
1

CSC2542
Planning-Graph Techniques

Sheila McIlraith
Department of Computer Science
University of Toronto
Fall 2010

2

Administrative Announcements
Tutorial Time: If you’re taking the course for credit, please (re)vist
the doodle poll and see whether you can work towards finding a time
when we can all meet. We’re at an impass!

I will be posting a schedule with project milestone dates and the due
date for the assignment.

The lecture in 2 weeks will be given by our TA, Christian Muise.

Suggested readings for next week:

Part III introduction of GNT

Chapter 9 of GNT

A review paper that I will post on our web page.

Other Issues?

3

END of
Administrative Announcements

4

Acknowledgements
A number of the slides used in this course are modifications of Dana Nau’s
lecture slides for the textbook Automated Planning, licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike License:
http://creativecommons.org/licenses/by-nc-sa/2.0/

Other slides are modifications of slides developed by Malte Helmert,
Bernhard Nebel, and Jussi Rintanen.

I have also used some material prepared by Dan Weld, P@trick Haslum and
Rao Kambhampati.

I would like to gratefully acknowledge the contributions of these researchers,
and thank them for generously permitting me to use aspects of their
presentation material.

5

History

GraphPlan (Blum & Furst, 1995) was the first planner to use planning-
graph techniques

Before GraphPlan came out, most planning researchers were working
on partial order planners (plan space planners *)

POP, SNLP, UCPOP, etc.

GraphPlan caused a sensation because it was so much faster

Many subsequent planning systems have used ideas from it either
directly as close decendants of GraphPlan or by using the Planning
Graph representation in some guise to improve the encoding of the
planning problem most notably for SAT-based planning.

* Sometimes referred to as “PSP” planners, but “PSP” used for “partial satisfaction planners”, nowadays
6

History

But most importantly…
GraphPlan’s place in history is secured by its critical role in the
development of reachability heuristics* for heuristic search planners
by approximating the search tree rooted at a given state
Heuristic search planners have dominated the “satisficing planner”
track of IPC planning competitions for the last 8 years.

* Reachability heuristics aim to estimate the cost of a plan between the
current search state and a goal state. We will talk about these more
in the weeks to come.

7

Outline
Motivation
The Graphplan algorithm
Planning graphs

example
Mutual exclusion

example (continued)
Solution extraction

example (continued)
Discussion

8

Motivation
A big source of inefficiency in search algorithms is the
branching factor

the number of children of each node

E.g., a backward search may try lots of actions
that can’t be reached from the initial state

Similarly, a forward search
may generate lots of
actions that do not reach
to the goal

g0

g1

g2

g3

a1

a2

a3

g4

g5

s0

a4

a5

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …

9

One way to reduce branching factor

First create a relaxed problem
Remove some restrictions of the original problem

Want the relaxed problem to be easy to solve
(polynomial time) IMPORTANT

The solutions to the relaxed problem will include all
solutions to the original problem

Then do a modified version of the original search
Restrict its search space to include only those actions that
occur in solutions to the relaxed problem

10

Graphplan
procedure Graphplan:

for k = 0, 1, 2, …
Graph Expansion:

create a “planning graph” that contains k “levels”
Check whether the planning graph satisfies a
necessary (but insufficient) condition for plan
existence
If it does, then

do Solution Extraction:
backward search,
modified to consider
only the actions in
the planning graph
if we find a solution,
then return it

possible
literals
in state si

possible
actions
in state si

relaxed
problem

11

state-level i

effects
A maintenance action for a literal l.
It represents what happens if we
don’t change l.

state-level i-1

state-level 0 (the literals true in s0)

The Planning Graph
Search space for a relaxed version of the planning problem:

Alternating layers of ground literals and actions
Nodes at action-level i: actions that might be possible to execute at
time i*
Nodes at state-level i: literals that might possibly be true at time i
Edges: preconditions and effects

action-level i

preconditions

* This is terminology from GNT and refers to the graph. The numbering is at odds with conventional numbering for action
representations. Here, an action is possible to execute in i if it’s preconditions are true in state level i-1 (as opposed to i)s. Its
effects are reflected in the propositions of state level i (as opposed to i+1)

12

Example
Due to Dan Weld, Univ. Washington [Weld, AIM-09]

Suppose you want to prepare dinner as a surprise for your sweetheart
(who is asleep)

s0 = {garbage, cleanHands, quiet}
g = {dinner, present, ¬garbage}

Action Preconditions Effects
cook() cleanHands dinner
wrap() quiet present
carry() none ¬garbage, ¬cleanHands
dolly() none ¬garbage, ¬quiet

Also have the maintenance actions: one for each literal

13

Example (continued)
state-level 0:
{all atoms in s0} U

{negations of all atoms not in s0}
action-level 1:
{all actions whose preconditions

are satisfied and non-mutex in s0}
state-level 1:
{all effects of all of the

actions in action-level 1
(including maintenance actions)}

Action Preconditions Effects
cook() cleanHands dinner
wrap() quiet present
carry() none ¬garbage, ¬cleanHands
dolly() none ¬garbage, ¬quiet
Also have the maintenance actions

state-level 0 state-level 1action-level 1

¬dinner

¬present

¬dinner

¬present
14

Mutual Exclusion

Two actions at the same action-level are mutex if
Inconsistent effects: an effect of one negates an effect of the other
Interference: one deletes a precondition of the other
Competing needs: they have mutually exclusive preconditions

Otherwise they don’t interfere with each other
Both may appear in a solution plan

Two literals at the same state-level are mutex if
Inconsistent support: one is the negation of the other,
or all ways of achieving them are pairwise mutex

