13.

Explanation and Diagnosis

Abductive reasoning

So far: reasoning has been primarily deductive:

- given KB , is α an implicit belief?
- given KB, for what x is $\alpha[x]$ an implicit belief?

Even default / probabilistic reasoning has a similar form

Now consider a new type of question:
Given KB, and an α that I do not believe, what would be sufficient to make me believe that α was true?
or what else would I have to believe for α to become an implicit belief?
or what would explain α being true?
Deduction: given $(p \supset q)$, from p, deduce q
Abduction: given $(p \supset q)$, from q, abduce p

$$
p \text { is sufficient for } q \quad \text { or one way for } q \text { to be true is for } p \text { to be true }
$$

Also induction: given $p\left(t_{1}\right), q\left(t_{1}\right), \ldots, p\left(t_{n}\right), q\left(t_{n}\right)$, induce $\forall x(p(x) \supset q(x))$
Can be used for causal reasoning: (cause \supset effect)

Diagnosis

One simple version of diagnosis uses abductive reasoning
KB has facts about symptoms and diseases
including: (Disease \wedge Hedges \supset Symptoms)
Goal: find disease(s) that best explain observed symptoms
Observe: we typically do not have knowledge of the form
(Symptom ^... \supset Disease)
so reasoning is not deductive

Example:

(tennis-elbow \supset sore-elbow)
(tennis-elbow \supset tennis-player)
(arthritis \wedge untreated \supset sore-joints)
(sore-joints \supset sore-elbow \wedge sore-hip)

Explain: sore-elbow
Want: tennis-elbow, (arthritis \wedge untreated), (sore-joints \supset sore-elbow \wedge sore-hip) ...

Non-uniqueness: multiple equally good explanations

+ logical equivalences: (untreated $\wedge \neg \neg$ arthritis)
KR \& R © Brachman \& Levesque 2005 223

Adequacy criteria

Given KB , and β to be explained, we want an α such that

1. α is sufficient to account for β
$\mathrm{KB} \cup\{\alpha\} \mid=\beta \quad$ or $\quad \mathrm{KB} \mid=(\alpha \supset \beta)$
2. α is not ruled out by KB
$\mathrm{KB} \cup\{\alpha\}$ is consistent or $\mathrm{KB} \mid \neq \neg \alpha$
3. α is as simple as possible parsimonious : as few terms as possible explanations should not unnecessarily strong or unnecessarily weak
4. α is in the appropriate vocabulary
atomic sentences of α should be drawn from \mathbf{H}, possible hypotheses in terms of which explanations are to be phrased
e.g. diseases, original causes
otherwise ($p \wedge \neg p$) would count as an explanation
e.g. $\mathrm{KB}=\{(p \supset q), \neg r\}$ and $\beta=q$
$\alpha=(p \wedge s \wedge \neg t)$ is too strong $\alpha=(p \vee r)$ is too weak
e.g. sore-elbow explains sore-elbow trivial explanation sore-joints explains sore-elbow may or may not be suitable

Call such α an explanation of β wrt KB

Some simplifications

From criteria of previous slide, we can simplify explanations in the propositional case, as follows:

- To explain an arbitrary wff β, it is sufficient to choose a new letter p, add $(p \equiv \beta)$ to KB , and then explain p.
$\mathrm{KB} \mid=(E \supset \beta) \quad$ iff $\mathrm{KB} \cup\{(p \equiv \beta)\} \mid=(E \supset p)$
- Any explanation will be (equivalent to) a conjunction of literals (that is, the negation of a clause)

Why? If α is a purported explanation, and $\operatorname{DNF}[\alpha]=\left(d_{1} \vee d_{2} \vee \ldots \vee d_{n}\right)$ then each d_{i} is also an explanation that is no less simple than α

A simplest explanation is then the negation of a clause with a minimal set of literals

So: to explain a literal ρ, it will be sufficient to find the minimal clauses C (in the desired vocabulary) such that

1. KB $\mid=(\neg C \supset \rho)$ or $\mathrm{KB} \mid=(C \cup\{\rho\}) \quad$ sufficient
2. $\mathrm{KB} \not \not \neq C$ consistent

Prime implicates

A clause C is a prime implicate of a KB iff

1. $\mathrm{KB} \mid=C$

Note: For any clause C, if $\mathrm{KB} \mid=C$, then some subset of C is a prime implicate

Example: $\mathrm{KB}=\{(p \wedge q \wedge r \supset g),(\neg p \wedge q \supset g),(\neg q \wedge r \supset g)\}$
Prime implicates:

For explanations:

- want minimal C such that $\mathrm{KB} \mid=(C \cup\{\rho\})$ and $\mathrm{KB} \mid \neq C$
- so: find prime implicates C such that $\rho \in C$;
then $\neg(C-\rho)$ must be an explanation for ρ

