11.

Defaults

Strictness of FOL

To reason from $P(a)$ to $Q(a)$, need either

- facts about a itself
- universals, e.g. $\forall x(P(x) \supset Q(x))$
- something that applies to all instances
- all or nothing!

But most of what we learn about the world is in terms of generics
e.g., encyclopedia entries for ferris wheels, violins, turtles, wildflowers

Properties are not strict for all instances, because

- genetic / manufacturing varieties
- early ferris wheels
- cases in exceptional circumstances
- dried wildflowers
etc.

Generics vs. universals

Violins have four strings.
vs.
\times All violins have four strings.
vs.
? All violins that are not E_{1} or E_{2} or ... have four strings.
(exceptions usually cannot be enumerated)
Similarly, for general properties of individuals

- Alexander the great: ruthlessness
- Ecuador: exports
- pneumonia: treatment

Goal: be able to say a P is a Q in general, but not necessarily
It is reasonable to conclude $Q(a)$ given $P(a)$, unless there is a good reason not to

Here: qualitative version (no numbers)

[^0]
Varieties of defaults (I)

General statements

- prototypical: The prototypical P is a Q.

Owls hunt at night.

- normal: Under typical circumstances, P's are Q 's.

People work close to where they live.

- statistical: Most P 's are Q 's.

The people in the waiting room are growing impatient.
Lack of information to the contrary

- group confidence: All known P 's are Q 's.

Natural languages are easy for children to learn.

- familiarity: If a P was not a Q, you would know it.
- an older brother
- very unusual individual, situation or event

Varieties of defaults (II)

Conventional

- conversational: Unless I tell you otherwise, a P is a Q
"There is a gas station two blocks east." the default: the gas station is open.
- representational: Unless otherwise indicated, a P is a Q the speed limit in a city

Persistence

- inertia: A P is a Q if it used to be a Q.
- colours of objects
- locations of parked cars (for a while!)

Here: we will use "Birds fly" as a typical default.

Closed-world assumption

Reiter's observation:
There are usually many more -ve facts than +ve facts!
Example: airline flight guide provides
DirectConnect(cleveland,toronto) DirectConnect(toronto,northBay)
DirectConnect(toronto,winnipeg)
but not: \neg DirectConnect(cleveland,northBay)
Conversational default, called CWA:
only +ve facts will be given, relative to some vocabulary
But note: $\mathrm{KB} \mid \neq$-ve facts (would have to answer: "I don't know")
Proposal: a new version of entailment: KB $\left.\right|_{c} \alpha$ iff $\mathrm{KB} \cup$ Negs $\mid=\alpha$

$$
\begin{array}{ll}
\text { where Negs }=\{\neg p \mid p \text { atomic and } \mathrm{KB} \mid \neq p\} & \text { a common pattern: } \\
\text { elation to negation as failure } & \mathrm{KB}^{\prime}=\mathrm{KB} \cup \Delta
\end{array}
$$

Note: relation to negation as failure

Gives: $\mathrm{KB} \mid{ }_{c}$ +ve facts and -ve facts

Properties of CWA

For every α (without quantifiers), $\mathrm{KB} \mid=_{c} \alpha$ or $\mathrm{KB} \mid==_{c} \neg \alpha$
Why? Inductive argument:

- immediately true for atomic sentences
- push \neg in, e.g. $\mathrm{KB} \mid=\neg \neg \alpha$ iff $\mathrm{KB} \mid=\alpha$
- KB $\mid=(\alpha \wedge \beta)$ iff $K B \mid=\alpha$ and $K B \mid=\beta$
- Say KB $\mid \not{ }_{c}(\alpha \vee \beta)$. Then KB $\mid \not{ }_{c} \alpha$ and KB $\mid \not \neq c \beta$. So by induction, $\mathrm{KB} \mid=_{c} \neg \alpha$ and $\mathrm{KB} \mid=_{c} \neg \beta$. Thus, KB $\mid={ }_{c} \neg(\alpha \vee \beta)$.
CWA is an assumption about complete knowledge never any unknowns, relative to vocabulary

