
S. McIlraith Domain-Customized Planning 1

CSC2542
Domain-Customized Planning

Sheila McIlraith
Department of Computer Science
University of Toronto
Fall 2010

S. McIlraith Domain-Customized Planning 2

Administrative Notes

The placement of this material doesn’t follow the conceptual flow of
the rest of the material I’ve presented, but this information may be
useful to some of you for conception of your projects, so we’re taking
a brief sojourn from “Domain-Independent Planning” to review the
basic techniques for domain-customized planning.

S. McIlraith Domain-Customized Planning 3

Acknowledgements
Some of the slides used in this course are modifications of Dana Nau’s
lecture slides for the textbook Automated Planning, licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike License:
http://creativecommons.org/licenses/by-nc-sa/2.0/

I would like to gratefully acknowledge the contributions of these researchers,
and thank them for generously permitting me to use aspects of their
presentation material.

http://creativecommons.org/licenses/by-nc-sa/2.0/

S. McIlraith Domain-Customized Planning 4

Outline
Domain Control Knowledge
Control Rules: TLPlan
Procedural DCK: Hierarchical Task Networks
Procedural DCK: Golog

S. McIlraith Domain-Customized Planning 5

General Motivation
Often, planning can be done much more efficiently if we have
domain-specific information
Example:

classical planning is EXPSPACE-complete
block stacking can be done in time O(n3)

But we don’t want to have to write a new domain-specific
planning system for each problem!

Domain-configurable planning algorithm
Domain-independent search engine
Input includes domain control knowledge for the domain

S. McIlraith Domain-Customized Planning 6

What is Domain Control Knowledge (DCK)
Domain specific constraints on the space of possible plans.
Some might add that they serve to guide the planner
towards more efficient search, but of course they all do this
trivially by forcing or disallowing the occurrence of certain
actions within a plan.
Generally given by a domain expert at the time of domain
encoding, but can also be learned automatically. (E.g., see
DiscoPlan by Gereni et al.)
Can we differentiate domain-control knowledge from
temporally extended goals, state constraints or invariants?
(Let’s revisit this at the end of the talk.)

S. McIlraith Domain-Customized Planning 7

Types of DCK
Not all DCK is created equal. The language used for DCK
as well as the way it is applied (often within a special-
purpose planner or interpreter) distinguish the different
approaches to DCK
Here we distinguish state-centric from action-centric DCK

Control Rules (TLPlan [Bacchus & Kabanza, 00],
TALPlan [Doherty et al, 00]) support state-centric DCK
HTN and Golog both support different forms of action-
centric and some state-centric DCK

Note that one is representable in terms of the other. How?

S. McIlraith Domain-Customized Planning 8

Advantages and Disadvantages
+ (Perhaps not surprisingly) well-crafted DCK can cause planners to

outperform the best planners, today. It is an effective method of
creating a planning system, when DCK exists and can be elicited.

- Creation of DCK can require arduous hand-coding by human expert

+ Often domain specific but problem independent

- DCK generally requires special-purpose machinery for processing, and
thus can’t easily exploit advances in planning (But see [Baier et al,
ICAPS07] and [Fritz et al, KR08] for a possible way around this)

+/- Some people feel that DCK is “cheating” in some way (silly)!

S. McIlraith Domain-Customized Planning 9

Outline
Domain Control Knowledge
Control Rules: TLPlan
Procedural DCK: Hierarchical Task Networks
Procedural DCK: Golog

S. McIlraith Domain-Customized Planning 10

Control Rules (TLPlan, TALPlan, and the like)

Discussion here predominantly based on TLPlan [Bacchus &
Kabanza 2000]

Language for writing domain-specific pruning rules:
E.g., Linear Temporal Logic – a temporal modal logic

Domain-configurable planning algorithm
Input is augmented by control rules

S. McIlraith Domain-Customized Planning 11

Linear Temporal Logic (LTL)
Modal logic: formal logic plus modal operators

to express concepts that would be difficult to express within
propositional or first-order logic

Linear Temporal Logic (LTL):
(first-order) logic extended with modalities for time (and for “goal” here)

Purpose: to express a limited notion of time
An infinite sequence 〈0, 1, 2, …〉 of time instants
An infinite sequence M= 〈s0, s1, …〉 of states of the world

Modal operators to refer to the states in which formulas are true:
f - next f - f holds in the next state, e.g., on(A,B)

