need to have a tutorial (especially for the assignment). There will be a doodle poll regarding scheduling of the tutorial. I'll schedule the tutorial hour at a time when all registered students can attend.