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Abstract

Solid State Drives (SSDs) are increasingly replacing HDDs as the main source of a per-

sistent medium in both datacenters and personal devices. SSDs offer higher performance

and consume less power. They also bring two challenges in the storage space.

First, SSDs have different reliability characteristics than HDDs. Unlike HDDs that are

based on magnetic media, SSDs store data in the form of an electronic charge. This sig-

nificantly increases bit-level errors in SSDs. However, there exists no expansive study of

the impact of such errors on the overlying software stack. Furthermore, as the demand

for high capacity SSDs is increasing, more bits are being stored within the same voltage

range of the SSD medium. This further reduces SSD drive reliability as there is a lower

margin of error for each data bit written to the drive.

Second, with the end of Moore’s law, there is increased emphasis on disaggregated

computing where device-specific computation takes place on a processor within the de-

vice. To achieve this goal in storage, SSDs are embedded with CPUs. Applications can

offload computation from the host to the device and save host CPU cycles, lower host-

device latency, and reduce bandwidth utilization. However, such devices are expensive,

hard to program, and may not be suitable for all application computation offloads.

We address these reliability and performance challenges for SSDs as follows:

First, we evaluate file system reliability in the presence of SSD errors. File Systems are

the main component of the storage software stack which interacts with the underlying

storage media. We notice that real-world file systems often make performance assump-

tions for SSDs that impact their reliability. We find that real world file systems incur

severe failures such as unmountable drives in 16% of our extensive test suite of over 7000

file system experiments.
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Second, we invent a novel voltage-based Write Once Memory (WOM-v) coding scheme

that reduces the number of erase operations for every overwrite on a SSD. This directly im-

proves the SSD reliability for high-density SSDs where only a limited number of program-

erase operations are possible. We show that for QLC SSD, we can reduce the number of

erase operations by 4.4x − 11.1x on real-world workloads.

Third, we build Nescafe, a computational storage framework to evaluate performance

gains of offloading computational tasks to an emulated near storage device. We show that

real-world, compute-intensive applications like zlib compression, jbd2 checksum compu-

tation and LSM Tree compaction are easy to offload to a computational device using our

framework. We also show that surprisingly, not all computationally intensive applica-

tions perform better by offloading tasks to an on-disk processor. We show that Nescafe is

generic and simple to extend to other block, stream and application based workloads.
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Chapter 1

Introduction

This Thesis focuses on improving reliability and performance of storage stacks on next
generation of Solid State Drives (SSDs). SSDs are evolving in two different ways: First, to
meet the high-capacity demands of data storage, SSDs are increasingly becoming denser.
There is increased interest in storing multiple bits within a cell, the smallest unit of storage
in an SSD. This has given rise to QLC and PLC drives that store 4 and 5 bits per cell
respectively. The relatively higher performance and lower power consumption of such
SSDs pose them as excellent candidates to replace high density Hard Disk Drives (HDDs)
as the primary persistent storage media in the capacity tier.

Second, with the end of Moore’s law, there is increased interest in heterogeneous
computing, where computation is being done within specialized devices instead of the
host. To meet this need, SSDs are being provisioned with embedded processors to perform
computing within the storage device. Such SSDs are called Computational Storage Disks
or CSDs.

Both advancements bring significant challenges to the reliability and performance of
storage software that is run on top of the SSDs. First, with a denser SSD media, there are
increased chances of device generating media errors due to wear out, retention loss and
read disturbance. This reduces SSD media reliability due to increased media errors such
as I/O errors and uncorrectable bit corruption errors. With higher SSD media density
where more bits are stored in each cell, there is also a drastic reduction in the number
of times data can be programmed and erased reliably over time. This is because the
voltage range allocated to each bit reduces as we pack more bits within the same cell
voltage range. Hence with increased SSD capacity, the reliability of persistent media is
of heightened importance. Second, there is increased interest in identifying computation
heavy applications that can be offloaded to a SSD with an on-disk CPU. Existing storage
applications have varied amount of computation heavy components. Therefore, not all
applications benefit from Computational Storage Devices.

We explore and improve the reliability of SSDs from two perspectives: First, we eval-
uate the resiliency and identify weaknesses of file systems designed and optimized for

1



CHAPTER 1. INTRODUCTION 2

flash. Second, we reduce erase operations done on SSDs which improves the lifetime of
high-density SSD media. In the third part of the thesis, we build a framework to assess
whether a storage application could benefit from using computational storage disks.