♢ f - eventually f - f either holds now or in some future state
⃞ f - always f - f holds now and in all future states
f1 U f2 - f1 until f2 - f2 either holds now or in some future state,

and f1 holds until then
Propositional constant symbols TRUE and FALSE

S. McIlraith Domain-Customized Planning 12

Linear Temporal Logic (continued)
Quantifiers cause problems with computability

Suppose f(x) is true for infinitely many values of x
Problem evaluating truth of ∀x f(x) and ∃x f(x)

Bounded quantifiers
Let g(x) be such that {x : g(x)} is finite and easily computed
∀[x:g(x)] f(x)

means ∀x (g(x) ⇒ f(x))
expands into f(x1) ∧ f(x2) ∧ … ∧ f(xn)

∃[x:g(x)] f(x)
means ∃x (g(x) ∧ f(x))
expands into f(x1) ∨ f(x2) ∨ … ∨ f(xn)

S. McIlraith Domain-Customized Planning 13

Models for LTL
A model is a triple (M, si, v)

M = 〈s0, s1, …〉 is a sequence of states
si is the i’th state in M,
v is a variable assignment function

a substitution that maps all variables into objects in
the domain of discourse

Write (M,si,v) ╞ f
to mean that v(f) is true in si

Always require that
(M, si,v) ╞ TRUE

(M, si,v) ╞ ¬FALSE

S. McIlraith Domain-Customized Planning 14

Suppose M= 〈s0, s1, …〉

(M,s0,v) |= on(A,B) means A is on B in s2

Abbreviations:
(M,s0) |= on(A,B) no free variables, so v is irrelevant:

M |= on(A,B) if we omit the state, it defaults to s0

Equivalently,
(M,s2,v) |= on(A,B) same meaning w/o modal operators

s2 |= on(A,B) same thing in ordinary FOL

M |= ¬holding(C)
in every state in M, we aren’t holding C

M |= (on(B, C) ⇒ (on(B, C) U on (A, B)))
whenever we enter a state in which B is on C, B remains on C until A is
on B.

Examples

S. McIlraith Domain-Customized Planning 15

Linear Temporal Logic (continued)

Augment the models to include a set of goal states g
GOAL(f) - says f is true in every s in g

((M,si,v),g) |= GOAL(f) iff (M,si,v) |= f for every si ∈ g

S. McIlraith Domain-Customized Planning 16

Blocks World - Example
Blocks-world operators:

A planning problem:

s0 g
a b

b
a

c

S. McIlraith Domain-Customized Planning 17

Supporting Axioms
Want to define conditions under which a stack of blocks will never need to
be moved
If x is the top of a stack of blocks, then we want goodtower(x) to hold if

x doesn’t need to be anywhere else
None of the blocks below x need to be anywhere else

Definitions to support this:
goodtower(x) ⇔ clear(x) ∧ ¬ GOAL(holding(x)) ∧ goodtowerbelow(x)
goodtowerbelow(x) ⇔

[ontable(x) ∧ ¬∃[y:GOAL(on(x,y)]]
∨ ∃[y:on(x,y)] {¬GOAL(ontable(x)) ∧ ¬GOAL(holding(y))

∧ ¬GOAL(clear(y)) ∧ ∀[z:GOAL(on(x,z))] (z = y)
∧ ∀[z:GOAL(on(z,y))] (z = x) ∧

goodtowerbelow(y)}
badtower(x) ⇔ clear(x) ∧ ¬goodtower(x)

S. McIlraith Domain-Customized Planning 18

Three different control formulas:

(1) Every goodtower must always remain a goodtower:

(2) Like (1), but also says never to put anything onto a badtower:

(3) Like (2), but also says never to pick up a block from the table unless
you can put it onto a goodtower:

Blocks World Example (continued)

S. McIlraith Domain-Customized Planning 19

How TLPlan Works

Nondeterministic forward state-space search
Input includes a current state s0 and a control formula f0 for s0

If f0 = contains no temporal operators then we can tell immediately
whether s0 satisfies f0

If it doesn’t then this path is unsatisfactory, so backtrack
If f0 contains temporal operators, then the only way s0 satisfies f0 is if
s0 is part of a sequence M= 〈s0, s1, …〉 that satisfies f0
To tell this, need to look at the next state s1

s1 may be any state γ(s0,a) such that a is applicable to s0

From s0 and f0, compute a control formula f1 for s1

f1 is a formula that must be true in s1 in order for f0 to be true in s0

Call TLPlan recursively on s1 and f1

S. McIlraith Domain-Customized Planning 20

Procedure Progress

s
s s

s

s
s
s

s

s

{Progress(θ(f1), s) : s |= g(c)}
{Progress(θ(f1), s) : s |= g(c)}

g
g

where θ ={x←c}

Boolean simplification rules:

contains no temporal operators:

Progress
Progress

Progress
Progress
Progress

Progress

Progress

S. McIlraith Domain-Customized Planning 21

Examples
Suppose f = on(a,b)

f + = Progress(on(a,b), s) ∧ on(a,b)
If on(a,b) is true in s then

f + = TRUE ∧ on(a,b)
simplifies to on(a,b)

If on(a,b) is false in s then
f + = FALSE ∧ on(a,b)
simplifies to FALSE

Summary:
generates a test on the current state

If the test succeeds, propagates it to the next state

S. McIlraith Domain-Customized Planning 22

Examples (continued)

Suppose f = (on(a,b) ⇒ clear(a))
f + = Progress[(on(a,b) ⇒ clear(a)), s]

= Progress[on(a,b) ⇒ clear(a), s] ∧ (on(a,b) ⇒ clear(a))
If on(a,b) is true in s, then

f + = clear(a) ∧ (on(a,b) ⇒ clear(a))
Since on(a,b) is true in s,
s+ must satisfy clear(a)
The “always” constraint is propagated to s+

If on(a,b) is false in s, then
f + = (on(a,b) ⇒ clear(a))

The “always” constraint is propagated to s+

S. McIlraith Domain-Customized Planning 23

s = {ontable(a), ontable(b), clear(a), clear(c), on(c,b)}
g = {on(b, a)}�
f = ∀[x:clear(x)] {(ontable(x) ∧ ¬∃[y:GOAL(on(x,y))]) ⇒ ¬holding(x)}

never pick up a block x if x is not required to be on another block y

f + = Progress(f,s) ∧ f

Progress(f,s)
= Progress(∀[x:clear(x)]

{(ontable(x) ∧ ¬∃[y:GOAL(on(x,y))]) ⇒ ¬holding(x)},s)
= Progress((ontable(a) ∧ ¬∃[y:GOAL(on(a,y))]) ⇒ ¬holding(a)},s)

∧ Progress((ontable(b) ∧ ¬∃[y:GOAL(on(b,y))]) ⇒ ¬holding(b)},s)
= ¬holding(a) ∧ TRUE

f + =¬holding(a) ∧ TRUE ∧ f
= ¬holding(a) ∧

∀[x:clear(x)] {(ontable(x) ∧ ¬∃[y:GOAL(on(x,y))]) ⇒ ¬holding(x)}

Example
a b

b
a

c

S. McIlraith Domain-Customized Planning 24

Pseudocode for TLPlan
Nondeterministic forward search

Input includes a control formula f for the current state s
When we expand a state s, we progress its formula f through s
If the progressed formula is false, s is a dead-end
Otherwise the progressed formula is the control formula for s’s
children

Procedure TLPlan (s, f, g, π)
f + ← Progress (f, s)
if f + = FALSE then return failure
if s satisfies g then return π
A ← {actions applicable to s}
if A = empty then return failure
nondeterministically choose a ∈ A
s + ← γ (s,a)
return TLPlan (s +, f +, g, π.a)

S. McIlraith Domain-Customized Planning 25

Peformance of Planners at IPC
2000 International Planning Competition

TALplanner: same kind of algorithm, different temporal
logic

received the top award for a “hand-tailored” (i.e.,
domain-configurable) planner

TLPlan won the same award in the 2002 International
Planning Competition
Both of them:

Ran several orders of magnitude faster than the “fully
automated” (i.e., domain-independent) planners

especially on large problems
Solved problems on which the domain-independent
planners ran out of time/memory.

S. McIlraith Domain-Customized Planning 26

Beyond TLPlan: HPlan-P
One disadvantage to TLPlan is that it is a forward search
planner, providing no guidance towards achievement of the
goal. Its strong performance is largely based on

the strength of the pruning,
the fact that it does not ground all actions prior to planning.

In 2007, Baier et al. developed an extension to TLPlan that
added heuristic search. This was made possible by a clever
compilation scheme that compiles LTL formulae into
nondeterministic finite state automata, whose accepting
conditions are equivalent to satisfaction of the formula. This
heuristic search was used for both preference-based
planning as well as planning with so-called temporally
extended goals.

