
1

CSC2542
SAT-Based Planning

Sheila McIlraith
Department of Computer Science
University of Toronto
Fall 2010

2

Acknowledgements
Some of the slides used in this course are modifications of Dana Nau’s
lecture slides for the textbook Automated Planning, licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike License:
http://creativecommons.org/licenses/by-nc-sa/2.0/

Other slides are modifications of slides developed by Malte Helmert,
Bernhard Nebel, and Jussi Rintanen.

For this topic, some slides come from Henry Kautz, Ulrich Scholz, and
Yiqiao Wang.

I have also used some material prepared by Dan Weld, P@trick Haslum
and Rao Kambhampati.

I would like to gratefully acknowledge the contributions of these
researchers, and thank them for generously permitting me to use aspects of
their presentation material.

3

Segue
The problem of finding a valid plan from the planning graph
can be encoded on any combinatorial substrate
Alternatives:

CSP [GP-CSP – Do & Kambhampati, 2000]
SAT [Blackbox; SATPLAN – Kautz & Selman, 1996+]
ASP [Son et al]
IP [Vossen et al]

This is the notion of “Translation to General Problem Solver”
that we discussed in our first technical lecture.

Here we discuss SAT as the combinatorial substrate.

4

Motivation
Propositional satisfiability (SAT):
Given a boolean formula

e.g., (P ∨ Q) ∧ (¬Q ∨ R ∨ S) ∧ (¬R ∨ ¬P),
Does there exist a model

i.e., an assignment of truth values to the propositions
that makes the formula true?

This was the first problem shown to be NP-complete.
Lots of research on algorithms for solving SAT.
Key idea behind SAT-based planning:

Translate classical planning problems into satisfiability
problems, and solving them using a highly optimized SAT
solver.

5

Basic Approach
Suppose a plan of length n exists
Encode this hypothesis in SAT

Initial state is true at t0
Goal is true at tn
Actions imply effects, etc

Look for satisfying assignment
Decode into plan

6

Evolution of SAT-based planners
The success of this approach has largely been the
result of impressive advances in the proficiency of
SAT solvers.
A continued limiting factor to this approach is the size of
the CNF encoding of some problems.
Thus, a key challenge to this approach has been how to
encode the planning problem effectively. Such
encodings have marked the evolution of SAT-based
planners.

7

1969 Plan synthesis as theorem proving (Green IJCAI-69)
1971 STRIPS (Fikes & Nilsson AIJ-71)
Decades of work on “specialized theorem provers”

HistoryHistory…

. . .

8

1992 Satplan “approach” (Kautz & Selman ECAI-92)
convention for encoding STRIPS-style linear planning in axiom
schema
Didn’t appear practical

Rapid progress on SAT solving
1996 (Kautz & Selman AAAI-96) (Kautz, McAllester & Selman KR-96)

Electrifying results (on hand coded formulae)
Key technical advance: parallel encodings where noninterfering
actions could occur at the same time (i.e., Graphplan ideas) (but
no compiler)

1997 MEDIC (Ernst et al. IJCAI-97)
First complete implementation of Satplan (with compiler)

1998 Blackbox (Kautz & Selman AIPS98 workshop)
Also performed mutex propagation before generating encoding

…History (enter SAT-based planners)…

. . .

9

1998 IPC-1 Blackbox performance comparable to the best
2000 IPC-2 Blackbox performance abysmal (Graphplan-style planners
dominated)
2002 IPC-3 No SAT-based planners entered
2004 IPC-4 Satplan04 was clear winner of “optimal propositional planners”
2006 IPC-5 Satplan06 & Maxplan* (Chen Xing & Zhang IJCAI-07) dominated**

What accounts for the success in 2004 and 2006?
1) Huge advances in SAT solvers 2000-2004 (e.g., Seige, ZChaff)

(indeed in 2004 they ran out of time and didn’t include mutex propagation)
2) New competition problems that were “intrinsically hard”

…History (IPC)….

* Also a SAT-based planner

** dominated the “optimal planners” track. Note however that in the so-called “satisficing
planners” track, e.g. the heuristic-search based planners that could not guarantee optimal
length, satificing planners were able to solve much larger problems!

