
3rd Paper Review

A. Heifets, 993888664

March 19, 2009

1 Structural Patterns Heuristics via Fork Decomposition

1.1 Summary

One of the best heuristics developed over the last twenty-five years is to measure the amount of work needed
to solve a simpler version of the original problem. There is a fundamental tension in this scheme between
the effort it takes to solve the simpler version and the informativeness of measuring that effort, with respect
to the original problem. Typically, the simpler problems are generated from the original by ignoring some of
the variables in the original problem. As we ignore more variables, the problem becomes easier to solve but
less informative about the original problem. The paper proposes a method of choosing variables to ignore
which would permit larger (and therefore more informative) sets of variables while still guaranteeing that
the generated problem is solvable. The paper uses the SAS+ problem representation and makes the claims
that, if variables can be found with small domains, then substructures (particularly, a node and all of the
children nodes fanning out of it, or a node and all of its predecessors) of the causal graph can be extracted
that are solvable in polynomial time. The paper concludes with a theoretical analysis of tightness of the
lower bound which I didn’t really follow.

1.2 Significance

This paper extends the previous papers we discussed about additive heuristics and pattern databases. In
that previous work, the actions had to be completely disjoint so that, when we summed the heuristic cost
given by any database, we could be assured that no action cost was being double counted. In this paper,
that constraint is relaxed that so that the cost for an action is split across the various databases. When we
sum up the action costs across all the databases, we still don’t exceed the original action cost. That is an
interesting generalization and would seem to allow a lot of alternative additive formulations.

The authors also make the following interesting observation on bounds of the size of simplified domains.
Since we wish to compute heuristics in polynomial time, and computing a planning problems is exponential
in either the number of variable values, this means that the size of suitable simplified problems is logarithmic
in the size of the original problem (unless we exploit problem structure). It is easy to believe that logarithmic
heuristic functions would be weak predictors of the difficulty of the full problem, so the search for problem
structure to exploit and how to exploit it seems very important.

2 A Hybrid Relaxed Planning Graph-LP Heuristic for Numeric
Planning Domains

2.1 Summary

The paper begins by noting the appropriateness of numeric representations for problems involving quantities,
such as for time or money or fuel, and the proven usefulness of linear programming techniques for numeric
problems in constraint optimization. Then, since measuring search effort in relaxed-planning-graphs via

1



ignoring delete lists has worked well as a heuristic in classical domains, there is a discussion of how to
generate a numeric heuristic that would work analogously. In some sense, ignoring-deletes is a particular
abstraction that guarantees the property that the abstracted problem can be solved in polynomial time;
it’s not clear why we’d need to copy the ignoring-deletes for numeric problems, if there is some other
approximation that guarantees polynomial evaluation. In any case, this relaxation is achieved by mapping
the original problem into a pure maximization problem, and removing any effect that would decrease the
value of a numeric fluent.

The paper notes that, just like ignoring-deletes will not detect the case where subsequent actions remove
previously achieved goals, the relaxed plan won’t detect that consumption of resources can require more future
production. And, just like the classical case, if the planner uses the helpfulaction heuristic to further prune
the search space then plans with more production actions will not be explored. This is hardly surprising as
the helpfulaction heuristic, even in classical planning, is known to be incomplete. The first numeric-specific
consequence of the ignoring-decrease relaxation is discussed with regards to cyclical resource transfer: since
the domain of numeric fluents is numbers, successive actions can make the fluents grow without bound.

The paper proposes a mixed-integer program formulation of planning problems, where variables map
to variables, actions are encoded by binary variables representing if the action was taken or not, and the
production or consumption effects of actions are enforced via constraining the previous value of a variable
minus the next value plus the sum of the effects of all taken actions to equal zero. Such a mixed-integer
program can be solved to yield upper or lower bounds for the fluent values. Furthermore, these bounds can
be used to detect the minimum number of setup actions needed before a particular action becomes possible.
Therefore, the mixed-integer program can be used as a relaxed-plan graph heuristic. The paper goes on to
consider a number of special cases, the detection and encoding of which as MIP constraints, can improve the
speed or accuracy of the solution and, therefore, the underlying planning task.

2.2 Significance

The domain-independence of planning is an appealing notion. It would permit reuse of the same algorithms
and implementations to solve a wide range of problems. However, many problems are difficult to encode in
the propositional language of classical planning. This is the first paper we’ve read that explores the issues
in planning in numeric domains which, as discussed in the paper, is a natural way to encode many problems
(and, therefore, has been extensively explored in related fields such as constraint optimization and dynamics
and controls). To really deliver on its promise of domain-independence, a broad range of problems should
be encodable into domain-independent planning, so this paper is an interesting investigation into providing
those capabilities.

A natural first question when extending capabilties is ”How well would faking it work?”. Integers and
floating-point numbers can be encoded using sets of propositional values and logical rules encoded as trans-
forming actions over these values. In fact, this encoding is taught in every introductory computer engineering
class. Also, perhaps, this is not too unusual for the planning community, since we’ve seen people use adders
and sortnets as benchmark problems. Since, last week, we saw great results from compiling conformant
planning problems to classical planning and using fast well-developed classical planners to solve them, so
I’d be curious how well a similar compilation technique would work for the numeric domain. It is, however,
unclear how to encode optimization problems in classical terms, without the ability to specify preferences
on classical goals.

2