Example: explanations for g in example above

- 3 prime implicates contain g, so get 3 explanations: $(\neg p \wedge q), r$, and g

Computing explanations

Given KB, to compute explanations of literal ρ in vocabulary \mathbf{H} :
calculate the set $\{\neg(C-\rho) \mid C$ is a prime implicate and $\rho \in \mathrm{C}\}$
prime implicates containing ρ
But how to compute prime implicates?
Can prove: Resolution is complete for non-tautologous prime implicates $\mathrm{KB} \mid=C$ iff $\mathrm{KB} \rightarrow C \quad$ completeness for [] is a special case!
So: assuming KB is in CNF, generate all resolvents in language \mathbf{H}, and retain those containing ρ that are minimal

Could pre-compute all prime implicates, but there may be exponentially many, even for a Horn KB

Example: atoms: $p_{i}, q_{i}, E_{i}, O_{i}, 0 \leq i<n+E_{n}, O_{n}$
wffs: $\quad E_{i} \wedge p_{i} \supset O_{i+1}, E_{i} \wedge q_{i} \supset E_{i+1}$,
$O_{i} \wedge p_{i} \supset E_{i+1}, O_{i} \wedge q_{i} \supset O_{\mathrm{i}+1}$,
$E_{0}, \neg O_{0}$
explain: E_{n}

Circuit example

Components

$\operatorname{Gate}(x) \equiv \operatorname{Andgate}(x) \vee \operatorname{Orgate}(x) \vee \operatorname{Xorgate}(x)$
Andgate(a1), Andgate(a2), Orgate(o1),
Xorgate(b1), Xorgate(b2)
Fulladder(f) the whole circuit

Connectivity

$\operatorname{in} 1(\mathrm{~b} 1)=\operatorname{in} 1(\mathrm{f}), \operatorname{in} 2(\mathrm{~b} 1)=\operatorname{in} 2(\mathrm{f})$

$\operatorname{in} 1(\mathrm{~b} 2)=\operatorname{out}(\mathrm{b} 1), \operatorname{in} 2(\mathrm{~b} 2)=\operatorname{in} 3(\mathrm{f})$
$\operatorname{in} 1(\mathrm{a} 1)=\operatorname{in} 1(\mathrm{f}), \operatorname{in} 2(\mathrm{a} 1)=\operatorname{in} 2(\mathrm{f})$
$\operatorname{in} 1(\mathrm{a} 2)=$ in3(f), in2(a2) $=\operatorname{out}(\mathrm{b} 1)$
$\operatorname{in} 1(o 1)=$ out $(a 2), \operatorname{in} 2(o 1)=$ out(a1)
out1 $(\mathrm{f})=\operatorname{out}(\mathrm{b} 2)$, out2(f) $=\operatorname{out}(\mathrm{o} 1)$

Circuit behaviour

Truth tables for logical gates
$\operatorname{and}(0,0)=0, \quad \operatorname{and}(0,1)=0, \ldots \quad \operatorname{or}(0,0)=0, \quad \operatorname{or}(0,1)=1, \ldots$
$\operatorname{xor}(0,0)=0, \quad \operatorname{xor}(0,1)=1, \ldots$
Normal behaviour
$\operatorname{Andgate}(x) \wedge \neg \operatorname{Ab}(x) \supset \operatorname{out}(x)=\operatorname{and}(\operatorname{in} 1(x), \operatorname{in} 2(x))$
$\operatorname{Orgate}(x) \wedge \neg \operatorname{Ab}(x) \supset \operatorname{out}(x)=\operatorname{or}(\operatorname{in} 1(x), \operatorname{in} 2(x))$
$\operatorname{Xorgate}(x) \wedge \neg \operatorname{Ab}(x) \supset \operatorname{out}(x)=\operatorname{xor}(\operatorname{in} 1(x), \operatorname{in2}(x))$
Abnormal behaviour: fault models
Examples
$[\operatorname{Orgate}(x) \vee \operatorname{Xorgate}(x)] \wedge \operatorname{Ab}(x) \supset \operatorname{out}(x)=\operatorname{in} 2(x) \quad$ (short circuit)
Other possibilities ...

- some abnormal behaviours may be inexplicable
- some may be compatible with normal behaviour on certain inputs

Abductive diagnosis

Given KB as above + input settings
e.g. $K B \cup\{\operatorname{in} 1(f)=1, \operatorname{in} 2(f)=0, \operatorname{in} 3(f)=1\}$
we want to explain observations at outputs
e.g. $($ out $1(f)=1 \wedge \operatorname{out} 2(f)=0)$
in the language of Ab
We want conjunction of Ab literals α such that
$\mathrm{KB} \cup$ Settings $\cup\{\alpha\} \mid=$ Observations
Compute by "propositionalizing":
For the above, x ranges over 5 components and u, v range over 0 and 1 .
Easiest to do by preparing a table ranging over all Ab literals, and seeing which conjunctions entail the observations.