10

Outline
Encoding planning problems as satisfiability problems
Extracting plans from truth values
Satisfiability algorithms
Combining satisfiability with planning graphs

Blackbox & SatPlan

11

The SATPLAN Approach*The SATPLAN Approach*

axiom
schemas instantiated

propositional
clauses

satisfying
modelplan

mapping
length

problem
description

SAT
engine(s)

instantiate

interpret

* Terminology: “SATPLAN approach” (circa 1992) vs. the SATPLAN planner of 2004, 2006 etc., the successor of Blackbox.

12

Overall Approach
A bounded planning problem is a pair (P,n):

P is a planning problem; n is a positive integer
Any solution for P of length n is a solution for (P,n)

Planning algorithm:
Do iterative deepening as we did with Graphplan:

for n = 0, 1, 2, …,
encode (P,n) as a satisfiability problem Φ
if Φ is satisfiable, then

From the set of truth values that satisfies Φ, a
solution plan can be constructed, return it and exit.

13

Notation
For satisfiability problems we need to use propositional logic
Need to encode ground atoms into propositions

For set-theoretic planning we encoded atoms into
propositions by rewriting them as shown here:

Atom: at(r1,loc1)
Proposition: at-r1-loc1

For planning as satisfiability we’ll do the same thing
But we won’t bother to do a syntactic rewrite
Just use at(r1,loc1) itself as the proposition

Also, we’ll write plans starting at a0 rather than a1

π = 〈a0, a1, …, an–1〉

14

Fluents
If π = 〈a0, a1, …, an–1〉 is a solution for (P,n), it generates these
states:
s0, s1 = γ (s0,a0), s2 = γ (s1,a1), …, sn = γ (sn–1, an–1)

Fluent: proposition saying a particular atom is true in a particular
state, e.g.,

at(r1,loc1,i) is a fluent that’s true iff at(r1,loc1) is in si

We’ll use li to denote the fluent for literal l in state si

e.g., if l = at(r1,loc1)
then li = at(r1,loc1,i)

ai is a fluent saying that a is the i’th step of π
e.g., if a = move(r1,loc2,loc1)

then ai = move(r1,loc2,loc1,i)

15

Encoding Planning Problems
Encode (P,n) as a formula Φ such that
π = 〈a0, a1, …, an–1〉 is a solution for (P,n) if and only if
There is a satisfying assignment for Φ such that fluents

a0, …, an–1 are true

Let
A = {all actions in the planning domain}
S = {all states in the planning domain}
L = {all literals in the language}

Φ is the conjunct of many other formulas …

16

Formulae in Φ
Formula describing the initial state:
.{l0 | l ∈ s0} ∧ .{¬l0 | l ∈ L – s0 }

Formula describing the goal:
.{ln | l ∈ g+} ∧ .{¬ln | l ∈ g–}

For every action a in A, formulae describing what changes a would make
if it were the i’th step of the plan:

ai ⇒ .{pi | p ∈ Precond(a)} ∧ . {ei+1 | e ∈ Effects(a)}

Complete exclusion axiom:
For all actions a and b, formulas saying they can’t occur at the same
time

¬ ai ∨ ¬ bi
this guarantees there can be only one action at a time (i.e., a
sequential plan. This is revisted in the blackbox encoding later.

Is this enough?

17

Frame Axioms
Frame axioms:

Formulas describing what doesn’t change between steps i and i+1

Several ways to write these

One way: explanatory frame axioms
One axiom for every literal l
Says that if l changes between si and si+1,
then the action at step i must be responsible:

(¬li ∧ li+1 ⇒ Va in A{ai | l ∈ effects+(a)})
∧ (li ∧ ¬li+1 ⇒ Va in A{ai | l ∈ effects–(a)})

18

Example
Planning domain:

one robot r1
two adjacent locations l1, l2
one operator (move the robot)

Encode (P,n) where n = 1

Initial state: {at(r1,l1)}
Encoding: at(r1,l1,0) ∧ ¬at(r1,l2,0)