S. McIlraith Domain-Customized Planning 27

Outline
Domain Control Knowledge
Control Rules: TLPlan
Procedural DCK: Hierarchical Task Networks
Procedural DCK: Golog

S. McIlraith Domain-Customized Planning 28

HTN Motivation
We may already have an idea how to go about solving
problems in a planning domain
Example: travel to a destination that’s far away:

Domain-independent planner:
many combinations of vehicles and routes

Experienced human: small number of “recipes”
e.g., flying:

1. buy ticket from local airport to remote airport
2. travel to local airport
3. fly to remote airport
4. travel to final destination

How to enable planning systems to make use of such
recipes?

S. McIlraith Domain-Customized Planning 29

Two Approaches
Write rules to prune every action that doesn’t fit the recipe

Control Rules
(e.g., TLPlan, TALPlan)

Describe the actions (and subtasks) that do fit the recipe
Procedural DCK
(e.g, Golog, Hierarchical Task Network (HTN) planning)

S. McIlraith Domain-Customized Planning 30

HTN Planning

travel(UMD, Toulouse)

get-ticket(IAD, TLS)

travel(UMD, IAD)

fly(BWI, Toulouse)
travel(TLS, LAAS)

get-taxi
ride(TLS,Toulouse)
pay-driver

go-to-Orbitz
find-flights(IAD,TLS)
buy-ticket(IAD,TLS)

get-taxi
ride(UMD, IAD)
pay-driver

Task:

Problem reduction:
Tasks (activities) rather than goals
Methods to decompose tasks into subtasks
Enforce constraints

E.g., taxi not good for long distances
Backtrack if necessary

Method: taxi-travel(x,y)

get-taxi ride(x,y) pay-driver

get-ticket(BWI, TLS)
go-to-Orbitz
find-flights(BWI,TLS)

BACKTRACK

travel(x,y)

Method: air-travel(x,y)

travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))
fly(a(x),a(y))

S. McIlraith Domain-Customized Planning 31

HTN Planning
HTN planners may be domain-specific
Or they may be domain-configurable

Domain-independent planning engine
Domain description that defines not only the
operators, but also the methods
Problem description

domain description, initial state, initial task network

Task:

Method: taxi-travel(x,y)

get-taxi ride(x,y) pay-driver

travel(x,y)

Method: air-travel(x,y)

travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))
fly(a(x),a(y))

S. McIlraith Domain-Customized Planning 32

Simple Task Network (STN) Planning
A special case of HTN planning
States and operators

The same as in classical planning
Task: an expression of the form t(u1,…,un)

t is a task symbol, and each ui is a term
Two kinds of task symbols (and tasks):

primitive: tasks that we know how to execute directly
task symbol is an operator name

nonprimitive: tasks that must be decomposed into
subtasks

use methods (next slide)

S. McIlraith Domain-Customized Planning 33

Methods
Totally ordered method: a 4-tuple

m = (name(m), task(m), precond(m), subtasks(m))
name(m): an expression of the form n(x1,…,xn)

x1,…,xn are parameters - variable symbols
task(m): a nonprimitive task
precond(m): preconditions (literals)
subtasks(m): a sequence
of tasks 〈t1, …, tk〉

air-travel(x,y)
task: travel(x,y)
precond: long-distance(x,y)
subtasks: 〈buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)),

travel(a(y),y)〉

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)

S. McIlraith Domain-Customized Planning 34

Partially ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

name(m): an expression of the form n(x1,…,xn)
x1,…,xn are parameters - variable symbols

task(m): a nonprimitive task
precond(m): preconditions (literals)
subtasks(m): a partially ordered
set of tasks {t1, …, tk}

air-travel(x,y)
task: travel(x,y)
precond: long-distance(x,y)
network: u1=buy-ticket(a(x),a(y)), u2= travel(x,a(x)),

u3= fly(a(x), a(y)), u4= travel(a(y),y),
{(u1,u3), (u2,u3), (u3 ,u4)}

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)

Methods (Continued)

S. McIlraith Domain-Customized Planning 35

Domains, Problems, Solutions
STN planning domain: methods, operators

STN planning problem: methods, operators, initial state, task list

Total-order STN planning domain and planning problem:
Same as above except that
all methods are totally ordered