1.1 Thesis Outline

1.1.1 File System Reliability on SSDs

We study the reliability of file systems designed and optimized for flash on top of Solid
State Drives. File Systems are a critical component of the storage software stack and
provide an interface that the end user applications depend on for accessing correct data
stored on the underlying media. We evaluate three contemporary file systems - ext4, BtrFS
and F2FS that run on SSDs against a wide range of flash media errors. We answer three
main questions during our study:

1. Can file systems detect media errors?
2. Can file systems recover from media errors?
3. How robust are file system checkers (fsck) in error recovery?
We propose a taxonomy of error detection and correction for the file systems, a frame-

work for injecting errors into the file systems and observing their behaviour, a rich testbed
for file system testing, and key results of our evaluation for each of the three file systems
and their corresponding file system checkers.

1.1.2 Improving Reliability of High Density SSDs using WOM
Codes

Write Once Memory (WOM) coding is an encoding scheme in which input raw data bits
can be encoded into output encoded bits such that the encoded bits only increase from
0 to 1 with each subsequent device write. Although this bit-based model works on SSDs
that are modelled as groups of bits (eg. SLC drives), they fail to take into account the
voltage based format in which multi-bit SSDs store their data. We propose a new WOM
(Write Once Memory) coding model for high density SSDs to reduce erase operations on
the device and achieve higher flash reliability. In particular, we propose a novel WOM-
v code that treats the underlying SSD media as a storage unit containing voltage based
charge as opposed to being treated as group of bits. Next, we perform a theoretical
evaluation of the trade-off between P/E cycle gains and encoding space overheads using
WOM-v codes on high density SSDs. Further, we implement WOM-v code in a state
of the art flash simulator (FEMU) and evaluate practical gains of WOM-v codes on real
world workloads. Finally, we provide performance overheads and optimizations for using
WOM-v codes.
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1.1.3 A framework for evaluating Near-Storage Computation

With the end of Moore’s law [175], there is an increased interest in heterogeneous com-
puting. This has lead to creating specialized devices that have embedded processors for
different components of a computing system. For storage, a new class of SSDs called
Computational Storage Disks (CSDs) have recently emerged for application computation
offloading. CSDs are expensive SSDs that involve low level hardware programming to
realize application computation offload. Porting storage applications to computational
storage is expensive, time-consuming, and cumbersome. Moreover, after a computation is
offloaded to the device, it may not always result in performance gains for all applications.
Hence, it would be prudent to evaluate whether application computation offload is bene-
ficial before investing time, effort and resources in buying and offloading an application’s
computation to a CSD. To address this issue, we build a software-only computational
storage framework that enables offloading data intensive computation tasks from the ap-
plication running in the host to the underlying emulated SSD device. Our framework
helps in dividing application between host and device without doing low-level hardware
programming. We are able to also evaluate the processor speed, interconnect latency and
interconnect bandwidth required to gain any advantages from application computation
offload. This helps us determine the type of CSD that we will need to gain any type
of application computation speedup without acquiring and programming real hardware.
First, we describe the design and implementation of our framework. Next, we describe
a theoretical model and show how it has limitations. Finally we show the usefulness of
our simulator by offloading real world applications - zlib compression library, ext4 jour-
nal checksumming, LSM Tree Compaction and Spark and describe the scenarios in which
speedup can be achieved with CSDs.

1.2 Thesis Contributions

In this thesis, we address both the reliability and the performance challenges that the
next generation of SSDs bring to the storage stack. To study the reliability of the storage
stack in the presence of SSDs that have a relatively higher number of partial errors than
HDDs, we evaluate the overlying file system’s capability to detect and recover from un-
derlying SSD errors. In order to improve the SSD reliability for denser SSD drives which
have lower resilience to erase operations, we propose an encoding mechanism that en-
ables overwriting old data without performing an erase operation. Finally, to evaluate
if computationally intensive tasks can leverage high-performance Computational Storage
Disks, we build a framework to evaluate such applications in software without buying
additional hardware resources or writing tedious, low-level hardware programs.