Goal: {at(r1,l2)}
Encoding: at(r1,l2,1) ∧ ¬at(r1,l1,1)

Operator: see next slide

19

Example (continued)
Operator: move(r,l,l’)

precond: at(r,l)
effects: at(r,l’), ¬at(r,l)

Encoding:
move(r1,l1,l2,0) ⇒ at(r1,l1,0) ∧ at(r1,l2,1) ∧ ¬at(r1,l1,1)
move(r1,l2,l1,0) ⇒ at(r1,l2,0) ∧ at(r1,l1,1) ∧ ¬at(r1,l2,1)
move(r1,l1,l1,0) ⇒ at(r1,l1,0) ∧ at(r1,l1,1) ∧ ¬at(r1,l1,1)
move(r1,l2,l2,0) ⇒ at(r1,l2,0) ∧ at(r1,l2,1) ∧ ¬at(r1,l2,1)
move(l1,r1,l2,0) ⇒ …
move(l2,l1,r1,0) ⇒ …
move(l1,l2,r1,0) ⇒ …
move(l2,l1,r1,0) ⇒ …

How to avoid generating the last four actions?
Assign data types to the constant symbols

nonsensical

contradictions
(easy to detect)

20

Example (continued)
Solution: Add typing of parameters

Locations: l1, l2
Robots: r1

Operator: move(r : robot, l : location, l’ : location)
precond: at(r,l)
effects: at(r,l’), ¬at(r,l)

Encoding:
move(r1,l1,l2,0) ⇒ at(r1,l1,0) ∧ at(r1,l2,1) ∧ ¬at(r1,l1,1)
move(r1,l2,l1,0) ⇒ at(r1,l2,0) ∧ at(r1,l1,1) ∧ ¬at(r1,l2,1)

21

Example (continued)
Complete-exclusion axiom:
¬move(r1,l1,l2,0) ∨ ¬move(r1,l2,l1,0)

Explanatory frame axioms:
¬at(r1,l1,0) ∧ at(r1,l1,1) ⇒ move(r1,l2,l1,0)
¬at(r1,l2,0) ∧ at(r1,l2,1) ⇒ move(r1,l1,l2,0)
at(r1,l1,0) ∧ ¬at(r1,l1,1) ⇒ move(r1,l1,l2,0)
at(r1,l2,0) ∧ ¬at(r1,l2,1) ⇒ move(r1,l2,l1,0)

22

Extracting a Plan
Suppose we find a satisfying assignment for Φ.

This means P has a solution of length n

For i=1,…,n, there will be exactly one action s.t. ai = true
This is the i’th action of the plan.

Example (from the previous slides):
Φ can be satisfied with move(r1,l1,l2,0) = true

Thus 〈move(r1,l1,l2,0)〉 is a solution for (P,0)
It’s the only solution - no other way to satisfy Φ

23

Planning
How to find an assignment of truth values that satisfies Φ?

Use a satisfiability (SAT) algorithm
Systematic search e.g., Davis-Putnam-Logemann-Loveland (DPLL)
Local search e.g., GSAT, Walksat

Example: the Davis-Putnam* algorithm
First need to put Φ into conjunctive normal form
e.g., Φ = D ∧ (¬D ∨ A ∨ ¬B) ∧ (¬D ∨ ¬A ∨ ¬B) ∧ (¬D ∨ ¬A ∨ B) ∧ A
Write Φ as a set of clauses (disjuncts of literals)
Φ = {{D}, {¬D, A, ¬B}, {¬D, ¬A, ¬B}, {¬D, ¬A, B}, {A}}
Two special cases:

If Φ = ∅ then Φ is always true
If Φ = {…, ∅, …} then Φ is always false (hence unsatisfiable)

*NOTE: DP is the term used in the text book but is actually a resolution procedure.
DPLL(1962) is a refinement of DP(1960). “DP” is sometimes used to refer to “DPLL”.

