
KR & R © Brachman & Levesque 2005 268

16.

The Tradeoff between
Expressiveness and

Tractability

KR & R © Brachman & Levesque 2005 269

Limit expressive power?

Defaults, probabilities, etc. can all be thought of as extensions to
FOL, with obvious applications

Why not strive for the union of all such extensions? all of English?

Problem: automated reasoning

Lesson here:
reasoning procedures required for more expressive languages
may not work very well in practice

Tradeoff: expressiveness vs. tractability

Overview: – a Description Logic example

– limited languages

– the problem with cases

– vivid reasoning as an extreme case

– less vivid reasoning

– hybrid reasoning systems

KR & R © Brachman & Levesque 2005 270

Simple description logic

Consider the language FL defined by:
<concept> ::= atom <role> ::= atom

| [AND <concept> ... <concept>] | [RESTR <role> <concept>]
| [ALL <role> <concept>]
| [SOME <role>] (= [EXISTS 1 <role>])

Example: [ALL :Child [AND Female Student]]
an individual whose children are female students

[ALL [RESTR :Child Female] Student]
an individual whose female children are students
there may or may not be male children and they may or may not be students

Interpretation ℑ = 〈 D, I 〉 as before, but with

I[[RESTR r c]] = { (x,y) | (x,y) ∈ I[r] and y ∈ I[c] }

So [RESTR :Child Female] is the :Child relation restricted to females = :Daughter

Subsumption defined as usual

KR & R © Brachman & Levesque 2005 271

Computing subsumption

First for FL ̄= FL without the RESTR operator

• put the concepts into normalized form

• to see if C subsumes D make sure that

1. for every p ∈ C, p ∈ D

2. for every [SOME r] ∈ C, [SOME r] ∈ D

3. for every [ALL s c] ∈ C, find an [ALL s d] ∈ D such that c subsumes d.

Can prove that this method is sound and complete relative to
definition based on interpretations

Running time:

• normalization is O(n2)

• structural matching: for each part of C, find a part of D. Again O(n2)

What about all of FL, including RESTR?

 [AND p1 ... pk

[SOME r1] ... [SOME rm]
[ALL s1 c1] ... [ALL sn cn]]

KR & R © Brachman & Levesque 2005 272

Subsumption in FL

• cannot settle for part-by-part matching

 [ALL [RESTR :Friend [AND Male Doctor]] [AND Tall Rich]]

subsumes

 [AND [ALL [RESTR :Friend Male] [AND Tall Bachelor]]
[ALL [RESTR :Friend Doctor] [AND Rich Surgeon]]]

• complex interactions

 [SOME [RESTR r [AND a b]]]

subsumes

 [AND [SOME [RESTR r [AND c d]]] [ALL [RESTR r c] [AND a e]]
[ALL [RESTR r [AND d e]] b]]

In general: FL is powerful enough to encode all of propositional logic.

There is a mapping Ω from CNF wffs to FL where

|= (α ⊃ β) iff Ω(α) is subsumed by Ω(β)

But |= (α ⊃ (p∧¬p)) iff α is unsatisfiable

Conclusion: there is no good algorithm for FL unless P=NP

KR & R © Brachman & Levesque 2005 273

Moral

Even small doses of expressive power can come at a significant
computational price

Questions:
• what properties of a representation language control its difficulty?

• how far can expressiveness be pushed without losing good algorithms

• when is easy reasoning adequate for KR purposes?

These questions remain unanswered, but some progress:
• need for case analyses is a major factor

• tradeoff for DL languages is reasonably well understood

• best addressed (perhaps) by looking at working systems

Useful approach:
• find reasoning tasks that are tractable

• analyze difficulty in extending them

KR & R © Brachman & Levesque 2005 274

Limited languages

Many reasoning problems that can be formulated in terms of FOL
entailment (KB |= α) admit very specialized methods because of
the restricted form of either KB or α

although problem could be solved using full resolution, there is no need

Example 1: Horn clauses
• SLD resolution provides more focussed search

• in propositional case, a linear procedure is available

Example 2: Description logics
Can do DL subsumption using Resolution

Introduce predicate symbols for concepts, and “meaning postulates” like

∀x[P(x) ≡ ∀y(Friend(x,y) ⊃ Rich(y))
∧ ∀y(Child(x,y) ⊃

 ∀z(Friend(y,z) ⊃ Happy(z)))]

Then ask if MP |= ∀x[P(x) ⊃ Q(x)]

?