In general, a KB has incomplete knowledge,
e.g. Let KB be $(p \vee q)$. Then KB $\mid=(p \vee q)$, but $\mathrm{KB}|\neq p, \quad \mathrm{~KB}| \neq \neg p, \mathrm{~KB}|\neq q, \mathrm{~KB}| \neq \neg q$

With CWA, have: If $\mathrm{KB} \mid=_{c}(\alpha \vee \beta)$, then $\mathrm{KB} \mid={ }_{c} \alpha$ or $\mathrm{KB} \mid={ }_{c} \beta$. similar argument to above

Query evaluation

With CWA can reduce queries (without quantifiers) to the atomic case:
$\mathrm{KB} \mid=_{c}(\alpha \wedge \beta)$ iff $\mathrm{KB} \mid==_{c} \alpha$ and $\mathrm{KB} \mid={ }_{c} \beta$
$\mathrm{KB} \mid==_{c}(\alpha \vee \beta)$ iff $\mathrm{KB} \mid={ }_{c} \alpha$ or $\mathrm{KB} \mid==_{c} \beta$
$\mathrm{KB} \mid=_{c} \neg(\alpha \wedge \beta)$ iff $\mathrm{KB} \mid=_{c} \neg \alpha$ or $\mathrm{KB} \mid=_{c} \neg \beta$
$\mathrm{KB} \mid=_{c} \neg(\alpha \vee \beta)$ iff $\mathrm{KB} \mid=_{c} \neg \alpha$ and $\mathrm{KB} \mid={ }_{c} \neg \beta$
$\mathrm{KB} \mid={ }_{c} \neg \neg \alpha$ iff $\mathrm{KB} \mid={ }_{c} \alpha$
reduces to: $\mathrm{KB} \mid{ }_{c} \rho$, where ρ is a literal
If $\mathrm{KB} \cup$ Negs is consistent, get $\mathrm{KB} \mid={ }_{c} \neg \alpha$ iff $\mathrm{KB} \mid \boldsymbol{F}_{c} \alpha$
reduces to: $\left.\mathrm{KB}\right|_{c} p$, where p is atomic
If atoms stored as a table, deciding if $\mathrm{KB} \mid=_{c} \alpha$ is like DB-retrieval:

- reduce query to set of atomic queries
- solve atomic queries by table lookup

Different from ordinary logic reasoning (e.g. no reasoning by cases)

If KB is a set of atoms, then $\mathrm{KB} \cup$ Negs is always consistent
Also works if KB has conjunctions and if KB has only negative disjunctions

If KB contains $(\neg p \vee \neg q)$. Add both $\neg p, \neg q$.
Problem when $\mathrm{KB} \mid=(\alpha \vee \beta)$, but $\mathrm{KB} \mid \neq \alpha$ and $\mathrm{KB} \mid \neq \beta$
e.g. $\mathrm{KB}=(p \vee q) \quad$ Negs $=\{\neg p, \neg q\}$
$\mathrm{KB} \cup$ Negs is inconsistent and so for every $\alpha, \mathrm{KB}{ }_{{ }_{c}} \alpha$!
Solution: only apply CWA to atoms that are "uncontroversial"
One approach: GCWA

$$
\text { Negs }=\left\{\neg p \mid \text { If } \mathrm{KB} \mid=\left(p \vee q_{1} \vee \ldots \vee q_{n}\right) \text { then } \mathrm{KB} \mid=\left(q_{1} \vee \ldots \vee q_{n}\right)\right\}
$$

When KB is consistent, get:

- KB \cup Negs consistent
- everything derivable is also derivable by CWA

Quantifiers and equality

So far, results do not extend to wffs with quantifiers
can have KB $\mid \not \vDash_{c} \forall x . \alpha$ and KB $\mid \neq c \neg \forall x . \alpha$
e.g. just because for every t, we have KB $\mid={ }_{c} \neg$ DirectConnect(myHome, t) does not mean that $\mathrm{KB} \mid={ }_{c} \forall x[\neg$ DirectConnect(myHome, $\left.x)\right]$
But may want to treat KB as providing complete information about what individuals exist
Define: $\mathrm{KB} \mid=\alpha$ iff $\mathrm{KB} \cup$ Negs $\cup D c \mid=\alpha \quad$ where the c_{i} are all the constants appearing in KB (assumed finite) where $D C$ is domain closure: $\forall x\left[x=c_{1} \vee \ldots \vee x=c_{n}\right]$,

