
KR & R © Brachman & Levesque 2005 177

11.

Defaults

KR & R © Brachman & Levesque 2005 178

Strictness of FOL

To reason from P(a) to Q(a), need either
• facts about a itself

• universals, e.g. ∀x(P(x) ⊃ Q(x))

– something that applies to all instances

– all or nothing!

But most of what we learn about the world is in terms of generics
e.g., encyclopedia entries for ferris wheels, violins, turtles, wildflowers

Properties are not strict for all instances, because
• genetic / manufacturing varieties • borderline cases

– early ferris wheels – toy violins

• cases in exceptional circumstances • imagined cases
– dried wildflowers – flying turtles

 etc.

KR & R © Brachman & Levesque 2005 179

Generics vs. universals

Similarly, for general properties of individuals
• Alexander the great: ruthlessness

• Ecuador: exports

• pneumonia: treatment

Goal: be able to say a P is a Q in general, but not necessarily
It is reasonable to conclude Q(a) given P(a),
unless there is a good reason not to

Here: qualitative version (no numbers)

4 Violins have four strings.

vs.
5 All violins have four strings.

vs.
? All violins that are not E1 or E2 or ... have four strings.

(exceptions usually cannot be enumerated)

KR & R © Brachman & Levesque 2005 180

Varieties of defaults (I)

General statements

• prototypical: The prototypical P is a Q.

Owls hunt at night.

• normal: Under typical circumstances, P's are Q's.

People work close to where they live.

• statistical: Most P's are Q's.

The people in the waiting room are growing impatient.

Lack of information to the contrary

• group confidence: All known P's are Q's.

Natural languages are easy for children to learn.

• familiarity: If a P was not a Q, you would know it.

– an older brother

– very unusual individual, situation or event

KR & R © Brachman & Levesque 2005 181

Varieties of defaults (II)

Conventional

• conversational: Unless I tell you otherwise, a P is a Q

“There is a gas station two blocks east.”
 the default: the gas station is open.

• representational: Unless otherwise indicated, a P is a Q

the speed limit in a city

Persistence

• inertia: A P is a Q if it used to be a Q.

– colours of objects

– locations of parked cars (for a while!)

Here: we will use “Birds fly” as a typical default.

KR & R © Brachman & Levesque 2005 182

Closed-world assumption

Reiter's observation:

There are usually many more -ve facts than +ve facts!

Example: airline flight guide provides

DirectConnect(cleveland,toronto) DirectConnect(toronto,northBay)
DirectConnect(toronto,winnipeg) ...

but not: ¬DirectConnect(cleveland,northBay)

Conversational default, called CWA:

only +ve facts will be given, relative to some vocabulary

But note: KB ≠ -ve facts (would have to answer: “I don't know”)

Proposal: a new version of entailment: KB =c α iff KB ∪ Negs = α
where Negs = {¬p | p atomic and KB≠ p}

Note: relation to negation as failure

Gives: KB =c +ve facts and -ve facts

a common pattern:
KB´ = KB ∪ ∆

KR & R © Brachman & Levesque 2005 183

Properties of CWA

For every α (without quantifiers), KB =c α or KB =c ¬α
Why? Inductive argument:

– immediately true for atomic sentences

– push ¬ in, e.g. KB = ¬¬α iff KB = α
– KB = (α ∧ β) iff KB = α and KB = β
– Say KB ≠c (α ∨ β). Then KB ≠c α and KB ≠c β.

So by induction, KB =c ¬α and KB =c ¬β. Thus, KB =c ¬(α ∨ β).

CWA is an assumption about complete knowledge
never any unknowns, relative to vocabulary

In general, a KB has incomplete knowledge,

e.g. Let KB be (p ∨ q). Then KB = (p ∨ q),
but KB≠ p, KB≠ ¬p, KB≠ q, KB≠ ¬q

With CWA, have: If KB =c (α ∨ β), then KB =c α or KB =c β.
similar argument to above

KR & R © Brachman & Levesque 2005 184

Query evaluation

With CWA can reduce queries (without quantifiers) to the atomic case:

KB =c (α ∧ β) iff KB =c α and KB =c β

KB =c (α ∨ β) iff KB =c α or KB =c β

KB =c ¬(α ∧ β) iff KB =c ¬α or KB =c ¬β

KB =c ¬(α ∨ β) iff KB =c ¬α and KB =c ¬β

KB =c ¬¬α iff KB =c α

reduces to: KB =c ρ, where ρ is a literal

If KB ∪ Negs is consistent, get KB =c ¬α iff KB ≠c α
reduces to: KB =c p, where p is atomic

If atoms stored as a table, deciding if KB =c α is like DB-retrieval:

• reduce query to set of atomic queries

• solve atomic queries by table lookup

Different from ordinary logic reasoning (e.g. no reasoning by cases)

KR & R © Brachman & Levesque 2005 185

Consistency of CWA

If KB is a set of atoms, then KB ∪ Negs is always consistent

Also works if KB has conjunctions and if KB has only negative
disjunctions

If KB contains (¬p ∨ ¬q). Add both ¬p, ¬q.