Solution: any executable plan
that can be generated by
recursively applying

methods to
nonprimitive tasks
operators to
primitive tasks

nonprimitive task

precond

method instance

s0 precond effects precond effectss1 s2

primitive taskprimitive task

operator instance operator instance

~goal

S. McIlraith Domain-Customized Planning 36

Example
Suppose we want to move three stacks of containers in a
way that preserves the order of the containers

S. McIlraith Domain-Customized Planning 37

Example (continued)
A way to move each stack:

first move the
containers
from p to an
intermediate
pile r

then move
them from
r to q

S. McIlraith Domain-Customized Planning 38

Partial-Order
Formulation

S. McIlraith Domain-Customized Planning 39

Total-Order
Formulation

S. McIlraith Domain-Customized Planning 40

Comparison to
Forward and Backward Search

In state-space planning, must choose whether to search
forward or backward

In HTN planning, there are two choices to make about direction:
forward or backward
up or down

TFD* goes
down and
forward

s0 s1 s2 … …op1 op2 opiSi–1

s0 s1 s2 …

task tm …

…

task tn

op1 op2 opiSi–1

task t0

* TFD = Total Order STN Planning

S. McIlraith Domain-Customized Planning 41

Comparison to Forward & Backward Search
Like a backward search, TFD is goal-directed

Goals are the tasks

Like a forward search, it generates actions
in the same order in which they’ll be executed.
Whenever we want to plan the next task

we’ve already planned everything that comes before it
Thus, we know the current state of the world

…s0 s1 s2 …

task tm … task tn

op1 op2 opiSi–1

task t0

S. McIlraith Domain-Customized Planning 42

TFD requires totally ordered
methods

Can’t interleave subtasks of different tasks
Sometimes this makes things awkward

Need to write methods that
reason globally instead of locally

get(p) get(q)

get-both(p,q)

goto(b)

pickup(p) pickup(q)

get-both(p,q)

Limitation of Ordered-Task Planning

pickup-both(p,q)

walk(a,b)

goto(a)

walk(b,a)

pickup(p)walk(a,b) walk(b,a) pickup(p)walk(a,b) walk(b,a)

S. McIlraith Domain-Customized Planning 43

Partially Ordered Methods

With partially ordered methods, the subtasks can be
interleaved

Fits many planning domains better
Requires a more complicated planning algorithm

walk(a,b) pickup(p)

get(p)

stay-at(b) pickup(q)

get(q)

get-both(p,q)

walk(b,a) stay-at(a)

S. McIlraith Domain-Customized Planning 44

Comparison to Classical Planning
STN planning is strictly more expressive than classical planning

Any classical planning problem can be translated into an
ordered-task-planning problem in polynomial time
Several ways to do this. One is roughly as follows:

For each goal or precondition e, create a task te
For each operator o and effect e, create a method mo,e

Task: te
Subtasks: tc1, tc2, …, tcn, o, where c1, c2, …, cn are the
preconditions of o
Partial-ordering constraints: each tci precedes o

Etc.
E.g., how to handle deleted-condition interactions …

S. McIlraith Domain-Customized Planning 45

Some STN planning problems are not expressible in classical
planning
Example:

Two STN methods:
No arguments
No preconditions

Two operators, a and b
Again, no arguments and no preconditions

Initial state is empty, initial task is t
Set of solutions is {anbn | n > 0}
No classical planning problem has this set of solutions

The state-transition system is a finite-state automaton
No finite-state automaton can recognize {anbn | n > 0}

Can even express undecidable problems using STNs

method1

bta

t

method2

ba

t

Comparison to Classical Planning (cont.)

S. McIlraith Domain-Customized Planning 46

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3 East: KJ74

West: A2
Out:

QT9865
3

Increasing Expressivity Further
Knowing the current state makes it easy to do things that
would be difficult otherwise

States can be arbitrary data structures

Preconditions and effects can include
logical inferences (e.g., Horn clauses)
complex numeric computations
interactions with other software packages

e.g., SHOP and SHOP2:
http://www.cs.umd.edu/projects/shop

S. McIlraith Domain-Customized Planning 47

Example

Simple travel-planning domain
Go from one location to
another
State-variable formulation

–

(a, x)

S. McIlraith Domain-Customized Planning 48

Precond: distance(home,park) ≤ 2 Precond: cash(me) ≥ 1.50 + 0.50*distance(home,park)

Initial task: travel(me,home,park)