Get: KB $\mid=_{c d} \exists x . \alpha$ iff $\mathrm{KB} \mid=_{c d} \alpha[x / c]$, for some c appearing in the KB $\mathrm{KB} \mid=_{c d} \forall x . \alpha$ iff $\mathrm{KB} \mid=_{c d} \alpha[x / c]$, for all c appearing in the KB

Then add: $U n$ is unique names: $\left(c_{i} \neq c_{j}\right)$, for $i \neq j$
Get: $\mathrm{KB} \mid=_{c d u}(c=d)$ iff c and d are the same constant
\longrightarrow full recursive query evaluation

Non-monotonicity

Ordinary entailment is monotonic
If $\mathrm{KB} \mid=\alpha$, then $\mathrm{KB}^{*} \mid=\alpha$, for any $\mathrm{KB} \subseteq \mathrm{KB}^{*}$
But CWA entailment is not monotonic
Can have KB $\left.\right|_{c} \alpha, K B \subseteq K B^{\prime}$, but KB' $\mid{ }_{c} \alpha$
e.g. $\left.\{p\}\right|_{c} \neg q$, but $\{p, q\} \mid \vDash_{c} \neg q$

Suggests study of non-monotonic reasoning

- start with explicit beliefs
- generate implicit beliefs non-monotonically, taking defaults into account
- implicit beliefs may not be uniquely determined (vs. monotonic case)

Will consider three approaches:

- minimal entailment: interpretations that minimize abnormality
- default logic: KB as facts + default rules of inference
- autoepistemic logic: facts that refer to what is/is not believed

Minimizing abnormality

CWA makes the extension of all predicates as small as possible by adding negated literals
Generalize: do this only for selected predicates
Ab predicates used to talk about typical cases
Example KB: Bird(chilly), \neg Flies(chilly),
Bird(tweety), (chilly \neq tweety),
$\forall x[\operatorname{Bird}(x) \wedge \neg \operatorname{Ab}(x) \supset \operatorname{Flies}(x)] \longleftarrow \quad \begin{aligned} & \text { All birds that } \\ & \text { are normal fly }\end{aligned}$
Would like to conclude by default Flies(tweety), but KB $\mid \neq$ Flies(tweety) because there is an interpretation \mathfrak{J} where $I[$ tweety $] \in I$ [Ab]

Solution: consider only interpretations where $I[\mathrm{Ab}]$ is as small as possible, relative to KB for example: KB requires that $I[$ chilly $] \in I[A b]$
this is sometimes called "circumscription" since we circumscribe the Ab predicate

Generalizes to many Ab_{i} predicates

Minimal entailment

Given two interps over the same domain, \mathfrak{I}_{1} and \mathfrak{I}_{2}
$\mathfrak{I}_{1} \leq \mathfrak{J}_{2}$ iff $I_{1}[\mathrm{Ab}] \subseteq I_{2}[\mathrm{Ab}] \quad$ for every Ab predicate
$\mathfrak{I}_{1}<\mathfrak{I}_{2}$ iff $\mathfrak{I}_{1} \leq \mathfrak{I}_{2}$ but not $\mathfrak{I}_{2} \leq \mathfrak{I}_{1} \quad$ read: \mathfrak{I}_{1} is more normal than \mathfrak{I}_{2}
Define a new version of entailment, $\mid={ }_{\leq}$by
$\mathrm{KB} \mid=_{\leq} \alpha$ iff for every \mathfrak{I}, if $\mathfrak{I} \mid=\mathrm{KB}$ and no $\mathfrak{I}^{*}<\mathfrak{I}$ s.t. $\mathfrak{I}^{*} \mid=\mathrm{KB}$ then $\mathfrak{I} \mid=\alpha$.