Problem when KB = (α ∨ β), but KB≠ α and KB≠ β
e.g. KB = (p ∨ q) Negs = {¬p, ¬q}

 KB ∪ Negs is inconsistent and so for every α, KB =c α !

Solution: only apply CWA to atoms that are “uncontroversial”

One approach: GCWA

Negs = {¬p | If KB = (p ∨ q1 ∨ ... ∨ qn) then KB = (q1 ∨ ... ∨ qn) }

When KB is consistent, get:

– KB ∪ Negs consistent

– everything derivable is also derivable by CWA

KR & R © Brachman & Levesque 2005 186

Quantifiers and equality

So far, results do not extend to wffs with quantifiers

can have KB ≠c ∀x.α and KB ≠c ¬∀x.α

e.g. just because for every t, we have KB =c ¬DirectConnect(myHome, t)
does not mean that KB =c ∀x[¬DirectConnect(myHome, x)]

But may want to treat KB as providing complete information about what
individuals exist

Define: KB =cd α iff KB ∪ Negs ∪ Dc = α

where Dc is domain closure: ∀x[x=c1 ∨ ... ∨ x=cn],

Get: KB =cd ∃x.α iff KB =cd α[x/c], for some c appearing in the KB
KB =cd ∀x.α iff KB =cd α[x/c], for all c appearing in the KB

Then add: Un is unique names: (ci ≠ cj), for i ≠ j

Get: KB =cdu (c = d) iff c and d are the same constant

 full recursive query evaluation

where the ci are all the constants
appearing in KB (assumed finite)

KR & R © Brachman & Levesque 2005 187

Non-monotonicity

Ordinary entailment is monotonic

If KB = α, then KB*= α, for any KB ⊆ KB*

But CWA entailment is not monotonic

Can have KB =c α, KB ⊆ KB', but KB' ≠c α

e.g. { p} =c ¬q, but { p, q} ≠c ¬q

Suggests study of non-monotonic reasoning
• start with explicit beliefs

• generate implicit beliefs non-monotonically, taking defaults into account

• implicit beliefs may not be uniquely determined (vs. monotonic case)

Will consider three approaches:

• minimal entailment: interpretations that minimize abnormality

• default logic: KB as facts + default rules of inference

• autoepistemic logic: facts that refer to what is/is not believed

KR & R © Brachman & Levesque 2005 188

Minimizing abnormality

CWA makes the extension of all predicates as small as possible
by adding negated literals

Generalize: do this only for selected predicates
Ab predicates used to talk about typical cases

Example KB:

Would like to conclude by default Flies(tweety), but KB |≠ Flies(tweety)

because there is an interpretation ℑ where I[tweety] ∈ I [Ab]

Solution: consider only interpretations where
I[Ab] is as small as possible, relative to KB

for example: KB requires that I[chilly] ∈ I[Ab]

Generalizes to many Abi predicates

Bird(chilly), ¬Flies(chilly),
Bird(tweety), (chilly ≠ tweety),
∀x[Bird(x) ∧ ¬Ab(x) ⊃ Flies(x)] All birds that

are normal fly

this is sometimes
called “circumscription”
since we circumscribe
the Ab predicate

KR & R © Brachman & Levesque 2005 189

Minimal entailment

Given two interps over the same domain, ℑ1 and ℑ2

ℑ1 ≤ ℑ2 iff I1[Ab] ⊆ I2[Ab] for every Ab predicate

ℑ1 < ℑ2 iff ℑ1 ≤ ℑ2 but not ℑ2 ≤ ℑ1

Define a new version of entailment, |=≤ by

KB |=≤ α iff for every ℑ, if ℑ |= KB and no ℑ*< ℑ s.t. ℑ* |= KB
 then ℑ |= α.

So α must be true in all interps satisfying KB that are minimal in abnormalities

Get: KB |=≤ Flies(tweety)
because if interp satisfies KB and is minimal, only I[chilly] will be in I[Ab]

Minimization need not produce a unique interpretation:

Bird(a), Bird(b), [¬Flies(a) ∨ ¬Flies(b)] yields two minimal interpretations

KB |≠≤ Flies(a), KB |≠≤ Flies(b), KB |=≤ Flies(a) ∨ Flies(b)

Different from the CWA: no inconsistency!

