
KR & R              ©  Brachman & Levesque  2005   102

7.

Rules in Production 
Systems

KR & R              ©  Brachman & Levesque  2005   103

Direction of reasoning

A conditional like  P  ⇒  Q  can be understood as transforming 
• assertions of P to assertions of Q

• goals of Q  to goals of P

Can represent the two cases explicitly:

and then distinguish between 
1. goal vs. data directed reasoning 2. forward vs. backward-chaining

– goal:  from Q towards P – forward:  along the  ⇒
– data:  from P towards Q – backward: against the  ⇒

Possible to have
• (proc if-added (mygoal Q) ... (mygoal P))

• (proc if-needed (myassert P)... (myassert Q))

How to do data-directed reasoning in Prolog

Now:  a formalism with forward-chaining  

(assert P)  ⇒  (assert Q)

(goal Q)  ⇒  (goal P)



KR & R              ©  Brachman & Levesque  2005   104

Production systems

Idea:  working memory  +  production rule set

Working memory:  like DB,  but volatile

Production rule:  IF conditions THEN actions

condition:   tests on WM

action:  changes  to WM

Basic operation:   cycle of
1. recognize

find conflict set:  rules whose conditions are satisfied by current WM 

2. resolve
determine which of the rules will fire

3. act
perform required changes to WM

Stop when no rules fire

KR & R              ©  Brachman & Levesque  2005   105

Working memory

Set of working memory elements (WME)

Each WME is of the form  (type  attr1 val1  attr2 val2   ...  attrn  valn)

where type, attri, vali are all atoms

Examples:  (person  age 27   home Toronto)
(goal  task openDoor  importance 5)
(student   name JohnSmith   dept CS)

Understood as   ∃x[type(x) ∧ attr1(x)=val1  ∧ ... ∧ attrn(x)=valn]

– individual is not explicitly named

– order of attributes is not significant

Can handle n-ary relations as usual

(myAssertion relation  OlderThan   firstArg  John   secondArg  Mary)



KR & R              ©  Brachman & Levesque  2005   106

Rule conditions

Conditions:  tested conjunctively

a condition is p or -p, where p is a pattern of the form

(type  attr1 spec1  ...  attrk  speck)

where each specification must be one of

Examples:
   (person   age [n+4]   occupation x)
- (person   age {< 23 ∧  > 6})

A rule is applicable if there are values of the variables to satisfy
all the conditions 

• for a pattern, need WME of the correct type and for each attr in pattern,
val  must match spec

• for -p, there must be no WME that matches p

• an atom

• an expression within [ ]

• a variable

• a test, within {}

• the ∧, ∨, ¬ of a specification

∴ negation as failure

KR & R              ©  Brachman & Levesque  2005   107

Rule actions

Actions:  performed sequentially
An action is of the form

• ADD pattern

• REMOVE index

• MODIFY index  (attr spec)
where 

– index i refers to the WME that matched i-th pattern  (inapplicable to -p)

– variables and expressions refer to values obtained in the matching

Examples:

IF (Student  name x)
THEN ADD  (Person name x)

ordinary forward chaining

IF (Person  age x)  (Birthday)
THEN REMOVE 2

MODIFY 1 (age [x+1])
database update

IF (starting)
THEN REMOVE 1

ADD (phase val 1)   control information



KR & R              ©  Brachman & Levesque  2005   108

Example 1

Placing bricks in order of size
largest in place 1, next in place 2,  etc.

Initial working memory

Production rules:

IF (brick  place heap  name n  size s)
-(brick  place heap  size {> s})
-(brick  place hand)

THEN MODIFY 1  (place hand)

IF  (brick  place hand)   (counter index i)
THEN MODIFY 1  (place i)

MODIFY 2  (index [i+1])

(counter  index 1)
(brick  name A  size 10  place heap)
(brick  name B  size 30  place heap)
(brick  name C  size 20  place heap)

put the largest
brick in your hand

put a brick in your
hand at the next spot

KR & R              ©  Brachman & Levesque  2005   109

Trace

Only one rule can fire at a time, so no conflict resolution is 
required

The following modifications to WM

1. (brick name B size 30 place hand)

2. (brick name B size 30 place 1)
(counter index 2)

3. (brick name C size 20 place hand)

4. (brick name C size 20 place 2)
(counter index 3)

5. (brick name A size 10 place hand)

6. (brick name A size 10 place 3)
(counter index 4)

So the final working memory is 

(counter  index 4)
(brick  name A  size 10  place 3)
(brick  name B  size 30  place 1)
(brick  name C  size 20  place 2)



KR & R              ©  Brachman & Levesque  2005   110

Example 2

How many days are there in a year?
Start with: (want-days year n)

End with: (has-days days m)

