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12.

Vagueness, Uncertainty 
and Degrees of Belief
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Noncategorical statements

Ordinary commonsense knowledge quickly moves away from 
categorical statements like “a P is always (unequivocably) a Q”

There are many ways in which we can come to less than 
categorical information

• things are usually  (almost never, occasionally, seldomly, rarely, almost 
always) a certain way

• judgments about how good an example something is
e.g., barely rich, a poor example of a chair, not very tall

• imprecision of sensors
e.g., the best you can do is to get within +/-10%

• reliability of sources of information
e.g., “most of the time he’s right on the money”

• strength/confidence/trust in generic information or deductive rules

Conclusions will not “follow” in the usual sense
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Weakening a universal

There are at least 3 ways a universal like ∀x P(x) can be made ro 
be less categorical: 

∀x P(x)

strength of quantifier 
(“95% of birds fly”)

statistical interpretation/ 
probabilistic sentences

applicability of predicate/
degree of membership 
(“fairly tall”)

flexible membership 
vague predicates

degree of belief in whole 
sentence (“80% 
confidence in this fact”)

uncertain knowledge/ 
subjective probability
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Objective probability

Statistical (frequency) view of sentences
objective: does not depend on who is assessing the probability

Always applied to collections
can not assign probabilities to (random) events that are not members of 
any obvious repeatable sequence:

– ok for  “the probability that I will pick a red face card from the deck”

– not ok for  “the probability that the Blue Jays will win the World Series this Fall”

– “the probability that Tweety flies is between .9 and .95” is always false 
(either Tweety flies or not)

Can use probabilities to correspond to English words like “rarely,” 
“likely,” “usually”

generalized quantifiers: “most,” “many,” “few”
For most x, Q(x)    vs.   For all x, Q(x)
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The basic postulates

Numbers between 0 and 1 representing frequency of an event in 
a (large enough) random sample

extremes:  0 = never happens;   1 = always happens

Start with set U of all possible occurrences.  An event a is any subset of U.  
A probability measure is any function Pr  from events to [0,1] satisfying:

• Pr(U) = 1.

• If a1, ..., an are disjoint events, then  Pr(∪ai) = Σ Pr(ai)

Conditioning: the probability of one event may depend on its 
interaction with others

Pr(a|b)  =  probability of a, given b  =  Pr(a∩b) / Pr(b)

Conditional independence: 
event a is judged independent of event b conditional on background 
knowledge s if knowing that b happened does not affect the probability of a

Pr(a|s) = Pr(a|b,s)           (note: CI is symmetric)

Note: without independence, Pr(a|s) and Pr(a|b,s) can be very different. 
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Some useful consequences

Conjunction:  

Pr(ab)  =  Pr(a|b) ⋅ Pr(b)

conditionally independent:  Pr(ab)  =  Pr(a) ⋅ Pr(b)

Negation:  

Pr(¬s) = 1 – Pr(s)

Pr(¬s|d) = 1 – Pr(s|d)

If b1, b2, ..., bn are pairwise disjoint and exhaust all possibilities, then 

Pr(a)  =  ∑ Pr(abi)  =  ∑ Pr(a | bi) ⋅ Pr(bi)  

Pr(a | c)  =  ∑ Pr(abi | c) 

Bayes’ rule: 

Pr(a|b)  =  Pr(a) ⋅ Pr(b|a) / Pr(b)

if a is a disease and b is a symptom, it is usually easier to estimate  
numbers on RHS of equation  (see below, for subjective probabilities)
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Subjective probability

It is reasonable to have non-categorical beliefs even in categorical 
sentences

• confidence/certainty in a sentence

• “your” probability = subjective

Similar to defaults
• move from statistical/group observations to belief about individuals

• but not categorical: how certain am I that Tweety flies?

“Prior probability”   Pr(x|s)  (s = prior state of information or 
background knowledge)

“Posterior probability”   Pr(x|E,s)  (E = new evidence)

Need to combine evidence  from various sources
how to derive new beliefs from prior beliefs and new evidence?

want explanations;   probability is just a summary
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From statistics to belief

Would like to go from statistical information (e.g., the probability that a 
bird chosen at random will fly) to a degree of belief (e.g., how certain are 
we that this particular bird, Tweety, flies)

Traditional approach is to find a reference class for which we have 
statistical information and use the statistics for that class to compute an 
appropriate degree of belief for an individual

Imagine trying to assign a degree 
of belief to the proposition 
“Eric (an American male) is tall” 
given facts like these

This is called direct inference

Problem: individuals belong to many classes
• with just A → .2

• A,B,C - prefer more specific → .25

• A,C - no statistics for more specific class → .2?

• B - are Californians a representative sample?

A) 20% of American males are tall

B) 25% of Californian males are tall
C) Eric is from California
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Basic Bayesian approach

Would like a more principled way of calculating subjective 
probabilities

Assume we have n atomic propositions p1,..., pn we care about. 
A logical interpretation I can be thought of as a specification of 
which pi are true and which are false.