In the next sub-sections, we elaborate on the contributions of the thesis from the per-
spective of improving reliability and performance of storage stacks on next generation of
SSDs.
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1.2.1 Improving Reliability of the Storage Stack

A storage stack contains one or more user-space applications such as key-value stores
or databases that run on top of file systems residing inside the Operating System. It is
the file system that interacts with the underlying block device such as the SSD hardware.
We analyse how contemporary file systems, which are the first line of defense against
any underlying errors in the storage media, protect the application from the data that
is being read from or written to the SSDs. In this thesis, we provide a detailed analysis
and categorization of SSD-based errors that have been reported in large-scale data centers.
We provide a mapping of the errors that emanate from the underlying SSDs to the form
in which they would appear at the file system level. We notice that all types of SSD
errors reported can be mapped to 5 categories of errors at the block layer. We create a
file system error injection tool to inject these 5 errors in the 3 file systems of our study
- namely btrfs, ext4 and f2fs file system. We build a rich taxonomy of error detection,
error correction techniques and the effectiveness of the fsck tool for each file system in
recovering from a particular error. We created multiple user space applications exercising
multiple file system code paths and ran over 7000 experiments. Overall, we create a
rich suite of 7000 experiments that inject various forms of errors in the file system. We
were able to uncover severe file system errors when injecting different categories of SSD
errors for 16% of the experiments. This finding demonstrates that real-world, production
file systems make reliability assumptions while transitioning from HDD media to SSD
media without taking the SSD reliability constraints into account. We also open source
our generic error-injection framework which consists of a rich suite of tests that can be
applied to other file systems. Furthermore, additional category of errors such as timing
errors and power errors can be easily incorporated to our framework to do more rigorous
testing of a file system under other categories of errors. Our framework enables a test-
driven development of the file system that can be run on future versions of file systems
with new features to check their resiliency to SSD-based errors.

We further look at the SSD hardware reliability from the perspective of the number of
writes it can endure. Futuristic, higher density SSDs have very low Program-and-Erase
cycles (P/E cycles). To increase the lifetime of SSDs, we propose a novel Write Once
Memory coding scheme that encodes and overwrites data without erasing previous data.
Our coding scheme takes the voltage-based nature of the cell within an SSD into account.
This is different from previously existing Write-Once-Memory coding schemes that take
a binary approach to encoding and writing data on the underlying device. We perform
3 novel optimizations for WOM-v coding scheme in the context of dense media - code
word sharing, same generation transition, and programming beyond maximum genera-
tions. This enables writing up to 500% additional data, in-theory, to the underlying QLC
device before an erase operation is required. This directly improves the reliability of the
underlying flash drive and improves the lifetime of SSDs. We further implement and eval-
uate our code in the state of the art flash simulator, and demonstrate practical reliability



CHAPTER 1. INTRODUCTION 5

gains from the coding scheme. This is the first non-binary WOM code that we know of
that has been implemented for high-density SSDs. Further, we have demonstrated relia-
bility gains of 4.4x − 11.1x for real world traces from datacenters including Alibaba and
Microsoft using WOM-v codes on QLC drives. We describe the design of our coding
scheme and its implementation and evaluation in more detail in Chapter 3.

1.2.2 Improving Performance of the Storage Stack

Advanced storage systems such as file systems, volume managers and key-value stores
run a number of compute intensive applications such as checksumming, compression,
deduplication, encryption and snapshotting during data access to the underlying storage
device. Such computation intensive tasks can often be offloaded to the underlying storage
device such as Computational Storage Disks (CSDs) that has a on-disk processor near the
data. Such disks are currently expensive, hard to program and and may not always lead
to improvement in storage application performance.

In this thesis, we build Nescafe, a Near Storage Computation framework to evaluate
if applications that might benefit from offloading such computation intensive tasks to the
on-disk CPU and actually get performance gains. Our framework is written in C, does
not involve writing tedious, low-level hardware code, and runs entirely in software with-
out the need to buy expensive hardware. We build our framework on FEMU, the state
of the art flash simulator and provide API’s to extend block-based, stream-based and
application-based storage workloads to the device. Our framework uses the NVM-e in-
terface to send computational instructions to the underlying storage device. We build an
analytical framework to evaluate simple storage tasks and show that the results obtained
on Nescafe match the analytical framework results. We then port three real world com-
putationally intensive applications - zlib compression, ext4 journaling checksum compu-
tation and LSM-Tree compaction to demonstrate practical gains of offloading computation
intensive tasks for such applications on the underlying storage device. Our framework is
generic and can be easily extended to evaluate other block, stream and application based
workloads. We describe our contributions to evaluate and improve the performance of
storage stacks using computational storage devices in more detail in Chapter 4.