So α must be true in all interps satisfying KB that are minimal in abnormalities
Get: $\mathrm{KB} \mid={ }_{\leq}$Flies(tweety) because if interp satisfies KB and is minimal, only I[chilly] will be in I[Ab]

Minimization need not produce a unique interpretation:
$\operatorname{Bird}(\mathrm{a}), \operatorname{Bird}(\mathrm{b}),[\neg \operatorname{Flies}(\mathrm{a}) \vee \neg \operatorname{Flies}(\mathrm{b})] \quad$ yields two minimal interpretations
KB $\mid \not{ }_{\leq}$Flies(a), KB $\mid \not{ }_{\leq}$Flies(b), KB $\mid={ }_{\leq}$Flies(a) \vee Flies(b)
Different from the CWA: no inconsistency!
But stronger than GCWA: conclude a or b flies

Fixed and variable predicates

Imagine KB as before $+\forall x[\operatorname{Penguin}(x) \supset \operatorname{Bird}(x) \wedge \neg \operatorname{Flies}(x)]$
Get: KB |= $\forall x[\operatorname{Penguin}(x) \supset \operatorname{Ab}(x)]$
So minimizing Ab also minimizes penguins: $\mathrm{KB} \mid={ }_{\leq} \forall x \neg \operatorname{Penguin}(x)$
McCarthy's definition: Let \mathbf{P} and \mathbf{Q} be sets of predicates
$\mathfrak{I}_{1} \leq \mathfrak{I}_{2}$ iff same domain and

1. $\quad I_{1}[P] \subseteq I_{2}[P]$, for every $P \in \mathbf{P}$

Ab predicates
2. $I_{1}[Q]=I_{2}[Q]$, for every $Q \notin \mathbf{Q}$
fixed predicates
so only predicates in \mathbf{Q} are allowed to vary
Get definition of $1=_{\leq}$that is parameterized by what is minimized and what is allowed to vary

Previous example: minimize Ab, but allow only Flies to vary.
Problems: - need to decide what to allow to vary

- cannot conclude \neg Penguin(tweety) by default!
only get default (\neg Penguin(tweety) \supset Flies(tweety))

Default logic

Beliefs as deductive theory
explicit beliefs = axioms
implicit beliefs $=$ theorems $=$ least set closed under inference rules
e.g. If we can prove α and $(\alpha \supset \beta)$, then infer β

Would like to generalize to default rules:
If can prove $\operatorname{Bird}(x)$, but cannot prove $\neg \operatorname{Flies}(x)$, then infer Flies (x).
Problem: how to characterize theorems
cannot write a derivation, since do not know when to apply default rules
no guarantee of unique set of theorems
If cannot infer p, infer $q+$ If cannot infer q, infer p ??
Solution: default logic
no notion of theorem
instead, have extensions: sets of sentences that are "reasonable" beliefs, given explicit facts and default rules

KR \& R © Brachman \& Levesque 2005
191

Extensions

Default logic KB uses two components: $\mathrm{KB}=\langle F, D\rangle$

- F is a set of sentences (facts)
- D is a set of default rules: triples $\langle\alpha: \beta / \gamma\rangle$ read as

If you can infer α, and β is consistent, then infer γ
α : the prerequisite, β : the justification, γ : the conclusion
e.g. 〈Bird(tweety) : Flies(tweety) / Flies(tweety)〉
treat $\langle\operatorname{Bird}(x): \operatorname{Flies}(x) / \operatorname{Flies}(x)\rangle$ as set of rules
Default rules where $\beta=\gamma$ are called normal and write as $\langle\alpha \Rightarrow \beta\rangle$
will see later a reason for wanting non-normal ones
A set of sentences E is an extension of $\langle F, D>$ iff for every sentence π, E satisfies the following:
$\pi \in E$ iff $F \cup \Delta \mid=\pi$, where $\Delta=\{\gamma \mid\langle\alpha: \beta / \gamma\rangle \in D, \alpha \in E, \neg \beta \notin E\}$
So, an extension E is the set of entailments of $F \cup\{\gamma\}$, where the γ are assumptions from D.