Precondition succeeds

travel-by-foot travel-by-taxi

Precondition fails
Decomposition into subtasks

home park

Planning Problem: I am at home, I have $20,
I want to go to a park 8 miles away

s1 = {location(me)=home, location(taxi)=home, cash(me)=20, distance(home,park)=8}

Initial
state

s0 = {location(me)=home, cash(me)=20, distance(home,park)=8}

call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park)

Precond: …
Effects: …

Precond: …
Effects: …

Precond: …
Effects: …

s2 = {location(me)=park, location(taxi)=park, cash(me)=20, distance(home,park)=8

s3 = {location(me)=park, location(taxi)=park, cash(me)=14.50, distance(home,park)=8}

Final
state

s1 s2 s3s0

S. McIlraith Domain-Customized Planning 49

SHOP2

SHOP2: implementation of PFD-like algorithm +
generalizations

Won one of the top four awards at IPC 2002
Freeware, open source
Implementations in Lisp and Java available online

S. McIlraith Domain-Customized Planning 50

HTN Planning
HTN planning is even more general

Can have constraints associated with tasks and methods
Things that must be true before, during, or afterwards

See GNT for further details

S. McIlraith Domain-Customized Planning 51

SHOP & SHOP2 vs. TLPlan & TALplanner
These planners have equivalent expressive power
They know the current state at each point during the
planning process, and use this to prune actions

Makes it easy to call external subroutines, do numeric
computations, etc.

Main difference: how the DCK is expressed and the
pruning realized

SHOP and SHOP2: the methods say what can be done
Don’t do anything unless a method says to do it

TLPlan and TALplanner: rules say what cannot be done
Try everything that the control rules don’t prohibit

Which approach is more convenient depends on the
problem domain

S. McIlraith Domain-Customized Planning 52

Domain-Configurable vs. Classical Planners
Disadvantage:

writing DCK can be more complicated than just writing classical
operators
can’t easily exploit advances in planning technology

Advantage:
can encode “recipes” as collections of methods and operators

Express things that can’t be expressed in classical planning
Specify standard ways of solving problems

Otherwise, the planning system would have to derive these
again and again from “first principles,” every time it solves a
problem

Can speed up planning by many orders of magnitude

S. McIlraith Domain-Customized Planning 53

Outline
Domain Control Knowledge
Control Rules: TLPlan
Procedural DCK: Hierarchical Task Networks
Procedural DCK: Golog

S. McIlraith Domain-Customized Planning 54

Golog & ConGolog [Levesque et al, 97]

Golog & ConGolog* are agent programming languages based on the
situation calculus .
A Golog program can also be viewed as

an agent program
a plan sketch or plan skeleton, and/or
procedural DCK

Important Feature: programs non-determinism (which enables search)

E.g.,
if in(car,driveway) then walk else drive
while (∃ block) ontable(block) do remove_a_block endwhile
proc remove_a_block (pick(x).block(x)) pickup(x); putaway(x)]

*For simplicity we will henceforth only describe Golog. ConGolog extends
Golog with constructs to deal with concurrency, interrupts, etc.

S. McIlraith Domain-Customized Planning 55

Golog “Planning”
Analogy to planning follows (but the Golog implementation is more than a

planner)

Plan Domain and Plan Instance Description
Plan Domain (preconditions, effects, etc.) described in situation calculus
Intial State: formula in the situation calculus

Goal: δ - Golog program to be realized (much like the task in HTN)

Plan Generation:
Golog interpreter that effectively performs deductive plan synthesis
following [Green, IJCAI-09]

Golog interpreter is 20 lines of Prolog code!
We discuss recent advances at the end (e.g., [Fritz et al., KR08]

D ~ ∃ s’.Do(δ, S0, s’)

S. McIlraith Domain-Customized Planning 56

We appeal to the “Reiter axiomatization” of the situation calculus.

Sorts:
Actions
e.g., a, bookTaxi(x)

Situations
e.g., s, S0,

do(bookTaxi(x),s)

Fluents
e.g., ownTicket(x, do(a,s))

rent-car

S0

bookAirTicket

.........

bookTaxi

bookCruise

......
bookCar

bookHotel

do(bookTaxi,S0)

Situation Calculus [Reiter, 01] [McCarthy, 68] etc.