1.2.3 Research Artifacts

This thesis has resulted in three research artifacts that form a basis for further research in
the area of improving reliability and performance of storage stacks on next generation of
SSDs:

1. We build dm-inject [45], a framework to inject block-layer errors in file-systems.
We have used the framework to inject various SSD errors in ext4, f2fs and btrfs file
systems. Our framework can be extended to other file systems and error types.
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2. We build WOM-v coder [181], an extension of lightNVM module that encodes and
decodes data while writing to and reading from the underlying SSD device. The
encoding scheme is specified using simple lookup tables that can be extended to
support denser SSD devices and more sophisticated coding schemes. We also extend
FEMU to support TLC and QLC devices [145] which is already part of the FEMU
mainline code.

3. We build Nescafe [126], a framework to evaluate performance gains in applications
when computation is offloaded to an on-disk drive. Our framework provides a li-
brary of NVMe directives for commonly used storage based computation tasks. The
library can be extended to add customised computation for the data being stored or
retrieved from the device.



Chapter 2

Evaluating File System Reliability
on SSDs

It’s not the prevention of bugs but the recovery, the ability to gracefully
exterminate them, that counts

Victoria Livschitz

2.1 Introduction

SSD reliability depends on both the reliability of the devices as well as the ability of the
file system above them to handle errors. File system reliability has been studied in the
past in the context of HDD errors [143]. However, there are multiple reasons why the
study should be revisited.

First, the failure characteristics of SSDs differ significantly from those of HDDs. For
example, recent field studies [114, 124, 164] show that while their replacement rates (due
to suspected hardware problems) are often by an order of magnitude lower than those of
HDDs, the occurrence of partial drive failures that lead to errors when reading or writing
a block or corrupted data can be an order of magnitude higher. Other work argues that
the Flash Translation Layer (FTL) of SSDs might be more prone to bugs compared to HDD
firmware. This is due to their high complexity and less maturity, and demonstrate this
to be the case when drives are faced with power faults [202]. This makes it even more
important than before that file systems can detect and deal with device faults effectively.

Second, file systems have evolved significantly since [143] was published 16 years
ago; the ext family of file systems has undergone major changes from the ext3 version
considered in [143] to the current ext4 [113]. New players with advanced file-system
features have arrived. Most notably Btrfs [154], a copy-on-write file system which is more
suitable for SSDs with no in-place writes, has garnered wide adoption. The design of Btrfs
is particularly interesting as it has fewer total writes than ext4’s journaling mechanism.
Further, there are new file systems that have been designed specifically for flash, such as
F2FS [97], which follow a log-structured approach to optimize performance on flash.

7
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In this chapter, we characterize the resilience of modern file systems running on flash-
based SSDs in the face of SSD faults. We also evaluate the the effectiveness of their
recovery mechanisms when taking SSD failure characteristics into account. We focus on
three different file systems: Btrfs, ext4, and F2FS. ext4 is the most commonly used Linux
file system. Btrfs and F2FS include features particularly attractive with respect to flash,
with F2FS being tailored for flash. Moreover, these three file systems cover three different
points in the design spectrum, ranging from journaling to copy-on-write to log-structured
approaches.

2.2 Contributions

The main contribution of this work is a detailed study, spanning three very different file
systems and their ability to detect and recover from SSD faults, based on error injection
targeting all key data structures. We observe huge differences across file systems and
describe the vulnerabilities of each in detail. Over the course of this work we experiment
with more than seven thousand fault scenarios and observe that around 16% of them re-
sult in severe failure cases (kernel panic, unmountable file system). We make a number of
observations and file several bug reports, some of which have already resulted in patches.
For our error injection experiments, we developed an error injection module on top of
the Linux device mapper framework. The error injection module is open-sourced and is
available here [62].

The remainder of this chapter is organized as follows: Section 2.4 provides a taxonomy
of SSD faults. We then describe the experimental setup we use to emulate these faults and
test the reaction of the three file systems. Section 2.5 presents the results from our fault
emulation experiments. Section 2.6 summarizes our observations and insights. We discuss
limitations and the impact of our work in Section 2.7.

2.3 Background

In this section, we describe key concepts required to understand the rest of the thesis.
Figure 2.1 shows the Host and SSD interface. The host consists of multiple applications
running as processes. the process reads and writes to a device using a file system.

2.3.1 Write Workflow

The writes to the device may be kept in memory in the page cache, or sent directly to
the block layer. When the application calls sync, data and metadata cached in the page
cache are written to the underlying block layer. The block layer receives data at the
grannularity of a block. A typical block size is 4KB. Each block is then sent by the device
to the underlying SSD device. We describe the SSD architecture in more detail in 2.3.4.
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2.3.2 Read Workflow

A read request to the disk is sent by the application to the file system. If the requested
block is available in the page cache, it is returned to the application. If the requested block
is not available, the read request is sent to the device driver. The device driver issues a
device and interface specific read request. The block retured from the device is returned
to the application.