24

The Davis-Putnam Procedure
Backtracking search through alternative assignments of truth values to literals

μ = {literals to which we have assigned the value TRUE}; initially empty
if Φ contains ∅ then

backtrack
if Φ is ∅ then

μ is a solution
while Φ contains a clause
that’s a single literal l

Remove clause containing l
Remove ¬l from clauses

select a Boolean
variable P in Φ
do recursive calls on

Φ ∪ P
Φ ∪ ¬P

25

Local Search
Let u be an assignment of truth values to all of the variables

cost(u,Φ) = number of clauses in Φ that are not satisfied by u
flip(P,u) = u except that P’s truth value is reversed

Local search:
Select a random assignment u
while cost(u,Φ) ≠ 0

if there is a P such that cost(flip(P,u),Φ) < cost(u,Φ) then
randomly choose any such P
u ← flip(P,u)

else return failure
Local search is sound
If it finds a solution it will find it very quickly
Local search is not complete: can get trapped in local minima

Boolean variable

26

GSAT (local search algorithm)
Basic-GSAT:

Select a random assignment u
while cost(u,Φ) ≠ 0

choose a P that minimizes cost(flip(P,u),Φ), and flip it
Not guaranteed to terminate (in contrast to DPLL)

WALKSAT
Like GSAT but differs in the method used to pick which variable to flip

Both algorithms may restart with a new random assignment if trapped in
local minima.
Many versions of GSAT/WalkSAT. WalkSAT superior for planning.

But….

27

GSAT (local search algorithm)
Basic-GSAT:

Select a random assignment u
while cost(u,Φ) ≠ 0

choose a P that minimizes cost(flip(P,u),Φ), and flip it
Not guaranteed to terminate (in contrast to DPLL)

WALKSAT
Like GSAT but differs in the method used to pick which variable to flip
WalkSAT first picks a clause which is unsatisfied by the current assignment, then flips a
variable within that clause. The clause is generally picked at random among unsatisfied
clauses. The variable is generally picked that will result in the fewest previously satisfied
clauses becoming unsatisfied, with some probability of picking one of the variables at
random. When picking at random, WalkSAT is guaranteed at least a chance of one out
of the number of variables in the clause of fixing a currently incorrect assignment. When
picking a guessed to be optimal variable, WalkSAT has to do less calculation than
GSAT because it's considering fewer possibilities.

The algorithm may restart with a new random assignment if no solution has been found for
too long, as a way of getting out of local minima of numbers of numbers of unsatisfied
clauses.
Many versions of GSAT and WalkSat exist.
WalkSAT superior for planning

BUT best DPLL-based solvers (e.g., currently Siege, previously ZChaff) are currently best!

28

Bottom Line

Previous discussion notwithstanding, the best solvers for SAT-
based planning are currently DPLL-based solvers such as
Satzilla, PrecoSAT (and previously RelSAT and before that
Siege and before that ZChaff) that have the option of using
random restarts and some other local-search “tricks”

29

Discussion of the ’92 Satplan Approach
Recall the overall approach:

for n = 0, 1, 2, …,
encode (P,n) as a satisfiability problem Φ
if Φ is satisfiable, then

From the set of truth values that satisfies Φ, extract
a solution plan and return it

How well does this work?

30

Discussion of the ’92 Satplan Approach
Recall the overall approach:

for n = 0, 1, 2, …,
encode (P,n) as a satisfiability problem Φ
if Φ is satisfiable, then

From the set of truth values that satisfies Φ, extract
a solution plan and return it

How well does this work?
By itself, not practical (takes too much memory & time)
But it can be combined with other techniques

e.g., planning graphs
(Remember historical discussion at the beginning of this lecture.)