[AND [ALL :Friend Rich]
 [ALL :Child
 [ALL :Friend Happy]]]

KR & R © Brachman & Levesque 2005 275

Equations

Example 3: linear equations

Let E be the usual axioms for arithmetic:

∀x∀y(x+y = y+x), ∀x(x+0 = x), ...

Then we get the following:

E |= (x+2y=4 ∧ x–y=1) ⊃ (x=2 ∧ y=1)

Can “solve” linear equations using Resolution!

But there is a much better way:
Gauss-Jordan method with back substitution

In general, a set of linear equations can be solved in O(n3) operations

This idea obviously generalizes!
always advantageous to use a specialized procedure when it is available,
rather than a general method like Resolution

– subtract (2) from (1): 3y = 3

– divide by 3: y = 1

– substitute in (1): x = 2

Peano
axioms

KR & R © Brachman & Levesque 2005 276

When is reasoning hard?

Suppose that instead of linear equations, we have something like

(x+2y=4 ∨ 3x–y=7) ∧ x–y=1

Can still show using Resolution: y > 0

To use GJ method, we need to split cases:

x+2y=4 ∧ x–y=1 ß y=1

3x–y=7 ∧ x–y=1 ß y=2

What if 2 disjunctions? (eqnA1 ∨ eqnB1) ∧ (eqnA2 ∨ eqnB2)

there are four cases to consider with GJ method

What if n binary disjunctions? (eqnA1 ∨ eqnB1) ∧ ... ∧ (eqnAn ∨ eqnBn)

there are 2n cases to consider with GJ method
with n=30, would need to solve 109 systems of equations!

Conclusion: case analysis is still a big problem.

Question: can we avoid case analyses??

∴ y > 0

KR & R © Brachman & Levesque 2005 277

Expressiveness of FOL

Ability to represent incomplete knowledge
P(a) ∨ P(b) but which?

∃x P(x) P(a) ∨ P(b) ∨ P(c) ∨ ...

and even

c ≠ 3 c=1 ∨ c=2 ∨ c=4 ∨ ...

Reasoning with facts like these requires somehow “covering” all
the implicit cases

languages that admit efficient reasoning do not allow this type of
knowledge to be represented

– Horn clauses,

– description logics,

– linear equations, ...

only limited forms of disjunction, quantification etc.

KR & R © Brachman & Levesque 2005 278

Complete knowledge

One way to ensure tractability:
somehow restrict contents of KB so that reasoning by cases is not required

But is complete knowledge enough for tractability?

suppose KB |= α or KB |= ¬α, as in the CWA
Get: queries reduce to KB |= ρ, literals

But: it can still be hard to answer for literals

Example: KB = {(p ∨ q), (¬p ∨ q), (¬p ∨ ¬q)}
Have: KB |= ¬p ∧ q complete!

But to find literals may require case analysis

So complete knowledge is not enough to avoid case analyses if
the knowledge is “hidden” in the KB.

Need a form of complete knowledge that is more explicit...

KR & R © Brachman & Levesque 2005 279

Vivid knowledge

Note: If KB is complete and consistent, then it is satisfied by a
unique interpretation I

Why? define I by I |= p iff KB |= p

Then for any I* , if I* |= KB then I* agrees with I on all atoms p

Get: KB |= α iff I |= α
entailments of KB are sentences that are true at I

explains why queries reduce to atomic case
(α ∨ β) is true iff α is true or β is true, etc.

if we have the I , we can easily determine what is or is not entailed

Problem: KB can be complete and consistent, but unique
interpretation may be hard to find

Solution: a KB is vivid if it is a complete and consistent set of
literals (for some language)

e.g. KB = {¬p, q} specifies I directly

ignoring
quantifiers
for now

KR & R © Brachman & Levesque 2005 280

Quantifiers

As with the CWA, we can generalize the notion of vivid to
accommodate queries with quantifiers

A first-order KB is vivid iff for some finite set of positive function-
free ground literals KB+, KB = KB+ ∪ Negs ∪ Dc ∪ Un.