But stronger than GCWA: conclude a or b flies

read: ℑ1 is more normal than ℑ2

KR & R © Brachman & Levesque 2005 190

Fixed and variable predicates

Imagine KB as before + ∀x[Penguin(x) ⊃ Bird(x) ∧ ¬Flies(x)]

Get: KB |= ∀x[Penguin(x) ⊃ Ab(x)]

So minimizing Ab also minimizes penguins: KB |=≤ ∀x¬Penguin(x)

McCarthy's definition: Let P and Q be sets of predicates

ℑ1 ≤ ℑ2 iff same domain and

1. I1[P] ⊆ I2[P], for every P ∈ P Ab predicates

2. I1[Q] = I2[Q], for every Q ∉ Q fixed predicates

so only predicates in Q are allowed to vary

Get definition of |=≤ that is parameterized by what is minimized and
what is allowed to vary

Previous example: minimize Ab, but allow only Flies to vary.

Problems: • need to decide what to allow to vary

• cannot conclude ¬Penguin(tweety) by default!
only get default (¬Penguin(tweety) ⊃ Flies(tweety))

KR & R © Brachman & Levesque 2005 191

Default logic

Beliefs as deductive theory
explicit beliefs = axioms

implicit beliefs = theorems = least set closed under inference rules
e.g. If we can prove α and (α ⊃ β), then infer β

Would like to generalize to default rules:

If can prove Bird(x), but cannot prove ¬Flies(x), then infer Flies(x).

Problem: how to characterize theorems

cannot write a derivation, since do not know when to apply default rules

no guarantee of unique set of theorems

If cannot infer p, infer q + If cannot infer q, infer p ??

Solution: default logic

no notion of theorem

instead, have extensions: sets of sentences that are “reasonable” beliefs,
 given explicit facts and default rules

KR & R © Brachman & Levesque 2005 192

Extensions

Default logic KB uses two components: KB = ‹F,D›

• F is a set of sentences (facts)

• D is a set of default rules: triples ‹ α : β //// γ › read as

If you can infer α, and β is consistent, then infer γ
 α: the prerequisite, β: the justification, γ: the conclusion

e.g. ‹Bird(tweety) : Flies(tweety) / Flies(tweety)›

treat ‹Bird(x) : Flies(x) / Flies(x)› as set of rules

Default rules where β = γ are called normal and write as ‹α ⇒ β›
will see later a reason for wanting non-normal ones

A set of sentences E is an extension of ‹F,D› iff for every sentence π,
E satisfies the following:

π ∈ E iff F ∪ ∆ |= π, where ∆ = {γ | ‹ α : β //// γ › ∈ D, α ∈ E, ¬β ∉ E}

So, an extension E is the set of entailments of F ∪ {γ}, where the γ are
assumptions from D.

to check if E is an extension, guess at ∆ and show that it satisfies the above constraint

KR & R © Brachman & Levesque 2005 193

Example

Suppose KB has
F = Bird(chilly), ¬Flies(chilly), Bird(tweety)
D = ‹Bird(x) ⇒ Flies(x)›

then there is a unique extension, where ∆ = Flies(tweety)
• This is an extension since tweety is the only t for this ∆ such that Bird(t) ∈ E and ¬Flies(t) ∉ E.

• No other extension, since this applies no matter what Flies(t) assumptions are in ∆.

But in general can have multiple extensions:
F = {Republican(dick), Quaker(dick)} D = { ‹Republican(x) ⇒ ¬Pacifist(x)›,

 ‹Quaker(x) ⇒ Pacifist(x)› }

Two extensions: E1 has ∆ = ¬Pacifist(dick); E2 has ∆ = Pacifist(dick)

Which to believe?
credulous: choose an extension arbitrarily
skeptical: believe what is common to all extensions

Can sometimes use non-normal defaults to avoid conflicts in defaults
‹ Quaker(x) : Pacifist(x) ∧¬Republican(x) / Pacifist(x) ›

but then need to consider all possible interactions in defaults!

KR & R © Brachman & Levesque 2005 194

Unsupported conclusions

Extension tries to eliminate facts that do not result from either F or D.

e.g., we do not want Yellow(tweety) and its entailments in the extension

But the definition has a problem:

Suppose F = {} and D = ‹ p : True / p ›.

Then E = entailments of {p} is an extension
since p ∈ E and ¬True ∉ E, for above default

However, no good reason to believe p!
Only support for p is default rule, which requires p itself as a prerequisite
So default should have no effect. Want one extension: E = entailments of {}

Reiter's definition:

For any set S, let Γ(S) be the least set containing F, closed under
entailment, and satisfying

if ‹α : β //// γ› ∈ D, α ∈ Γ(S), and ¬β ∉ S, then γ ∈ Γ(S).

