Solutions to Assignment 3

1. The form of default reasoning proposed in this question corresponds very closely to the CWA. Indeed, lets consider the example in page 217 in the book:

$$KB = \{\forall x. Bird(x) \land \neg Ab(x) \supset Flies(x), Bird(c), Bird(d), \neg Flies(c) \lor \neg Flies(d)\}$$

This KB has two minimal models. The first, say $\mathfrak{F} = \langle \mathcal{D}, \mathcal{I} \rangle$, is such that $\mathcal{I}[Ab] = \{\mathcal{I}[c]\}$. The second, say $\mathfrak{F}' = \langle \mathcal{D}, \mathcal{I}' \rangle$, is such that $\mathcal{I}'[Ab] = \{\mathcal{I}'[d]\}$. Therefore, KB $\models_{\leq} Flies(c) \lor Flies(d)$. On the other hand since $KB \not\models Flies(c)$ and $KB \not\models Ab(d)$,

$$KB' = KB \cup \{\neg Ab(t) \mid KB \not\models Ab(t)\} = KB \cup \{\neg Ab(c), \neg Ab(d)\}$$

 $KB' \models Flies(c) \land Flies(d)$ and therefore is inconsitent.

There are more discrepancies. For example, the question's notion of default reasoning will not entail conclusions about unnamed individuals. For example, when

$$KB = \{ \forall x. Bird(x) \land \neg Ab(x) \supset Flies(x), \exists x Bird(x) \},\$$

KB' = KB, since there are no ground terms in the language. However, in minimal models, the extension of Ab is empty and we can conclude $\exists x \ Flies(x)$.

A sufficient condition that make these notions equivalent is restricting the KB to contain only sentences of the form: P(c), $\forall x P(x) \land \neg Ab(x) \supset Q(x)$, where c is a constant, and P and Q are predicates. In this case, we avoid referring to unnamed individuals (all assertions are about named individuals).