
KR & R © Brachman & Levesque 2005 90

6.

Procedural Control of
Reasoning

KR & R © Brachman & Levesque 2005 91

Declarative / procedural

Theorem proving (like resolution) is a general domain-
independent method of reasoning

Does not require the user to know how knowledge will be used
will try all logically permissible uses

Sometimes we have ideas about how to use knowledge, how to
search for derivations

do not want to use arbitrary or stupid order

Want to communicate to theorem-proving procedure some
guidance based on properties of the domain

• perhaps specific method to use

• perhaps merely method to avoid

Example: directional connectives

In general: control of reasoning

KR & R © Brachman & Levesque 2005 92

DB + rules

Can often separate (Horn) clauses into two components:

Both retrieved by unification matching

Control issue: how to use the rules

Example:
MotherOf(jane,billy)
FatherOf(john,billy)
FatherOf(sam, john)
...
ParentOf(x,y) ⇐ MotherOf(x,y)
ParentOf(x,y) ⇐ FatherOf(x,y)
ChildOf(x,y) ⇐ ParentOf(y,x)
AncestorOf(x,y) ⇐ ...
...

a database of facts
• basic facts of the domain
• usually ground atomic wffs

collection of rules
• extends the predicate vocabulary
• usually universally quantified

conditionals

KR & R © Brachman & Levesque 2005 93

Rule formulation

Consider AncestorOf in terms of ParentOf

Back-chaining goal of AncestorOf(sam,sue) will ultimately reduce to set of
ParentOf(–,–) goals

1. get ParentOf(sam,z): find child of Sam searching downwards

2. get ParentOf(z,sue): find parent of Sue searching upwards

3. get ParentOf(–,–): find parent relations searching in both directions

Search strategies are not equivalent
if more than 2 children per parent, (2) is best

3. AncestorOf(x,y) ⇐ ParentOf(x,y)
AncestorOf(x,y) ⇐ AncestorOf(x,z) ∧ AncestorOf(z,y)

2. AncestorOf(x,y) ⇐ ParentOf(x,y)
AncestorOf(x,y) ⇐ ParentOf(z,y) ∧ AncestorOf(x,z)

1. AncestorOf(x,y) ⇐ ParentOf(x,y)
AncestorOf(x,y) ⇐ ParentOf(x,z) ∧ AncestorOf(z,y)

Three logically equivalent versions:

KR & R © Brachman & Levesque 2005 94

Algorithm design

Example: Fibonacci numbers
1, 1, 2, 3, 5, 8, 13, 21, ...

Version 1:
Fibo(0, 1)

Fibo(1, 1)

Fibo(s(s(n)), x) ⇐ Fibo(n, y) ∧ Fibo(s(n), z) ∧ Plus(y, z, x)

Requires exponential number of Plus subgoals

Version 2:
Fibo(n, x) ⇐ F(n, 1, 0, x)

F(0, c, p, c)

F(s(n), c, p, x) ⇐ Plus(p, c, s) ∧ F(n, s, c, x)

Requires only linear number of Plus subgoals

KR & R © Brachman & Levesque 2005 95

Ordering goals

Example:

AmericanCousinOf(x,y) ⇐ American(x) ∧ CousinOf(x,y)

In back-chaining, can try to solve either subgoal first

Not much difference for AmericanCousinOf(fred, sally), but big
difference for AmericanCousinOf(x, sally)

1. find an American and then check to see if she is a cousin of Sally

2. find a cousin of Sally and then check to see if she is an American

So want to be able to order goals

better to generate cousins and test for American

In Prolog: order clauses, and literals in them

Notation: G :- G1, G2, ..., Gn stands for
 G ⇐ G1 ∧ G2 ∧ ... ∧ Gn

but goals are attempted in presented order

KR & R © Brachman & Levesque 2005 96

Commit

Need to allow for backtracking in goals
AmericanCousinOf(x,y) :- CousinOf(x,y), American(x)

for goal AmericanCousinOf(x,sally), may need to try to solve
the goal American(x) for many values of x

But sometimes, given clause of the form

G :- T, S

goal T is needed only as a test for the applicability of subgoal S
• if T succeeds, commit to S as the only way of achieving goal G.