S. McIlraith Domain-Customized Planning 57

A situation calculus theory D comprises the following axioms:
D = Σ ∪ Duna ∪ DS0 ∪ Dap ∪ DSS

• domain independent foundational axioms, Σ

• unique names assumptions for actions, Duna

• axioms describing the initial situation, DS0

• action precondition axioms, Dap, Poss(a,s) h Π(x,s)
e.g., Poss(pickup(x),s) h ¬ holding(x,s)

• successor state axioms, DSS, F(x,s) h Φ(x,s)
e.g., holding(x,do(a,s)) h a = pickup(x) ∨

(holding(x,s) ∧ (a ≠ putdown(x)∨ a ≠ drop(x)))

Situation Calculus [Reiter, 01] [McCarthy, 68] etc.

S. McIlraith Domain-Customized Planning 58

Golog [Levesque et al. 97, De Giacomo et al. 00, etc]

rent-car

S0

bookAirTicket

.........

bookTaxi

bookCruise

......
bookCar

bookHotel

procedural constructs:
• sequence
• if-then-else
• nondeterministic choice

• actions
• arguments

• while-do
• …

bookTaxi

E.g., bookAirTicket(x); if far then bookCar(x) else bookTaxi(y)

S. McIlraith Domain-Customized Planning 59

“Big Do” over Complex Actions
Do(δ , s, s’) is an abbreviation. It holds whenever s’ is a terminating
situation following the execution of complex action δ in s.

Each abbreviation is a formula in the situation calculus.
Do(a, s, s’) ≅ Poss(a[s],s) ∧ s’= do(α[s],s)

Do([a1 ; a2], s, s’) ≅ (∃ s*).(Do(a1 , s, s*) ∧ Do(a2 , s*, s’)
...

E.g., Let δ be bookAirTicket(x); if far then bookCar(x) else bookTaxi(y)

rent-car

S0

bookAirTicket

.........

bookTaxi

bookCruise

......
bookCar

bookHotel

bookTaxiD ~ ∃ s’.Do(δ, S0, s’)

S. McIlraith Domain-Customized Planning 60

Golog Complex Actions, cont.

1.Primitive Actions

2. Test Actions

3. Sequence

Do(a, s, s0) def= Poss(a[s], s) ∧ s0 = do(a[s], s).

Do(φ, s, s0) def= φ[s] ∧ s0 = s.

Do([δ1; δ2], s, s
0) def= (∃s∗).(Do(δ1, s, s∗) ∧Do(δ2, s∗, s0)).

S. McIlraith Domain-Customized Planning 61

Complex Actions, cont.

4. Nondeterministic choice of two actions

5. Nondeterministic choice of two arguments

6. Nondeterministic Iterations

S. McIlraith Domain-Customized Planning 62

Complex Actions, cont.

Conditional and loops definition in GOLOG

Procedures difficult to define in GOLOG
No easy way of macro expansion on recursive procedure
calls to itself

S. McIlraith Domain-Customized Planning 63

Golog in a Nutshell
Golog programs are instantiated using a theorem prover
User supplies, axioms, successor state axioms, initial situation
condition of domain, and Golog program describing agent
behaviour
Execution of program gives:

S. McIlraith Domain-Customized Planning 64

Golog Example: Elevator Controller

Primitive Actions
Up(n): move the elevator to a floor n
Down(n): move the elevator down to a floor n
Turnoff: turn off call button n
Open: open elevator door
Close: close the elevator door

Fluents
CurrentFloor(s) = n, in situation s, the elevator is at floor n
On(n,s), in situation s call button n is on
NextFloor(n,s) = in situation s the next floor (n)

S. McIlraith Domain-Customized Planning 65

Example, cont.
Primitive Action Preconditions

Successor State Axiom

S. McIlraith Domain-Customized Planning 66

Example, cont.

One of the possible fluents

Elevator GOLOG Procedures

S. McIlraith Domain-Customized Planning 67

Example, cont.
Theorem proving task

Successful Execution of GOLOG program

Returns the following to elevator hardware control system

S. McIlraith Domain-Customized Planning 68

The Golog Interpreter

Many different Golog interpreters for different versions of Golog, e.g.,
• ConGolog
• IndiGolog
• ccGolog
• DTGolog
• …

All are available online and easy to use!

The vanilla Golog interpreter is 20 lines of Prolog Code….

