16.

The Tradeoff between Expressiveness and Tractability

&	R	©	Brachman	&	Levesque	2005	
---	---	---	----------	---	----------	------	--

KR

Limit expressive power?

Defaults, probabilities, *etc.* can all be thought of as extensions to FOL, with obvious applications

Why not strive for the union of all such extensions? all of English?

Problem: automated reasoning

Lesson here:

reasoning procedures required for more expressive languages may not work very well in practice

Tradeoff: expressiveness vs. tractability

- Overview: a Description Logic example
 - limited languages
 - the problem with cases
 - vivid reasoning as an extreme case
 - less vivid reasoning
 - hybrid reasoning systems

268

Consider the language FL defined by:

<concept> ::= atom | [AND <concept> ... <concept>] | [ALL <role> <concept>] | [SOME <role>] (= [EXISTS 1 <role>])

<role> ::= atom | [RESTR <role> <concept>]

Example: [ALL : Child [AND Female Student]]

an individual whose children are female students

[ALL [RESTR : Child Female] Student]

an individual whose female children are students

there may or may not be male children and they may or may not be students

Interpretation $\mathcal{J} = \langle D, I \rangle$ as before, but with

 $I[[\texttt{RESTR } r c]] = \{ (x, y) \mid (x, y) \in I[r] \text{ and } y \in I[c] \}$

So [RESTR :Child Female] is the :Child relation restricted to females = :Daughter

Subsumption defined as usual

KR & R

© Brachman & Levesque 2005

270

Computing subsumption

First for FL⁻ = FL without the RESTR operator

put the concepts into normalized form

 $\begin{bmatrix} \text{AND } p_1 \dots p_k \\ \text{[SOME } r_1 \end{bmatrix} \dots \begin{bmatrix} \text{SOME } r_m \end{bmatrix} \\ \begin{bmatrix} \text{ALL } s_1 \ c_1 \end{bmatrix} \dots \begin{bmatrix} \text{ALL } s_n \ c_n \end{bmatrix} \end{bmatrix}$

- to see if *C* subsumes *D* make sure that
 - 1. for every $p \in C$, $p \in D$
 - 2. for every [SOME r] $\in C$, [SOME r] $\in D$
 - 3. for every $[ALL \ s \ c] \in C$, find an $[ALL \ s \ d] \in D$ such that c subsumes d.

Can prove that this method is sound and complete relative to definition based on interpretations

Running time:

- normalization is *O*(*n*²)
- structural matching: for each part of C, find a part of D. Again $O(n^2)$

What about all of FL, including RESTR?

• cannot settle for part-by-part matching

```
[ALL [RESTR :Friend [AND Male Doctor]] [AND Tall Rich]]
subsumes

[AND [ALL [RESTR :Friend Male] [AND Tall Bachelor]]
[ALL [RESTR :Friend Doctor] [AND Rich Surgeon]]]

complex interactions

[SOME [RESTR r [AND a b]]]
subsumes
```

```
 \begin{bmatrix} \text{AND} \ [\text{SOME} \ [\text{RESTR} \ r \ [\text{AND} \ c \ d] ] \end{bmatrix} \begin{bmatrix} \text{ALL} \ [\text{RESTR} \ r \ c] \ [\text{AND} \ a \ e] \end{bmatrix} \\ \begin{bmatrix} \text{ALL} \ [\text{RESTR} \ r \ [\text{AND} \ d \ e] \end{bmatrix} \ b] \end{bmatrix}
```

In general: FL is powerful enough to encode all of propositional logic.

There is a mapping Ω from CNF wffs to FL where

 \models ($\alpha \supset \beta$) iff $\Omega(\alpha)$ is subsumed by $\Omega(\beta)$

But $\models (\alpha \supset (p \land \neg p))$ iff α is unsatisfiable

Conclusion: there is no good algorithm for FL unless P=NP

KR&R @

© Brachman & Levesque 2005

Moral

Even small doses of expressive power can come at a significant computational price

Questions:

- what properties of a representation language control its difficulty?
- how far can expressiveness be pushed without losing good algorithms
- when is easy reasoning adequate for KR purposes?

These questions remain unanswered, but some progress:

- need for case analyses is a major factor
- tradeoff for DL languages is reasonably well understood
- · best addressed (perhaps) by looking at working systems

Useful approach:

- find reasoning tasks that are tractable
- analyze difficulty in extending them

272

Many reasoning problems that can be formulated in terms of FOL entailment (KB $\mid=^{?} \alpha$) admit very specialized methods because of the restricted form of either KB or α

although problem could be solved using full resolution, there is no need

Example 1: Horn clauses

- SLD resolution provides more focussed search
- in propositional case, a linear procedure is available