31

Blackbox

STRIPS
Plan
Graph

Mutex
computation

CNF

General
SAT
engines

Solution

Simplifier Translator

CNF

32

Staged Inference

Domain
specific
model

Polytime
domain
specific
inference

General
language
encoding

Full general
inference
(NP complete)

Solution

Polytime
general
inference

Abstract
problem
specification

Encoding scheme

Combinatorial
CORE

33

Exploiting the planning graph

Fact ⊃ Act1 ∨ Act2
Act1 ⊃ Pre1 ∧ Pre2
¬Act1 ∨ ¬Act2

Act1

Act2

Fact

Pre1

Pre2

The Basic Idea:
The planning graph approximates the reachability graph by
pruning unreachable nodes
In logical terms, it is actually limiting negative binary propagation

Translation of the Planning Graph

34

Improved Encodings
Translations of Logistics.a:
STRIPS → Axiom Schemas → SAT
(Medic system, Weld et. al 1997)

3,510 variables, 16,168 clauses
24 hours to solve

STRIPS → Plan Graph → SAT
2,709 variables, 27,522 clauses
5 seconds to solve!

35

SatPlan* (sucessor to Blackbox)
SatPlan combines planning-graph expansion and satisfiability checking,
roughly as follows:

for k = 0, 1, 2, …
Create a planning graph that contains k levels
Encode the planning graph as a satisfiability problem
Try to solve it using a SAT solver

If the SAT solver finds a solution within some time limit,
Remove some unnecessary actions
Return the solution

Memory requirement still is combinatorially large
but less than what’s needed by a direct translation into satisfiability

BlackBox (predecessor to SatPlan) was one of the best planners in the
1998 planning competition
SatPlan was one of the best planners in the 2004 and 2006 planning
competitions

*1992 – “Satplan Approach”,vs, 2004+ - Satplan implementation, successor to Blackbox

36

Improved SAT Encodings for Planning
As I mentioned at the outset, advances in SAT-based planning have
largely been marked by advances in encodings.
E.g., translations of IPC Logistics.a domain

STRIPS → Axiom Schemas → SAT (Medic system, Weld et. al 1997)
3,510 variables, 16,168 clauses
24 hours to solve

STRIPS → Plan Graph → SAT (Blackbox)
2,709 variables, 27,522 clauses
5 seconds to solve!

Biggest drawback to Blackbox successors is the enormous sized CNFs
E.g., Satplan06 encoding of IPC-5 Pipesworld domain with n=19

47,000 variables, 20,000,000 clauses

…. And this is a big reason why heuristic search (aka “satisficing planners”)
can solve much bigger problems

37

Action Encoding in Medic*

Bitwise

Overloaded-split

Simply-split

Regular

Representation

Binary encodings of
actions

n|F| + n[log2 |O||D|A0]

fully-instantiated argument
n|F| + n(|O|+|D|A0)

fully-instantiated action’s
argument

n|F| + n|O||D|A0

fully-instantiated action
n|F| + n|O||D|A0

One Propositional
Variable per

Bit1

act(move, i) ∧ act1(r1, i)
∧ act2(l1, i) ∧ act3(l2, i)

move1(r1,i) ∧ move2(l1,i)
∧ move3(l2,i)

move(r1,l1,l2,i)

Example more
vars

more
clauses

[Ernst et al, IJCAI 1997]

n – number of steps; |F| - number of fluents; |D| - size of domain
|O| - number of operators; A0 – maximum arity of predicates

* Recall Medic was pre-Blackbox and had no action parallelism

38

Final word for now
SAT-based planners historically did well in the “optimal”
planning track of IPC (as opposed to the satisficing track)
because of the iterative nature of the construction of the
planning graph representation. In contrast, in the “satisficing”
track, heuristic search planners were far outperforming SAT-
based planners and scaling to larger problems, while still
computing good quality plans. With the advent of heuristic
search planners that iterate to find better plans (e.g., LAMA)
heuristic searh planners are

Recent research advances have centred around different
encodings and associated query strategies. There have also
been interesting advances on using SAT-based planning for
cost-optimal planning and the like

39

REMINDER: Administrative Announcements
Tutorial Time: If you’re taking the course for credit, please (re)vist
the doodle poll and see whether you can work towards finding a time
when we can all meet. We’re at an impass!

I will be posting a schedule with project milestone dates and the due
date for the assignment.

The lecture in 2 weeks will be given by our TA, Christian Muise.

Suggested readings for next week:

Part III introduction of GNT

Chapter 9 of GNT

A review paper that I will post on our web page.

Other Issues?

