
KR & R © Brachman & Levesque 2005 254

15.

Planning

KR & R © Brachman & Levesque 2005 255

Planning

So far, in looking at actions, we have considered how an agent
could figure out what to do given a high-level program or complex
action to execute.

Now, we consider a related but more general reasoning problem:
figure out what to do to make an arbitrary condition true. This is
called planning.

• the condition to be achieved is called the goal

• the sequence of actions that will make the goal true is called the plan

Plans can be at differing levels of detail, depending on how we
formalize the actions involved

• “do errands” vs. “get in car at 1:32 PM, put key in ignition, turn key
clockwise, change gears,…”

In practice, planning involves anticipating what the world will be
like, but also observing the world and replanning as necessary...

KR & R © Brachman & Levesque 2005 256

Using the situation calculus

The situation calculus can be used to represent what is known
about the current state of the world and the available actions.

The planning problem can then be formulated as follows:

Given a formula Goal(s), find a sequence of actions a such that

KB |= Goal(do(a, S0)) ∧ Legal(do(a, S0))

where do(〈a1,...,an〉, S0) is an abbreviation for

do(an, do(an-1, ..., do(a2, do(a1, S0)) ...))

and where Legal(〈a1,...,an〉, S0) is an abbreviation for

Poss(a1, S0) ∧ Poss(a2, do(a1, S0)) ∧ ... ∧ Poss(an, do(〈a1,...,an-1〉, S0))

So: given a goal formula, we want a sequence of actions such that

• the goal formula holds in the situation that results from executing the
actions, and

• it is possible to execute each action in the appropriate situation

KR & R © Brachman & Levesque 2005 257

Planning by answer extraction

Having formulated planning in this way, we can use Resolution
with answer extraction to find a sequence of actions:

KB |= ∃s. Goal(s) ∧ Legal(s)

We can see how this will work using a simplified version of a
previous example:

An object is on the table that we would like to have on the floor. Dropping
it will put it on the floor, and we can drop it, provided we are holding it. To
hold it, we need to pick it up, and we can always do so.

• Effects: OnFloor(x, do(drop(x),s))
Holding(x, do(pickup(x),s))

Note: ignoring frame problem

• Preconds: Holding(x, s) ⊃ Poss(drop(x), s)
Poss(pickup(x), s)

• Initial state: OnTable(B, S0)

• The goal: OnFloor(B, s)

KB

KR & R © Brachman & Levesque 2005 258

Deriving a plan

[¬OnFloor(B,s1), ¬Legal(s1), A(s1)]

[¬Legal(do(drop(B),s2)), A(do(drop(B),s2))]

[¬Legal(s2), ¬Poss(drop(B),s2), A(do(drop(B),s2))]

[¬Legal(s2), ¬Holding(B,s2), A(do(drop(B),s2))]

[A (do(drop(B),do(pickup(B),s3))), ¬Legal(do(pickup(B),s3))]

[¬Legal(s3), A(do(drop(B),do(pickup(B),s3))), ¬Poss(pickup(B),s3),]

[¬Legal(s3), A(do(drop(B),do(pickup(B),s3)))]

[A (do(drop(B), do(pickup(B), S0)))]

Axiom 1

expand Legal

Axiom 3

Axiom 2

expand Legal

Axiom 4

Legal for S0

Negated query + answer predicate

Here is the plan: in the initial situation, pickup
block B, and in the resulting situation, drop B.

KR & R © Brachman & Levesque 2005 259

Using Prolog

Because all the required facts here can be expressed as Horn
clauses, we can use Prolog directly to synthesize a plan:

onfloor(X,do(drop(X),S)).

holding(X,do(pickup(X),S)).

poss(drop(X),S) :- holding(X,S).

poss(pickup(X),S).

ontable(b,s0).

legal(s0).

legal(do(A,S)) :- poss(A,S), legal(S).

With the Prolog goal ?- onfloor(b,S), legal(S).

we get the solution S = do(drop(b),do(pickup(b),s0))

But planning problems are rarely this easy!

Full Resolution theorem-proving can be problematic for a complex
set of axioms dealing with actions and situations explicitly...

KR & R © Brachman & Levesque 2005 260

The STRIPS representation

STRIPS is an alternative representation to the pure situation
calculus for planning.

from work on a robot called Shaky at SRI International in the 60’s.

In STRIPS, we do not represent histories of the world, as in the
situation calculus.

Instead, we deal with a single world state at a time, represented
by a database of ground atomic wffs (e.g., In(robot,room1))

This is like the database of facts used in procedural representations and
the working memory of production systems

Similarly, we do not represent actions as part of the world model
(cannot reason about them directly), as in the situation calculus.