Example 2: Description logics

Can do DL subsumption using Resolution

Introduce predicate symbols for concepts, and "meaning postulates" like

 $\begin{aligned} \forall x [P(x) &\equiv \forall y (\text{Friend}(x, y) \supset \text{Rich}(y)) \\ & \land \forall y (\text{Child}(x, y) \supset \\ & \forall z (\text{Friend}(y, z) \supset \text{Happy}(z))) \end{aligned} \qquad \begin{bmatrix} \text{AND} [\text{ALL} :\text{Friend Rich}] \\ & [\text{ALL} :\text{Child} \\ & [\text{ALL} :\text{Friend Happy}] \end{bmatrix} \end{aligned}$

Then ask if MP $\models \forall x [P(x) \supset Q(x)]$

KR & R © Brachman & Levesque 2005

274

Equations

Example 3: linear equations

Let *E* be the usual axioms for arithmetic:

 $\forall x \forall y(x+y=y+x), \forall x(x+0=x), \dots$ Peano axioms

Then we get the following:

 $E \models (x+2y=4 \land x-y=1) \supset (x=2 \land y=1)$

Can "solve" linear equations using Resolution!

But there is a much better way:	- subtract (2) from (1): $3y = 3$		
Gauss-Jordan method with back substitution	- divide by 3: $y = 1$		
	- substitute in (1): $x = 2$		

In general, a set of linear equations can be solved in $O(n^3)$ operations

This idea obviously generalizes!

always advantageous to use a specialized procedure when it is available, rather than a general method like Resolution

Suppose that instead of linear equations, we have something like

 $(x+2y=4 \lor 3x-y=7) \land x-y=1$

Can still show using Resolution: y > 0

To use GJ method, we need to split cases:

What if 2 disjunctions? $(eqnA_1 \lor eqnB_1) \land (eqnA_2 \lor eqnB_2)$

there are four cases to consider with GJ method

What if *n* binary disjunctions? $(eqnA_1 \lor eqnB_1) \land ... \land (eqnA_n \lor eqnB_n)$

there are 2^{*n*} cases to consider with GJ method

with n=30, would need to solve 10^9 systems of equations!

Conclusion: case analysis is still a big problem.

Question: can we avoid case analyses??

KR & R

© Brachman & Levesque 2005

276

Expressiveness of FOL

Ability to represent incomplete knowledge

 $P(a) \lor P(b)$ but which? $\exists x P(x)$ $P(a) \lor P(b) \lor P(c) \lor ...$ and even $c \neq 3$ $c=1 \lor c=2 \lor c=4 \lor ...$

Reasoning with facts like these requires somehow "covering" all the implicit cases

languages that admit efficient reasoning do *not* allow this type of knowledge to be represented

- Horn clauses,
- description logics,
- linear equations, ...

only limited forms of disjunction, quantification etc.

One way to ensure tractability:

somehow restrict contents of KB so that reasoning by cases is not required

But is complete knowledge enough for tractability?

suppose KB |= α or KB |= $\neg \alpha$, as in the CWA Get: queries reduce to KB |= ρ , literals But: it can still be hard to answer for literals

Example: $KB = \{(p \lor q), (\neg p \lor q), (\neg p \lor \neg q)\}$ Have: $KB \models \neg p \land q$ complete! But to find literals may require case analysis

So complete knowledge is not enough to avoid case analyses if the knowledge is "hidden" in the KB.

Need a form of complete knowledge that is more explicit...

KR & R

© Brachman & Levesque 2005

278

Vivid knowledge

Note: If KB is complete and consistent, then it is satisfied by a *unique* interpretation *I*

Why? define *I* by $I \models p$ iff KB $\models p$ Then for any *I**, if *I** \models KB then *I** agrees with *I* on all atoms *p*

Get: KB |= α iff *I* |= α

entailments of KB are sentences that are true at /

explains why queries reduce to atomic case

 $(\alpha \lor \beta)$ is true iff α is true or β is true, *etc.*

if we have the I, we can easily determine what is or is not entailed

Problem: KB can be complete and consistent, but unique interpretation may be hard to find

Solution: a KB is <u>vivid</u> if it is a complete and consistent set of literals (for some language)

e.g. KB = {¬p, q}

specifies *I* directly

As with the CWA, we can generalize the notion of vivid to accommodate queries with quantifiers

A first-order KB is <u>vivid</u> iff for some finite set of positive functionfree ground literals KB⁺, KB = KB⁺ \cup Negs \cup Dc \cup Un.