We describe file systems in more detail in Section 2.3.3, SSDs in Section 2.3.4.

Figure 2.1: Host and SSD Interface. The application, filesystem and device driver
run inside the host. An interconnect (PCIe) connects the host to the SSD. Modern
SSDs use NVMe protocol to communicate between host and SSD. Internally, the
SSD contains a CPU, memory (not shown) and multiple NAND chips where data
is persistently stored in the form of electronic charge. Different voltage levels
correspond to different data bits.

2.3.3 File Systems

A file system is a Operating System component that manages data stored on the underly-
ing device. It is responsible for providing the abstraction of a file to applications. Appli-
cations can read and write files without managing the underlying data storage. Files are
logically contiguous even when physically stored at non-contiguous locations. All appli-
cations using a file system use the same file-system interface. This interface is called the
virtual file system (VFS) interface [92]. This helps applications to be agnostic to the type
of underlying file-system. All file systems usually come with user-level tools to format the
device (mkfs), check file system integrity (fsck) and inspect file system content (fsdump).

In this thesis, we use three file system designs. Each file-system provides different
features, benefits and challenges. They also use different on-disk and in-memory data
structures.
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Journaling File Systems

A journaling file system maintains auxillary space in addition to the main file system.
This space is called a journal [142], a circular log to store intermediate file system meta-
data. The journal helps the file system run fast, delay updates to the main file system, and
recover from failures on the event of a file system crash. When a file is updated by the ap-
plication, both its data and metadata are updated in memory. When the application calls
sync, the in-memory data is first written to the device. The in-memory metadata is then
written to the journal. Finally, the in-memory metadata is written to the main file system.
Since meta-data is written to the journal sequentially, it provides higher performance than
updating main-filesystem metadata that is physically at non-contigouous locations. The
main-filesystem metadata can be updated asynchronously. On the event of a file system
crash before the metadata is written to the main-file system, the journal can be read on
reboot, and its valid contents can be selectively written to the main file system.

Copy-On-Write File Systems

A copy-on-write [155] file system creates a new copy of file system data and metadata
blocks on each overwrite. The original contents of the file remain in the file system. This
helps in creating different versions of the main file system. A user may be able to naturally
create different point-in-time instances of the file system, until the older data is removed.
This helps the file system to provide two important features: snapshot and cloning. A
user can create a file system snapshot containing all actively used blocks in the file system
at that time. This creates a reference to each block, and marks them as non-overwritable
for the future, unless the snapshot is deleted. cloning creates a identical copy of the
original file system. A copy-on-write file system can also create file system clones very
efficiently. the original and cloned volume of the file system share all referenced blocks
until a change in any block is made.

Log-Structured File Systems

A log structured file system [157] writes all modifications to disk sequentially in a log-like
structure. This increases performance during both file writing and crash recovery. The
log is the only structure on disk. It contains indexing information so that files can be read
back from the log efficiently. Both HDDs and SSDs perform well on sequential writes.
Hence Log-Structured File systems are a natural fit on top of SSDs for high performance.

2.3.4 Solid State Drives

SSDs are persistent data storage devices that store data in the form of electronic charge.
The smallest unit of storage inside a SSD is called a cell Multiple cells form a page. Pages
are often arranged in multiple planes. A group of pages form a flash block. A group of flash
blocks form a die. A typical SSD contains 8-10 dies.
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2.3.5 Reliability of File Systems

File System reliability has been studied in depth by Prabhakaran et al. [143]. The study
in [143] was focused on HDDs and covered ext3, ReiserFS and JFS. These file systems
were a great fit for HDDs and were extensively used at that time. However over the
past decade, a number of new file systems with enhanced features such as journaling
(Section 2.3.3), copy-on-write (Section 2.3.3) and log-structure (Section 2.3.3) have been
introduced. They mark a significant departure in terms of design principles compared to
the systems in [143]. Moreover [143] does not evaluate the reliability of the file system
checker or fsck. A fsck is usually the last line of defense for all file systems against media
errors. An analysis of how resilient fsck is to media errors is an important study that has
not been covered in [143].