Notation:  for n=4, we use 〈¬p1,p2,p3,¬p4〉 to mean the interpretation 
where only p2 and  p3 are true.

A joint probability distribution J, is a function from interpretations 
to [0,1] satisfying Σ J(I) = 1 (where J(I) is the degree of belief in the 
world being as per I).

The degree of belief in any sentence α:  Pr(α)  =  Σ J(I)

Example:  Pr(p2 ∧¬p4)   = J(〈¬p1, p2,   p3,¬p4〉) +
J(〈¬p1, p2,¬p3,¬p4〉) +
J(〈   p1, p2,   p3,¬p4〉) +
J(〈   p1, p2,¬p3,¬p4〉).

=I   α
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Problem with the approach

To calculate the probabilities of arbitrary sentences involving the 
pi, we would need to know the full joint distribution function. 

For n atomic sentences, this requires knowing 2n numbers 
impractical for all but very small problems

Would like to make plausible assumptions to cut down on what 
needs to be known.

In the simplest case, all the atomic sentences are independent.  
This gives us that

J(〈P1,...,Pn〉) =  Pr(P1 ∧ ... ∧ Pn) = ∏ Pr(Pi)  (where Pi is either pi or ¬pi)

and so only n numbers are needed.

Bu this assumption is too strong.  A better assumption:
the probability of each Pi only depends on a small number of Pj, 
and the dependence is acyclic.
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Belief networks

Represent all the atoms in a belief network (or Bayes’ network).

Assume:     J(〈P1,...,Pn〉)  =  ∏ Pr(Pi | c(Pi))

Example:

So:  J(p1,p2,p3,p4)  = Pr(p1) ⋅ Pr(p2 | p1) ⋅ Pr(p3 | p1) ⋅ Pr(p4 | p2,p3)

=  Pr(p1) ⋅ [1 − Pr(p2 | p1)] ⋅ Pr(p3 | p1) ⋅ [ 1 − Pr(p4 | p2,p3)]

To fully specify the joint distribution (and therefore probabilities over any 
subset of the variables), we only need  Pr(P | c(P)) for every node P.

If node P  has parents Q1, ..., Qm, then we need to know the values of
Pr(p | q1,q2,... qm), Pr(p | q1,q2 ... qm), Pr(p | q1,q2,... qm), ..., Pr(p | q1,q2,... qm).

         n ⋅ 2m numbers  <<  2n numbers !

c(P) = parents of node P
where Pr(c(Pi)) > 0

P1

P2

P3

P4

J(〈P1,P2,P3,P4〉)  = 
Pr(P1) ⋅ Pr(P2 | P1) ⋅
    Pr(P3 | P1) ⋅    Pr(P4 | P2,P3).
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Using belief networks

Assign a node to each variable in the domain and draw arrows 
toward each node P from a select set c(P) of nodes perceived to be 
“direct causes” of P.

From the DAG, we get that

J(〈FO, LO, BP, DO, HB〉)   = 

Pr(FO)  ×   Pr(LO | FO)  ×  Pr(BP)  ×  Pr(DO | FO, BP)  ×  Pr(HB | DO)

Using this formula and the 10 numbers above, we can calculate the 
full joint distribution

family-out bowel-problem

light-on dog-out

hear-bark

Pr(fo)=.15 Pr(bp)=.01

Pr(lo|fo)=.6
Pr(lo|¬fo)=.05

Pr(hb|do)=.7
Pr(hb|¬do)=.01

Pr(do|fo,bp)=.99
Pr(do|fo,¬bp)=.9
Pr(do|¬fo,bp)=.97
Pr(do|¬fo,¬bp)=.3

arcs can often be 
interpreted as 
causal connections
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Example calculation

Suppose we want to calculate Pr(fo | lo, ¬hb)

Pr(fo | lo, ¬hb)  =  Pr(fo, lo, ¬hb)  /  Pr(lo, ¬hb)     where

  Pr(fo, lo, ¬hb)  =  ∑ J(〈fo, lo, BP, DO, ¬hb〉)  first 4 values below

  Pr(lo, ¬hb)  =  ∑ J(〈FO, lo, BP, DO, ¬hb〉)      all 8 values below

J(〈fo,lo,bp,do,¬hb〉) = .15 ⋅ .6 ⋅ .01 ⋅ .99 ⋅ .3 = .0002673 +
J(〈fo,lo,bp,¬do,¬hb〉) = .15 ⋅ .6 ⋅ .01 ⋅ .01 ⋅ .99 = .00000891 +
J(〈fo,lo,¬bp,do,¬hb〉) = .15 ⋅ .6 ⋅ .99 ⋅ .9 ⋅ .3 = .024057 +
J(〈fo,lo,¬bp,¬do,¬hb〉) = .15 ⋅ .6 ⋅ .99 ⋅ .1 ⋅ .99 = .0088209 +
J(〈¬fo,lo,bp,do,¬hb〉) = .85 ⋅ .05 ⋅ .01 ⋅ .97 ⋅ .3 = .000123675
J(〈¬fo,lo,bp,¬do,¬hb〉) = .85 ⋅ .05 ⋅ .01 ⋅ .03 ⋅ .99 = .0000126225 +
J(〈¬fo,lo,¬bp,do,¬hb〉) = .85 ⋅ .05 ⋅ .99 ⋅ .3 ⋅ .3 = .00378675
J(〈¬fo,lo,¬bp,¬do,¬hb〉) = .85 ⋅ .05 ⋅ .99 ⋅ .7 ⋅ .99 = .029157975