Get a simple recursive algorithm for KB $\mid = \alpha$:

 $KB \models \exists x.\alpha \quad \text{iff} \quad KB \models \alpha[x/c], \text{ for some } c \in KB^+$ $KB \models (\alpha \lor \beta) \quad \text{iff} \quad KB \models \alpha \text{ or } KB \models \beta$ $KB \models \neg \alpha \quad \text{iff} \quad KB \not\models \alpha$ $KB \models (c = d) \quad \text{iff} \quad c \text{ and } d \text{ are the same constant}$ $KB \models p \quad \text{iff} \quad p \in KB^+$

This is just database retrieval

- useful to store KB⁺ as a collection of relations
- only KB⁺ is needed to answer queries, but *Negs, Dc,* and *Un* are required to *justify* the correctness of the procedure

KR & R © Brachman & Levesque 2005

280

Analogues

Can think of a vivid KB as an analogue of the world

there is a 1-1 correspondence between

- objects in the world and constants in the KB+
- relationships in the world and syntactic relationships in the KB+

for example, if constants c_1 and c_2 stand for objects in the world o_1 and o_2

there is a relationship *R* holding between objects o_1 and o_2 in the world iff

constants c_1 and c_2 appear as a tuple in the relation represented by R

Not true in general

for example, if $KB = \{P(a)\}$ then it only uses 1 constant, but could be talking about a world where there are 5 individuals of which 4 satisfy *P*

Result: certain reasoning operations are easy

- how many objects satisfy P (by counting)
- changes to the world (by changes to KB⁺)

Requirement of vividness is very strict.

Want weaker alternatives with good reasoning properties

Extension 1

ignoring quantifiers again

Suppose KB is a finite set of literals

- not necessarily a complete set (no CWA)
- assume consistent, else trivial

Cannot reduce KB $\models \alpha$ to literal queries

if KB = $\{p\}$ then KB |= $(p \land q \lor p \land \neg q)$ but KB | $\neq p \land q$ and KB | $\neq p \land \neg q$

But: assume α is small. Can put into CNF

 α ß $(c_1 \wedge ... \wedge c_n)$

- KB |= α iff KB |= c_i , for every clause in CNF of α
- KB |= c iff c has complimentary literals tautology or KB $\cap c$ is not empty

KR & R © Brachman & Levesque 2005

282

Extension 2

Imagine KB vivid as before + new definitions:

 $\forall xyz[R(x,y,z) \equiv \dots$ wff in vivid language ...]

Example: have vivid KB using predicate ParentOf

add: $\forall xy [MotherOf(x,y) \equiv ParentOf(x,y) \land Female(x)]$

To answer query containing $R(t_1, t_2, t_3)$, simply macro expand it with definition and continue

- can handle arbitrary logical operators in definition since they become part of *query*, not KB
- can generalize to handle predicates not only in vivid KB, provided that they bottom out to KB⁺

 $\forall xy[\text{AncestorOf}(x,y) \equiv \text{ParentOf}(x,y) \lor \\ \exists z \text{ ParentOf}(x,z) \land \text{AncestorOf}(z,y)]$

clear relation to Prolog

a version of logic programming based on inductive definitions, not Horn clauses

Vivification: given non-vivid KB, attempt to make vivid e.g. by eliminating disjunctions *etc.*

for example,

- use taxonomies to choose between disjuncts
 Flipper is a whale or a dolphin.
- use intervals to encompass disjuncts

The picnic will be on June 2, 3, or 4th.

- use defaults to choose between disjuncts

Serge works in Toronto or Montreal.

Problem: what to do with function symbols, when Herbrand universe is not finite?

partial Herbrand base?

KR & R

© Brachman & Levesque 2005

284

Hybrid reasoning

Want to be able to incorporate a number of special-purpose efficient reasoners into a single scheme such as Resolution

Resolution will be the glue that holds the reasoners together

Simple form: semantic attachment

· attach procedures to functions and predicates

e.g. numbers: procedures on plus, LessThan, \ldots

- ground terms and atomic sentences can be evaluated prior to Resolution
 - $P(\text{factorial}(4), \text{times}(2,3)) \quad \mathcal{B} \quad P(24, 6)$
 - LessThan(quotient(36,6), 5) $\vee \alpha$ ß α
- much better than reasoning directly with axioms

More complex form: theory resolution

- build theory into unification process (the way paramodulation builds in =)
- extended notion of complimentary literals
 - $\{\alpha, \text{LessThan}(2,x)\}$ and $\{\text{LessThan}(x,1), \beta\}$ resolve to $\{\alpha,\beta\}$

Imagine that predicates are defined elsewhere as concepts in a description logic

Married = [AND ...] Bachelor = [AT-MOST ...]

then $\{P(x), Married(x)\}$ and $\{Bachelor(john), Q(y)\}$ resolve to $\{P(john), Q(y)\}$

Can use description logic procedure to decide if two predicates are complimentary

instead of explicit meaning postulates

Residues: for "almost" complimentary literals

 $\{P(x), Male(x)\}$ and $\{\neg Bachelor(john), Q(y)\}$

resolve to

 $\{P(\text{john}), Q(y), \text{Married}(\text{john})\}$

since the two literals are contradictory unless John is married

Main issue: what resolvents are necessary to get the same conclusions as from meaning postulates?

residues are necessary for completeness

KR & R © Brachman & Levesque 2005

286