S. McIlraith Domain-Customized Planning 69

The Golog Interpreter
/* The holds predicate implements the revised Lloyd-Topor

transformations on test conditions. */

holds(P & Q,S) :- holds(P,S), holds(Q,S).
holds(P v Q,S) :- holds(P,S); holds(Q,S).
holds(P => Q,S) :- holds(-P v Q,S).
holds(P <=> Q,S) :- holds((P => Q) & (Q => P),S).
holds(-(-P),S) :- holds(P,S).
holds(-(P & Q),S) :- holds(-P v -Q,S).
holds(-(P v Q),S) :- holds(-P & -Q,S).
holds(-(P => Q),S) :- holds(-(-P v Q),S).
holds(-(P <=> Q),S) :- holds(-((P => Q) & (Q => P)),S).
holds(-all(V,P),S) :- holds(some(V,-P),S).
holds(-some(V,P),S) :- \+ holds(some(V,P),S). /* Negation */
holds(-P,S) :- isAtom(P), \+ holds(P,S). /* by failure */
holds(all(V,P),S) :- holds(-some(V,-P),S).
holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

S. McIlraith Domain-Customized Planning 70

The Golog Interpreter
do(E1 : E2,S,S1) :- do(E1,S,S2), do(E2,S2,S1).
do(?(P),S,S) :- holds(P,S).
do(E1 # E2,S,S1) :- do(E1,S,S1) ; do(E2,S,S1).
do(if(P,E1,E2),S,S1) :- do((?(P) : E1) # (?(-P) : E2),S,S1).
do(star(E),S,S1) :- S1 = S ; do(E : star(E),S,S1).
do(while(P,E),S,S1):- do(star(?(P) : E) : ?(-P),S,S1).
do(pi(V,E),S,S1) :- sub(V,_,E,E1), do(E1,S,S1).
do(E,S,S1) :- proc(E,E1), do(E1,S,S1).
do(E,S,do(E,S)) :- primitive_action(E), poss(E,S).

/* sub(Name,New,Term1,Term2): Term2 is Term1 with Name replaced by
New. */

….

S. McIlraith Domain-Customized Planning 71

Discussion
Limitations of the Golog interpreter (particularly as a planner):

The search is “dumb” (i.e., uninformed)
Attempts to improve search:
1. use FF planner in the nondeterministic parts [Nebel et al.07]
2. Desire: Want to use heuristic search

[Baier et al, ICAPS07][Fritz et al, KR08]: Compile a Congolog
program into a PDDL domain

Now can exploit any state of the art planner

Other Merits of the Baier/Fritz et al. compilation
HTN can be described as a ConGolog program.

Compiler can also be used to compile HTN!

Other recent advances
Incorporating preferences into Golog and HTN [Sohrabi, Baier et al.]

	CSC2542�Domain-Customized Planning��Sheila McIlraith�Department of Computer Science�University of Toronto�Fall 2010
	Administrative Notes
	Acknowledgements
	Outline
	General Motivation
	What is Domain Control Knowledge (DCK)
	Types of DCK
	Advantages and Disadvantages
	Outline
	Control Rules (TLPlan, TALPlan, and the like)
	Linear Temporal Logic (LTL)
	Linear Temporal Logic (continued)
	Models for LTL
	Examples
	Linear Temporal Logic (continued)
	Blocks World - Example
	Supporting Axioms
	Blocks World Example (continued)
	How TLPlan Works
	Examples
	Examples (continued)
	Example
	Pseudocode for TLPlan
	Peformance of Planners at IPC
	Beyond TLPlan: HPlan-P
	Outline
	HTN Motivation
	Two Approaches
	HTN Planning
	HTN Planning
	Simple Task Network (STN) Planning
	Methods
	Methods (Continued)
	Domains, Problems, Solutions
	Example
	Example (continued)
	Partial-Order Formulation
	Total-Order Formulation
	Comparison to�Forward and Backward Search
	Comparison to Forward & Backward Search
	Limitation of Ordered-Task Planning
	Partially Ordered Methods
	Comparison to Classical Planning
	Comparison to Classical Planning (cont.)
	Increasing Expressivity Further
	Example
	Planning Problem:
	SHOP2
	HTN Planning
	SHOP & SHOP2 vs. TLPlan & TALplanner
	Domain-Configurable vs. Classical Planners
	Outline
	Golog & ConGolog [Levesque et al, 97]
	Golog “Planning”
	Golog [Levesque et al. 97, De Giacomo et al. 00, etc]
	Golog Complex Actions, cont.
	Complex Actions, cont.
	Complex Actions, cont.
	Golog in a Nutshell
	Golog Example: Elevator Controller
	Example, cont.
	Example, cont.
	Example, cont.