A set E is an extension of ‹F, D› iff E = Γ(E).
called a fixed point of the Γ operator

note: not Γ(S)

KR & R © Brachman & Levesque 2005 195

Autoepistemic logic

One disadvantage of default logic is that rules cannot be
combined or reasoned about

‹α : β //// γ› ß ‹α : β //// (γ ∨ δ)›

Solution: express defaults as sentences in an extended language
that talks about belief explicitly

for any sentence α, we have another sentence Bα

Bα says "I believe α": autoepistemic logic

e.g. ∀x[Bird(x) ∧ ¬B¬Flies(x) ⊃ Flies(x)]

All birds fly except those that I believe to not fly =

Any bird not believed to be flightless flies.

No longer expressing defaults using formulas of FOL.

KR & R © Brachman & Levesque 2005 196

Semantics of belief

These are not sentences of FOL, so what semantics and
entailment?

• modal logic of belief provide semantics

• for here: treat Bα as if it were an new atomic wff

• still get entailment: ∀x[Bird(x) ∧ ¬B¬Flies(x) ⊃ Flies(x) ∨ Run(x)]

Main property for set of implicit beliefs, E:

1. If E |= α then α ∈ E. (closed under entailment)

2. If α ∈ E then Bα ∈ E. (positive introspection)

3. If α ∉ E then ¬Bα ∈ E. (negative introspection)

Any such set of sentences is called stable
Note: if E contains p but does not contain q, it will contain

Bp, BBp, BBBp, ¬Bq, B¬Bq, B(Bp ∧¬Bq), etc.

KR & R © Brachman & Levesque 2005 197

Stable expansions

Given KB, possibly containing B operators, our implicit beliefs should be
a stable set that is minimal.

Moore's definition: A set of sentences E is called a stable expansion of
KB iff it satisfies the following:

π ∈ E iff KB ∪ ∆ |= π, where ∆ = {Bα | α ∈ E} ∪ {¬Bα | α ∉ E}
fixed point of another operator

analogous to the extensions of default logic

Example: for KB = { Bird(chilly), ¬Flies(chilly), Bird(tweety),
 ∀x[Bird(x) ∧ ¬B¬Flies(x) ⊃ Flies(x)] }

get a unique stable expansion containing Flies(tweety)

As in default logic, stable expansions are not uniquely determined

KB = {(¬Bp ⊃ q), (¬Bq ⊃ p)} KB = {(¬Bp ⊃ p)} (self-defeating default)

2 stable expansions no stable expansions!
(one with p, one with q) so what to believe?

KR & R © Brachman & Levesque 2005 198

Enumerating stable expansions

Define: A wff is objective if it has no B operators

When a KB is propositional, and B operators only dominate
objective wffs, we can enumerate all stable expansions using the
following:

1. Suppose Bα1, Bα2, ... Bαn are all the B wffs in KB.

2. Replace some of these by True and the rest by ¬True in KB and simplify.
Call the result KB° (it’s objective).

at most 2n possible replacements

3. Check that for each αi,

– if Bαi was replaced by True, then KB° |= αi

– if Bαi was replaced by ¬True, then KB° |≠ αi

4. If yes, then KB° determines a stable expansion.
entailments of KB° are the objective part

KR & R © Brachman & Levesque 2005 199

Example enumeration

For KB = { Bird(chilly), ¬Flies(chilly), Bird(tweety),
 [Bird(tweety) ∧ ¬B¬Flies(tweety) ⊃ Flies(tweety)],
 [Bird(chilly) ∧ ¬B¬Flies(chilly) ⊃ Flies(chilly)] }

Two B wffs: B¬Flies(tweety) and B¬Flies(chilly),
so four replacements to try.

Only one satisfies the required constraint:
B¬Flies(tweety) → ¬True,
B¬Flies(chilly) → True

Resulting KB° has
(Bird(tweety) ⊃ Flies(tweety))

and so entails
 Flies(tweety)

as desired.

KR & R © Brachman & Levesque 2005 200

More ungroundedness

Definition of stable expansion may not be strong enough

KB = {(Bp ⊃ p)} has 2 stable expansions:

– one without p and with ¬Bp
corresponds to KB° = {}

– one with p and Bp.
corresponds to KB° = {p}

But why should p be believed?

only justification for having p is having Bp!
similar to problem with default logic extension

Konolige's definition:

A grounded stable expansion is a stable expansion that is minimal wrt to
the set of sentences without B operators.

rules out second stable expansion

Other examples suggest that an even stronger definition is required!
can get an equivalence with Reiter's definition of extension in default logic