Recursive
propagation
of mutexes

15

Example (continued)
Augment the graph to indicate mutexes
carry is mutex with the maintenance
action for garbage (inconsistent effects)
dolly is mutex with wrap

interference
¬quiet is mutex with present

inconsistent support
each of cook and wrap is mutex with
a maintenance operation

Action Preconditions Effects
cook() cleanHands dinner
wrap() quiet present
carry() none ¬garbage, ¬cleanHands
dolly() none ¬garbage, ¬quiet
Also have the maintenance actions

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1action-level 1

16

¬dinner

¬present

¬dinner

¬present

Example (continued)

Check to see whether there’s a
possible solution
Recall that the goal is
{¬garbage, dinner, present}

Note that in state-level 1,
All of them are there
None are mutex with each other

Thus, there’s a chance that a plan
exists
Try to find it

Solution extraction

state-level 0 state-level 1action-level 1

17

Recall what the algorithm does

procedure Graphplan:
for k = 0, 1, 2, …

Graph Expansion:
create a “planning graph” that contains k “levels”

Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence
If it does, then

do Solution Extraction:
backward search,
modified to consider
only the actions in
the planning graph
if we find a solution,
then return it

18

Solution Extraction

procedure Solution-extraction(g,i)
if i=0 then return the solution
for each literal l in g

nondeterministically choose an action
to use in state s i–1 to achieve l

if any pair of chosen actions are mutex
then backtrack

g’ := {the preconditions of
the chosen actions}

Solution-extraction(g’, i–1)
end Solution-extraction

The level of the state si
The set of goals we
are trying to achieve

state-
level
i-1

action-
level

i

state-
level

i

A real action or a maintenance action

19

Example (continued)

Recall that the goal is
{¬garbage, dinner, present}

Two sets of actions for the goals at
state-level 1

Neither of them works
Both sets contain actions that
are mutex

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1action-level 1

20

Recall what the algorithm does

procedure Graphplan:
for k = 0, 1, 2, …

Graph Expansion:
create a “planning graph” that contains k “levels”

Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence
If it does, then

do Solution Extraction:
backward search,
modified to consider
only the actions in
the planning graph
if we find a solution,
then return it

21

Example (continued)

Go back and do
more graph
expansion

Generate another
action-level
and another state-
level

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1action-level 1 state-level 2action-level 2

22

Example (continued)

Solution extraction

Twelve combos:
Three ways to
achieve ¬garb
Two ways to
achieve dinner
Two ways to
achieve present

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1action-level 1 state-level 2action-level 2

23

Example (continued)

Several of the
combinations
look OK at
level 2
Here’s one of
them

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1action-level 1 state-level 2action-level 2

24

Example (continued)
Call Solution-
Extraction
recursively at
level 2
It succeeds
Solution
whose parallel
length is 2

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1action-level 1 state-level 2action-level 2

25

Observation
The solution is a sequence of sets of actions (as opposed to
simply a sequence of actions)

To generate a sequential plan, the solution can be serialized
(in a variety of ways)

26

Properties of GraphPlan
Graphplan is sound and complete

If Graphplan returns a plan, then it is a solution to the planning pblm.
If solutions exist, then Graphplan will return one of them.

The size of the planning graph Graphplan generates is polynomial in the
size of the planning problems.

Solutions extraction is still exponential in the worst case.

For many problems, Graph Expansion dominates problem solving time.

The planning algorithm always terminates
There is a fixpoint on the number of levels of the planning graphs such
that the algorithm either generates a solution or returns failure

27

Further Analysis

(+) The backward-search part of Graphplan—which is the hard part—will
only look at the actions in the planning graph – a smaller search space
than the original one.

(-) To generate the planning graph, Graphplan creates a huge number of
ground atoms
Many of them may be irrelevant
Can alleviate (but not eliminate) this problem by assigning data types to
the variables and constants

28

Optimizations and Extensions
Optimizations to the original Graphplan model:

Improvements to solution extraction (e.g., forward checking,
memoization, EBL)
Improvements to graph expansion (e.g., closed-world assumption,
compilation of action schemata w/ type analysis, in-place graph
expansion)

Most of the extensions relate to language extensions:
E.g., Universal quantification, conditional effects, negated
preconditions and goals, …
Addressed by compilation large increases in problem size, or
Addressed by changing (complicating) the expansion, mutex
determination and extraction

See [Weld, AIM-99] posted on our web page.

29

Optimizations and Extensions
Optimizations to the original Graphplan model:

Improvements to solution extraction (e.g., forward checking,
memoization, EBL)
Improvements to graph expansion (e.g., closed-world assumption,
compilation of action schemata w/ type analysis, in-place graph
expansion)

Most of the extensions relate to language extensions:
E.g., Universal quantification, conditional effects, negated
preconditions and goals, …
Addressed by compilation large increases in problem size, or
Addressed by changing (complicating) the expansion, mutex
determination and extraction

See [Weld, AIM-99] posted on our web page.

30

Graphplan and Its Descendants

Graphplan (Blum & Furst,1995) – C implementation
IPP (Koehler et al. 1997) – highly optimized C
implementation, extended to handle universal quantification
and conditional effects
STAN (Long & Fox, 1998)- highly optimized C,
implementation – uses in-place graph rep’n and performs
sophisticated type analysis
SGP (Weld et al., 1998) – Lisp implementation – extended to
handl universal quantification, conditional effects, and
uncertainty

31

Perverting Graphplan*

ADL
Gazen & Knoblock
Koehler
Anderson, Smith & Weld
Boutilier

Uncertainty Rao
Graphplan

Graphplan

Time
Smith & Weld
Koehler ?

PGP
Blum & Langford

Conformant
Smith & Weld

Sensory/Contingent
Weld, Anderson & Smith

?

* From Dan Weld