Instead, actions are represented by operators that syntactically
transform world models

An operator takes a DB and transforms it to a new DB

KR & R © Brachman & Levesque 2005 261

STRIPS operators

Operators have pre- and post-conditions

• precondition = formulas that need to be true at start

• “delete list” = formulas to be removed from DB

• “add list” = formulas to be added to DB

Example: PushThru(o,d,r1,r2)

“the robot pushes object o through door d from room r1 to room r2”

• precondition: InRoom(robot,r1), InRoom(o,r1), Connects(d,r1,r2)

• delete list: InRoom(robot,r1), InRoom(o,r1)

• add list: InRoom(robot,r2), InRoom(o,r2)

initial world model, DB0 (list of ground atoms)

STRIPS problem space = set of operators (with preconds and effects)

goal statement (list of atoms)

desired plan: sequence of ground operators

KR & R © Brachman & Levesque 2005 262

STRIPS Example

In addition to PushThru, consider

GoThru(d,r1,r2):

precondition: InRoom(robot,r1), Connects(d,r1,r2)

delete list: InRoom(robot,r1)

add list: InRoom(robot,r2)

DB0:
InRoom(robot,room1) InRoom(box1,room2)
Connects(door1,room1,room2) Box(box1)
Connects(door2,room2,room3) …

Goal: [Box(x) ∧ InRoom(x,room1)]

ROBOT

BOX1

ROOM1 ROOM2

ROOM3

DOOR1

DOOR2

KR & R © Brachman & Levesque 2005 263

Progressive planning

Here is one procedure for planning with a STRIPS like
representation:

Input : a world model and a goal
Output : a plan or fail.

ProgPlan[DB,Goal] =
If Goal is satisfied in DB, then return empty plan
For each operator o such that precond(o) is satisfied in the current DB:

Let DB´ = DB + addlist(o) – dellist(o)
Let plan = ProgPlan[DB´,Goal]
If plan ≠ fail, then return [act(o) ; plan]

End for
Return fail

This depth-first planner searches forward from the given DB0 for
a sequence of operators that eventually satisfies the goal

DB´ is the progressed world state

(ignoring variables)

KR & R © Brachman & Levesque 2005 264

Regressive planning

Here is another procedure for planning with a STRIPS like
representation:

Input : a world model and a goal
Output : a plan or fail.

RegrPlan[DB,Goal] =
If Goal is satisfied in DB, then return empty plan
For each operator o such that dellist(o) ∩ Goal = {} :

Let Goal´ = Goal + precond(o) – addlist(o)
Let plan = RegrPlan[DB,Goal´]
If plan ≠ fail, then return [plan ; act(o)]

End for
Return fail

This depth-first planner searches backward for a sequence of
operators that will reduce the goal to something satisfied in DB0

Goal´ is the regressed goal

(ignoring variables)

KR & R © Brachman & Levesque 2005 265

Computational aspects

Even without variables, STRIPS planning is NP-hard.

Many methods have been proposed to avoid redundant search
e.g. partial-order planners, macro operators

One approach: application dependent control

Consider this range of GOLOG programs:
< any deterministic program > while ¬Goal do πa . a

In between, the two extremes we can give domain-dependent
guidance to a planner:

while ¬Goal do πa . [Acceptable(a)? ; a]

where Acceptable is formalized separately

This is called forward filtering .

fully specific about sequence
of actions required

any sequence such that Goal
holds at end

easy to execute as hard as planning!

pick an action

KR & R © Brachman & Levesque 2005 266

Hierarchical planning

The basic mechanisms of planning so far still preserve all detail
needed to solve a problem

• attention to too much detail can derail a planner to the point of uselessness

• would be better to first search through an abstraction space, where
unimportant details were suppressed

• when solution in abstraction space is found, account for remaining details

ABSTRIPS
precondition wffs in abstraction space will have fewer literals than those in
ground space

e.g., PushThru operator
– high abstraction: applicable whenever an object is pushable and a door exists

– lower: robot and obj in same room, connected by a door to target room

– lower: door must be open

– original rep: robot next to box, near door

predetermined partial order of predicates with “criticality” level

KR & R © Brachman & Levesque 2005 267

Reactive systems

Some suggest that explicit, symbolic production of formal plans is
something to be avoided (especially considering computational
complexity)

even propositional case is intractable; first-order case is undecidable

Just “react”: observe conditions in the world and decide (or look
up) what to do next

can be more robust in face of unexpected changes in the environment

⇒ reactive systems

“Universal plans”: large lookup table (or boolean circuit) that tells
you exactly what to do based on current conditions in the world

Reactive systems have impressive performance on certain low-
level problems (e.g. learning to walk), and can even look
“intelligent”

but what are the limitations? ...