Example

Suppose KB has

$F=\operatorname{Bird}($ chilly $), ~ \neg F l i e s(c h i l l y), \quad B i r d(t w e e t y) ~$
$D=\langle\operatorname{Bird}(x) \Rightarrow \operatorname{Flies}(x)\rangle$
then there is a unique extension, where $\Delta=$ Flies(tweety)

- This is an extension since tweety is the only t for this Δ such that $\operatorname{Bird}(t) \in E$ and $\neg \operatorname{Flies}(t) \notin E$.
- No other extension, since this applies no matter what Flies (t) assumptions are in Δ.

But in general can have multiple extensions:
$F=\{\operatorname{Republican}($ dick $)$, Quaker(dick) $\} \quad D=\{\langle\operatorname{Republican}(x) \Rightarrow \neg \operatorname{Pacifist}(x)\rangle$,〈Quaker $(x) \Rightarrow \operatorname{Pacifist}(x)\rangle\}$
Two extensions: E_{1} has $\Delta=\neg$ Pacifist(dick); $\quad E_{2}$ has $\Delta=$ Pacifist(dick)

Which to believe?

credulous: choose an extension arbitrarily
skeptical: believe what is common to all extensions
Can sometimes use non-normal defaults to avoid conflicts in defaults
< Quaker $(x): \operatorname{Pacifist}(x) \wedge \neg \operatorname{Republican}(x) / \operatorname{Pacifist}(x)$ >
but then need to consider all possible interactions in defaults!
KR \& R © Brachman \& Levesque 2005

Unsupported conclusions

Extension tries to eliminate facts that do not result from either F or D.
e.g., we do not want Yellow(tweety) and its entailments in the extension

But the definition has a problem:
Suppose $F=\{ \}$ and $D=\langle p$: True $/ p\rangle$.
Then $E=$ entailments of $\{p\}$ is an extension
since $p \in E$ and \neg True $\notin E$, for above default
However, no good reason to believe p !
Only support for p is default rule, which requires p itself as a prerequisite So default should have no effect. Want one extension: $E=$ entailments of $\}$

Reiter's definition:

For any set S, let $\Gamma(S)$ be the least set containing F, closed under entailment, and satisfying
if $\langle\alpha: \beta / \gamma\rangle \in D, \alpha \in \Gamma(S)$, and $\neg \beta \notin S$, then $\gamma \in \Gamma(S)$.
A set E is an extension of $\langle F, D\rangle$ iff $E=\Gamma(E)$.
called a fixed point of the Γ operator

Autoepistemic logic

One disadvantage of default logic is that rules cannot be combined or reasoned about

$$
\langle\alpha: \beta / \gamma \rightarrow\langle\alpha: \beta /(\gamma \vee \delta)\rangle
$$

Solution: express defaults as sentences in an extended language that talks about belief explicitly
for any sentence α, we have another sentence $B \alpha$
B α says "I believe α ": autoepistemic logic
e.g. $\forall x[\operatorname{Bird}(x) \wedge \neg \mathbf{B} \neg \operatorname{Flies}(x) \supset \operatorname{Flies}(x)]$

All birds fly except those that I believe to not fly $=$ Any bird not believed to be flightless flies.

No longer expressing defaults using formulas of FOL.

Semantics of belief

These are not sentences of FOL, so what semantics and entailment?

- modal logic of belief provide semantics
- for here: treat $\mathbf{B} \alpha$ as if it were an new atomic wff
- still get entailment: $\forall x[\operatorname{Bird}(x) \wedge \neg \mathbf{B} \neg \operatorname{Flies}(x) \supset \operatorname{Flies}(x) \vee \operatorname{Run}(x)]$

Main property for set of implicit beliefs, E :

1. If $E \mid=\alpha$ then $\alpha \in E . \quad$ (closed under entailment)
2. If $\alpha \in E$ then $\mathbf{B} \alpha \in E$. (positive introspection)
3. If $\alpha \notin E$ then $\neg \mathbf{B} \alpha \in E$. (negative introspection)

Any such set of sentences is called stable
Note: if E contains p but does not contain q, it will contain
$\mathbf{B} p, \mathbf{B B} p, \mathbf{B B B} p, \neg \mathbf{B} q, \mathbf{B} \neg \mathbf{B} q, \mathbf{B}(\mathbf{B} p \wedge \neg \mathbf{B} q)$, etc.