Get a simple recursive algorithm for KB |= α:
KB |= ∃x.α iff KB |= α[x/c], for some c ∈ KB+

KB |= (α ∨ β) iff KB |= α or KB |= β

KB |= ¬α iff KB |≠ α

KB |= (c = d) iff c and d are the same constant

KB |= p iff p ∈ KB+

This is just database retrieval
• useful to store KB+ as a collection of relations

• only KB+ is needed to answer queries, but Negs, Dc, and Un are required
to justify the correctness of the procedure

KR & R © Brachman & Levesque 2005 281

Analogues

Can think of a vivid KB as an analogue of the world

there is a 1-1 correspondence between

– objects in the world and constants in the KB+

– relationships in the world and syntactic relationships in the KB+

for example, if constants c1 and c2 stand for objects in the world o1 and o2

there is a relationship R holding between objects o1 and o2 in the world

iff

constants c1 and c2 appear as a tuple in the relation represented by R

Not true in general

for example, if KB = {P(a)} then it only uses 1 constant, but could be
talking about a world where there are 5 individuals of which 4 satisfy P

Result: certain reasoning operations are easy
– how many objects satisfy P (by counting)

– changes to the world (by changes to KB+)

KR & R © Brachman & Levesque 2005 282

Beyond vivid

Requirement of vividness is very strict.

Want weaker alternatives with good reasoning properties

Extension 1

Suppose KB is a finite set of literals
– not necessarily a complete set (no CWA)

– assume consistent, else trivial

Cannot reduce KB |= α to literal queries
if KB = {p} then KB |= (p∧q ∨ p∧¬q) but KB |≠ p∧q and KB |≠ p∧¬q

But: assume α is small. Can put into CNF
α ß (c1 ∧ ... ∧ cn)

• KB |= α iff KB |= ci, for every clause in CNF of α

• KB |= c iff c has complimentary literals – tautology
or KB ∩ c is not empty

ignoring
quantifiers
again

KR & R © Brachman & Levesque 2005 283

Extension 2

Imagine KB vivid as before + new definitions:
∀xyz[R(x,y,z) ≡ ... wff in vivid language ...]

Example: have vivid KB using predicate ParentOf

add: ∀xy[MotherOf(x,y) ≡ ParentOf(x,y) ∧ Female(x)]

To answer query containing R(t1,t2,t3), simply macro expand it with
definition and continue

• can handle arbitrary logical operators in definition since they become part
of query, not KB

• can generalize to handle predicates not only in vivid KB, provided that they
bottom out to KB+

∀xy[AncestorOf(x,y) ≡ ParentOf(x,y) ∨
∃z ParentOf(x,z) ∧ AncestorOf(z,y)]

• clear relation to Prolog
a version of logic programming based on inductive definitions,
not Horn clauses

KR & R © Brachman & Levesque 2005 284

Other extensions

Vivification: given non-vivid KB, attempt to make vivid e.g. by
eliminating disjunctions etc.

for example,

– use taxonomies to choose between disjuncts
Flipper is a whale or a dolphin.

– use intervals to encompass disjuncts

The picnic will be on June 2, 3,or 4th.

– use defaults to choose between disjuncts

Serge works in Toronto or Montreal.

Problem: what to do with function symbols, when Herbrand
universe is not finite?

partial Herbrand base?

KR & R © Brachman & Levesque 2005 285

Hybrid reasoning

Want to be able to incorporate a number of special-purpose
efficient reasoners into a single scheme such as Resolution

Resolution will be the glue that holds the reasoners together

Simple form: semantic attachment
• attach procedures to functions and predicates

e.g. numbers: procedures on plus, LessThan, ...

• ground terms and atomic sentences can be evaluated prior to Resolution

– P(factorial(4), times(2,3)) ß P(24, 6)

– LessThan(quotient(36,6), 5) ∨ α ß α

• much better than reasoning directly with axioms

More complex form: theory resolution
• build theory into unification process (the way paramodulation builds in =)

• extended notion of complimentary literals

{α, LessThan(2,x)} and {LessThan(x,1), β} resolve to {α,β}

KR & R © Brachman & Levesque 2005 286

Using descriptions

Imagine that predicates are defined elsewhere as concepts in a
description logic

Married = [AND ...] Bachelor = [AT-MOST ...]

then {P(x), Married(x)} and {Bachelor(john), Q(y)} resolve to {P(john), Q(y)}

Can use description logic procedure to decide if two predicates are
complimentary

instead of explicit meaning postulates

Residues: for “almost” complimentary literals
{P(x), Male(x)} and {¬Bachelor(john), Q(y)}

resolve to

{P(john), Q(y), Married(john)}

since the two literals are contradictory unless John is married

Main issue: what resolvents are necessary to get the same conclusions
as from meaning postulates?

residues are necessary for completeness