• if S fails, then G is considered to have failed
– do not look for other ways of solving T

– do not look for other clauses with G as head

In Prolog: use of cut symbol
Notation: G :- T1, T2, ..., Tm, !, G1, G2, ..., Gn

attempt goals in order, but if all Ti succeed, then commit to Gi

KR & R © Brachman & Levesque 2005 97

If-then-else

Sometimes inconvenient to separate clauses in terms of unification:

G(zero, –) :- method 1
G(succ(n), –) :- method 2

For example, may split based on computed property:

Expt(a, n, x) :- Even(n), ... (what to do when n is even)
Expt(a, n, x) :- Even(s(n)), ... (what to do when n is odd)

want: check for even numbers only once

Solution: use ! to do if-then-else

G :- P, !, Q.
G :- R.

To achieve G: if P then use Q else use R

Example:
Expt(a, n, x) :- n = 0, !, x = 1.
Expt(a, n, x) :- Even(n), !, (for even n)
Expt(a, n, x) :- (for odd n)

Note: it would be correct to write

Expt(a, 0, x) :- !, x = 1.
but not

Expt(a, 0, 1) :- !.

KR & R © Brachman & Levesque 2005 98

Controlling backtracking

AncestorOf(jane,billy), Male(jane)

ParentOf(jane,billy), Male(jane)

Male(jane)

FAILS

ParentOf(z, billy), AncestorOf(jane, z), Male(jane)

Eventually FAILS

1

2

3 4

Consider solving a goal like

So goal should really be: AncestorOf(jane,billy), !, Male(jane)

Similarly:

Member(x,l) ⇐ FirstElement(x,l)
Member(x,l) ⇐ Rest(l,l′) ∧ Member(x,l′)

If only to be used for testing, want

Member(x,l) :- FirstElement(x,l), !, .

On failure, do not try
to find another x later
in the rest of the list

KR & R © Brachman & Levesque 2005 99

Negation as failure

Procedurally: we can distinguish between the following:

can solve goal ¬G vs. cannot solve goal G

Use not(G) to mean the goal that succeeds if G fails, and fails if G
succeeds

Roughly: not(G) :- G, !, fail. /* fail if G succeeds */
not(G). /* otherwise succeed */

Only terminates when failure is finite (no more resolvents)

Useful when DB + rules is complete

NoChildren(x) :- not(ParentOf(x,y))

or when method already exists for complement

Composite(n) :- n > 1, not(PrimeNum(n))

Declaratively: same reading as ¬¬¬¬, but not when new variables in G

[not(ParentOf(x,y)) ⊃ NoChildren(x)] 4
vs. [¬ParentOf(x,y) ⊃ NoChildren(x)] 8

KR & R © Brachman & Levesque 2005 100

Dynamic DB

Sometimes useful to think of DB as a snapshot of the world that
can be changed dynamically

assertions and deletions to the DB

then useful to consider 3 procedural interpretations for rules like
ParentOf(x,y) ⇐ MotherOf(x,y)

1. If-needed: Whenever have a goal matching ParentOf(x,y), can solve it by
solving MotherOf(x,y)

ordinary back-chaining, as in Prolog

2. If-added: Whenever something matching MotherOf(x,y) is added to the DB,
also add ParentOf(x,y)

forward-chaining

3. If-removed: Whenever something matching ParentOf(x,y) is removed from
the DB, also remove MotherOf(x,y), if this was the reason

keeping track of dependencies in DB

Interpretations (2) and (3) suggest demons
procedures that monitor DB and fire when certain conditions are met

KR & R © Brachman & Levesque 2005 101

The Planner language

Main ideas:

1. DB of facts
(Mother susan john) (Person john)

2. If-needed, if-added, if-removed procedures consisting of

– body: program to execute

– pattern for invocation (Mother x y)

3. Each program statement can succeed or fail

– (goal p), (assert p), (erase p),

– (and s ... s), statements with backtracking

– (not s), negation as failure

– (for p s), do s for every way p succeeds

– (finalize s), like cut

– a lot more, including all of Lisp

examples: (proc if-needed (cleartable)
(for (on x table)

(and (erase (on x table)) (goal (putaway x)))))

(proc if-removed (on x y) (print x " is no longer on " y))

Shift from proving conditions
to making conditions hold!