1. IF (want-days year n)
THEN REMOVE 1

ADD   (year mod4  [n mod 4]  
mod100  [n mod 100] 
mod400  [n mod 400])

2. IF (year  mod400 0)
THEN REMOVE 1 ADD  (has-days days 366)

3. IF (year  mod100 0  mod400 {≠ 0})
THEN REMOVE 1 ADD  (has-days days 365)

4. IF (year  mod4 0  mod100 {≠ 0})
THEN REMOVE 1 ADD  (has-days days 366)

5. IF (year  mod4  {≠ 0})
THEN REMOVE 1 ADD  (has-days days 365)

KR & R              ©  Brachman & Levesque  2005   111

Applications

1. Psychological modeling

IF (goal is get-unit-digit)
(minuend unit d)
(subtrahend unit {> d})

THEN REMOVE 1
ADD  (goal is borrow-from-tens)

2. Expert systems
rules used by experts in a problem area to perform complex tasks

(examples  later)

Claimed advantages:
• modularity:  each rule acts independently of the others

• fine-grained control:  no complex goal or control stack

• transparency:  can recast rules in English to provide explanation of
behaviour 

fine-grained modeling of symbol
manipulation performed by people 
during problem solving



KR & R              ©  Brachman & Levesque  2005   112

MYCIN

System developed at Stanford to aid physicians in treating 
bacterial infections

Approximately 500 rules for recognizing about 100 causes of 
infection

Certainty factors
numbers from 0 to 1 attached to conclusions to rank order alternatives

AND  –  take min OR  –  take max

IF

the type of x is primary bacteremia

the suspected entry point of x is the 
gastrointestinal tract

the site of the culture of x is one of 
the sterile sites

THEN

there is evidence that x is bacteroides

other more static data
structures (not in WM)

• lists of organisms
• clinical parameters

+

KR & R              ©  Brachman & Levesque  2005   113

XCON

System developed at CMU (as R1) and used extensively at DEC 
(now owned by Compaq) to configure early Vax computers

Nearly 10,000 rules for several hundred component types 
Major stimulus for commercial interest in rule-based expert systems

IF

the context is doing layout and assigning a power supply

an sbi module of any type has been put in a cabinet

the position of the sbi module is known

there is space available for the power supply

there is no available power supply

the voltage and the frequency of the components are known
THEN

add an appropriate power supply



KR & R              ©  Brachman & Levesque  2005   114

Context switching

XCON and others use rules of the form

IF   the current context is x
THEN deactivate x

            activate context y

organized to fire when no other rules apply

Useful for grouping rules

IF (control phase 1)  AND ...    
THEN ...
...

IF (control phase 1)  AND ... 
THEN ...  MODIFY 1  (phase 2) ...

IF (control phase 2)  AND ...    
THEN ...
...

IF (control phase 2)  AND ... 
THEN ...  MODIFY 1  (phase 3) ...

Allows emulation of 
control structures.

But still difficult for 
complex  control 

KR & R              ©  Brachman & Levesque  2005   115

Conflict resolution

Sometimes with data-directed reasoning, we want to fire all 
applicable rules

With goal-directed reasoning, we may want a single rule to fire
• arbitrary

• first rule in order of presentation  (as in Prolog)

• specificity,  as in
IF (bird)  THEN ADD (can-fly) 

IF (bird  weight {> 100})  THEN ADD (cannot-fly)

IF (bird) (penguin)  THEN ADD (cannot-fly)

• recency
– fire on rule that uses most recent WME

– fire on least recently used rule

• refractoriness
– never use same rule for same value of variables  (called rule instance)

– only use a rule/WME pair once  (will need a “refresh” otherwise)



KR & R              ©  Brachman & Levesque  2005   116

Conflict combinations

OPS5:

1. discard rule instances that have already been used 

2. order remaining instances in terms of recency of WME matching 1st 
condition (and then of 2nd condition, etc.)

3. if still no single rule, order rules by number of conditions

4. select arbitrarily among those remaining

SOAR:

system that attempts to find a way to move from a start state to a goal 
state by applying productions

selecting what rule to fire 
≡ 

deciding what to do next

if unable to decide, SOAR sets up the selection as a new (meta-)goal to 
solve, and the process iterates 

KR & R              ©  Brachman & Levesque  2005   117

Rete procedure

Early systems spent 90% of their time matching, even with 
indexing and hashing.  

But:

So:

• WM is modified only slightly on each cycle

• many rules share conditions

• incrementally pass WME through network of tests

• tokens that make it through satisfy all conditions and produce conflict set

• can calculate new conflict set in terms of old one and change to WM

category: Person

age < 14 occupation = doctor

father:name

RULE 1

...

...
α nodes:
self-contained tests                 β nodes:

multi-input for vars

IF  (Person  father y  age {< 14}  name x)
       (Person  name y  occupation doctor)
THEN   ...