Pr(fo | lo, ¬hb)  =  .03316 / .06624  = .5
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Bypassing the full calculation 

Often it is possible to calculate some probability values without 
first calculating the full joint distribution

Example:  what is  Pr(fo | lo)?

by Bayes rule:   Pr(fo | lo) = Pr(lo | fo) ⋅Pr(fo) / Pr(lo)

but:  Pr(lo)  =  Pr(lo | fo) ⋅ Pr(fo)  +  Pr(lo | fo) ⋅ Pr(fo)

But in general, the problem is NP-hard

• the problem is even hard to approximate in general

• much of the attention on belief networks involves special-purpose 
procedures that work well for restricted topologies

4 4 ?

4 4 4 4
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Influence diagrams

Graphical knowledge representation for decision problems

• nodes represent propositions or quantities of interest, including decision 
variables, states of the world, and preference values

• arcs represent influence or relevance (probabilistic or deterministic 
relationships between the variables)

coronary
artery disease

value

life
quality

future
chest pain

life
years

heart
attack

test
results

chest
pain

angiogram
test

heart
surgery

cost

chance nodes (circles)
value nodes (diamonds)
decision nodes (rectangles)
deterministic nodes (double circles)

Node types
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Dempster-Shafer theory

Another attempt at evidence-pooling
for cases where there is uncertainty about probability

Uses two-part measure: belief and plausibility
these are lower and upper bounds on probabilities of a proposition

Set membership questions like Age(x)∈Q cease to be applicable; more 
natural to ask about the possibility of Q given the table above of Age(x)

if Q=[20,25],  it is possible  that Age(a)∈Q,   not possible that Age(c)∈Q, 
certain that Age(d)∈Q

What is the probability that the age of someone is in the range [20,25]? 

    belief=2/5; plausibility=3/5.  So answer is [.4,.6].

DS combination rule → multiple sources

Name    Age
a  [ 22,26]
b  [ 20,22]
c  [ 30,35]
d  [ 20,22]
e  [ 28,30]

{20,21,22} is the set of 
possibilities of Age(d), 
or the possibility 
distribution of Age(d)

Relational
DB example
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Vague predicates

Not every predicate fits every object exactly (nor fails completely)

• Categories with degrees of membership
e.g., fast, old, distant

• Problem: reference sets
– big fly vs. big elephant

We call predicates that are thought of a holding to a degree 
vague predicates (or fuzzy predicates).

For each vague predicate, there is a precise base function in 
terms of which it is understood.

• tall: height
• rich: net worth

• bald: percent hair cover

30 60

middle-aged

age in years (the base function)

1

.5

0

young old

A degree curve maps 
the base function to [0,1].
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Conjunction and disjunction

As with probabilities, we need boolean combinations of properties

Negation is as with probability:
degree of membership in ¬P  =  1 –  degree of membership in P

But handle conjunction with MIN and disjunction with MAX!
Example:

Suppose an individual has very high (.95) degree of membership in 
predicates Tall, Coordinated, Strong, ... for 20 predicates.

Then want to say very high (.95) degree of membership in 
(Tall ∧ Coordinated ∧ Strong ∧ ...)

as opposed to

Suppose there is a very high (.95) probability of being Tall, of being 
Coordinated, of being Strong, ... for 20 predicates.

The probability of being all of them at the same time 
(Tall ∧ Coordinated ∧ Strong ∧ ...) can be low.

Other operators: “very”  =  square;    “somewhat” = square root
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Rules with vague predicates

Imagine degrees of fraud = {high, somewhat high, medium, 
somewhat low, low}, based on a numeric universe of discourse (to 
some maximum amount)

Construct a set of rules that indicate degrees of fraud based on 
authorizations and difference in amount of recorded accountability 
and actual stock:

1) If  number of authorizations is often 
then fraud is somewhat high

2) If amount is larger than usual 
then high fraud

Want to estimate the amount of fraud given inputs

10 authorizations,
amount of $60K

KR & R              ©  Brachman & Levesque  2005   220

Applying rules

Use degree curves for “somewhat high”, “larger than usual” etc.

Can combine with rules in a way that allows conclusion of rule to 
apply to the degree that the condition of the rule applied.

1 1

7 10 70k40k

1 1

70k40k

often

60k

high
fraud

somewhat
high
fraud

conclusion:
g =center 
of gravity

g

larger
than
usual

1

70k40k

1

70k40k

Given: 10 authorizations
amount of 60k