Table for abductive diagnosis

	Ab(b1)	Ab(b2)	$\mathrm{Ab}(\mathrm{a} 1)$	$\mathrm{Ab}(\mathrm{a} 2)$	$\mathrm{Ab}(\mathrm{ol})$	Entails observation?
1.	Y	Y	Y	Y	Y	N
2.	Y	Y	Y	Y	N	N
3.	Y	Y	Y	N	Y	N
4.	Y	Y	Y	N	N	N
5.	Y	Y	N	Y	Y	Y
6.	Y	Y	N	Y	N	N
7.	Y	Y	N	N	Y	Y
8.	Y	Y	N	N	N	Y
- ${ }^{\text {- }}$						
25.	N	N	Y	Y	Y	N
26.	N	N	Y	Y	N	N
27.	N	N	Y	N	Y	N
28.	N	N	Y	N	N	N
29.	N	N	N	Y	Y	N
30.	N	N	N	Y	N	N
31.	N	N	N	N	Y	N
32.	N	N	N	N	N	N

Example diagnosis

Using the table, we look for minimal sets of literals.
For example, from line (5), we have that
$\mathrm{Ab}(\mathrm{b} 1) \wedge \mathrm{Ab}(\mathrm{b} 2) \wedge \neg \mathrm{Ab}(\mathrm{a} 1) \wedge \mathrm{Ab}(\mathrm{a} 2) \wedge \mathrm{Ab}(\mathrm{o} 1)$
entails the observations. However, lines (5), (7), (13) and (15) together lead us to a smaller set of literals (the first explanation below).

The explanations are

1. $\mathrm{Ab}(\mathrm{b} 1) \wedge \neg \mathrm{Ab}(\mathrm{a} 1) \wedge \mathrm{Ab}(\mathrm{o} 1)$
2. $\mathrm{Ab}(\mathrm{b} 1) \wedge \neg \mathrm{Ab}(\mathrm{a} 1) \wedge \neg \mathrm{Ab}(\mathrm{a} 2)$
3. $\mathrm{Ab}(\mathrm{b} 2) \wedge \neg \mathrm{Ab}(\mathrm{a} 1) \wedge \mathrm{Ab}(\mathrm{o} 1)$

Note: not all components are mentioned since for these settings, get the same observations whether or not they are working
but for this fault model only
Can narrow down diagnosis by looking at a number of different settings
differential diagnosis

Diagnosis revisited

Abductive definition has limitations

- often only care about what is not working
- may not be able to characterize all possible failure modes
- want to prefer diagnoses that claim as few broken components as possible

Consistency-based diagnosis:

Assume KB uses the predicate Ab as before, but perhaps only characterizes the normal behaviour
e.g. Andgate $(x) \wedge \neg \operatorname{Ab}(x) \supset \operatorname{out}(x)=\operatorname{and}(\operatorname{in} 1(x), \operatorname{in} 2(x))$

Want a minimal set of components D, such that
$\{\mathrm{Ab}(\mathrm{c}) \mid \mathrm{c} \in D\} \cup\{\neg \mathrm{Ab}(\mathrm{c}) \mid \mathrm{c} \notin D\}$
can use table as before with last column changed to "consistency"
is consistent with $\mathrm{KB} \cup$ Settings \cup Observations
In previous example, get 3 diagnoses: $\{b 1\},\{b 2, a 2\}$ and $\{b 2, o 1\}$
Note: more complex to handle non-minimal diagnoses

KR \& R © Brachman \& Levesque 2005

Some complications

1. negative evidence

- allow for missing observations
e.g. ensure that $\mathrm{KB} \cup\{\alpha\} \mid \neq$ fever

2. variables and quantification

- same definition, modulo "simplicity", (but how to use Resolution?)
- useful to handle open wffs also
$\mathrm{KB} \cup\{x=3\} \mathrm{I}=P(x) \quad$ handles WH -questions

3. probabilities

- not all simplest explanations are equally likely
- also: replace (Disease $\wedge \ldots \supset$ Symptom) by a probabilistic version

4. defaults

- instead of requiring $\mathrm{KB} \cup\{\alpha\} \mid=\beta$, would prefer that given α, it is reasonable to believe β
e.g. being a bird explains being able to fly

Other applications

1. object recognition
what scene would account for image elements observed?
what objects would account for collection of properties discovered?
2. plan recognition
what high-level goals of an agent would account for the actions observed?
3. hypothetical reasoning
instead of asking: what would I have to be told to believe β ? ask instead: what would I learn if I was told that α ?

Dual of explanation: want β such that

Solution: you learn β on being told α
$\mathrm{KB} \cup\{\alpha\} \mid=\beta$
$\mathrm{KB} \mid \neq \beta$
simplicity, parsimony
using correct vocabulary
$\neg \beta$ is an explanation for $\neg \alpha$
can use the abduction procedure