Stable expansions

Given KB, possibly containing B operators, our implicit beliefs should be a stable set that is minimal.

Moore's definition: A set of sentences E is called a stable expansion of KB iff it satisfies the following:

$$
\pi \in E \quad \text { iff } \quad \mathrm{KB} \cup \Delta \mid=\pi, \quad \text { where } \Delta=\{\mathrm{B} \alpha \mid \alpha \in E\} \cup\{\neg \mathrm{B} \alpha \mid \alpha \notin E\}
$$

analogous to the extensions of default logic
Example: for $\mathrm{KB}=\{\operatorname{Bird}($ chilly $), ~ \neg F l i e s(c h i l l y), ~ B i r d(t w e e t y), ~$

$$
\forall x[\operatorname{Bird}(x) \wedge \neg \mathbf{B} \neg \operatorname{Flies}(x) \supset \operatorname{Flies}(x)]\}
$$

get a unique stable expansion containing Flies(tweety)
As in default logic, stable expansions are not uniquely determined
$\mathrm{KB}=\{(\neg \mathbf{B} p \supset q),(\neg \mathbf{B} q \supset p)\} \quad \mathrm{KB}=\{(\neg \mathbf{B} p \supset p)\} \quad$ (self-defeating default)

2 stable expansions (one with p, one with q)
no stable expansions! so what to believe?

Enumerating stable expansions

Define: A wff is objective if it has no B operators
When a KB is propositional, and \mathbf{B} operators only dominate objective wffs, we can enumerate all stable expansions using the following:

1. Suppose $\mathbf{B} \alpha_{1}, \mathbf{B} \alpha_{2}, \ldots \mathbf{B} \alpha_{n}$ are all the \mathbf{B} wffs in $K B$.
2. Replace some of these by True and the rest by \neg True in KB and simplify.

Call the result KB응 (it's objective).
at most 2^{n} possible replacements
3. Check that for each α_{i},

- if $\mathrm{B} \alpha_{i}$ was replaced by True, then $\mathrm{KB}^{\circ} \mid=\alpha_{i}$
- if $\mathrm{B} \alpha_{i}$ was replaced by \neg True, then $\mathrm{KB}^{\circ} \mid \neq \alpha_{i}$

4. If yes, then KB° determines a stable expansion.
entailments of KB° are the objective part

Example enumeration

For $\mathrm{KB}=\{\operatorname{Bird}($ chilly $), ~ \neg$ Flies(chilly), Bird(tweety), $[$ Bird(tweety) $\wedge \neg \mathbf{B} \neg$ Flies(tweety) \supset Flies(tweety) $]$, $[\operatorname{Bird}($ chilly $) \wedge \neg \mathbf{B} \neg$ Flies(chilly) \supset Flies(chilly) $]\}$

Two \mathbf{B} wffs: $\mathbf{B} \neg$ Flies(tweety) and $\mathbf{B} \neg$ Flies(chilly), so four replacements to try.

Only one satisfies the required constraint:
B \neg Flies(tweety) $\rightarrow \neg$ True,
$\mathrm{B} \neg$ Flies(chilly) \rightarrow True
Resulting KB ${ }^{\circ}$ has
$($ Bird(tweety) \supset Flies(tweety))
and so entails
Flies(tweety)
as desired.

More ungroundedness

Definition of stable expansion may not be strong enough
$\mathrm{KB}=\{(\mathbf{B} p \supset p)\}$ has 2 stable expansions:

- one without p and with $\neg \mathbf{B} p$
corresponds to $\mathrm{KB}^{\circ}=\{ \}$
- one with p and $\mathbf{B} p$.
corresponds to $\mathrm{KB}^{\circ}=\{p\}$
But why should p be believed?
only justification for having p is having $\mathbf{B} p$!
similar to problem with default logic extension
Konolige's definition:
A grounded stable expansion is a stable expansion that is minimal wrt to the set of sentences without \mathbf{B} operators.
rules out second stable expansion
Other examples suggest that an even stronger definition is required!
can get an equivalence with Reiter's definition of extension in default logic

[^0]: KR \& R © Brachman \& Levesque 2005 179