Gatla et al. [61] study the behavior of file system checkers under faults that forcefully
interrupt the repair procedure. They developed a customized fault injection tool, which
was built using the Linux SCSI target framework [57], in order to systematically inject
faults to the repair procedure. Their results indicate that running the file system’s checker
after an interrupted repair may not always return the file system to a valid state.

Gunawi et al. [67] make use of static analysis to explore how file systems and storage
device drivers propagate error codes. Their results indicate that write errors are neglected
more often than read errors. In [178], the authors conduct a performance evaluation on
the transaction processing system between ext2 and NILFS2. In [121], the authors explore
how existing file systems developed for different operating systems behave with respect
to features such as crash resilience and performance.

Recently, two new studies presented their reliability analysis of file systems in a context
other than the local file system. Ganesan et al. [60] present their analysis on how modern
distributed storage systems behave in the presence of file-system faults. Their fault model
includes read and write errors, along with data corruption. Their results indicate that
distributed storage systems do not make use of redundancy across replicas to recover
from local file system faults. User programs can experience data loss, corruption, and
unavailability due to a single local file system fault, highlighting the need to carefully test
these systems for all types of faults.

Cao et al. [31] present their study on the reliability of high-performance parallel systems.
The authors introduce a general framework for analyzing the failure policies of parallel
file systems and explore the effect of whole device failures, inconsistent global state, and
network partitioning. Their results indicate that widely used parallel file systems, such
as Lustre are not able to recover from I/O errors, resulting in system hangs and reboot
operations. In our work, we focus on local file systems deployed on top of a single SSD
and explore their resiliency characteristics against faults related to SSDs.

Prior work has explored techniques to detect inconsistencies within file systems ei-
ther during runtime using invariant checking [37, 54, 94] or offline using a disk pointer
corruption analysis [10]. Both approaches protect file systems against issues that can be
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detected by the specified rules only. In [120, 112], the authors test the resilience of file
systems against crash faults or power loss. The file systems considered in this study are
more recent, modern file systems (ext4, xfs, F2FS, btrfs). This study does not consider bit
level corruptions that may occur during reads or writes.

Different techniques involving hardware or modifications inside the FTL have been
proposed to mitigate existing errors inside SSDs [36, 137, 26, 25, 105, 109, 107]. These tech-
niques focus on improving SSD reliability using stronger Error Correction Codes (ECC)
or employing metadata redundancy.

2.4 File System Error Injection

We emulate different types of SSD failures and check the ability of different file systems
to detect and recover from them. We limit our analysis to a local file system running
on top of a single drive. Although multi-drive redundancy mechanisms like RAID exist,
they are not general substitutes for file system reliability mechanisms. First, RAID is not
applicable to all scenarios, such as single drives on personal computers. Second, errors
or data corruption can originate from higher levels in the storage stack, which RAID can
neither detect nor recover.

Numerous studies published over the last few years have identified many different
SSD internal error mechanisms that can result in partial failures. These studies have used
either lab experiments or field data, and attributed failures that were due to the undelying
flash media [15, 20, 21, 27, 28, 29, 30, 34, 40, 64, 65, 71, 84, 89, 98, 117, 118, 172, 177, 161,
105]. Some failures are also attributed to bugs in the FTL code when it is not hardened
to handle power faults correctly [201, 202]. Moreover, a field study based on Google’s
data centers observes that partial failures are significantly more common for SSDs than
for HDDs [164]. This issue will likely continue with existing technology trends. For
example, increasing densities associated with TLC and QLC flash, and more complex
FTLs that support a growing number of interfaces would only increase the number of
partial failures. Hence, our work only considers partial drive failures where only part of
a drive’s operation is affected. We do not consider fail-stop failures, where the drive as a
whole becomes permanently inaccessible.

2.4.1 SSD Errors in the Field and their Manifestation

In this section, we provide an overview of the various mechanisms that can lead to partial
failures and how they manifest at the file system level. A summary of our observations is
shown in Table 2.1.

Uncorrectable Bit Corruption: Previous work [15, 20, 21, 27, 28, 29, 30, 34, 64, 65,
71, 98, 105, 118] describes a large number of error mechanisms that originate at the flash
level and can result in bit corruption, including retention errors, read and program disturb
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errors, errors due to flash cell wear-out and failing blocks. Virtually all modern SSDs
incorporate error correcting codes to detect and correct such bit corruption. However,
recent field studies indicate that uncorrectable bit corruption, where more bits are corrupted
than the error correcting code (ECC) can handle, occurs at a significant rate in the field.
For example, a study based on Google field data observes 2-6 out of 1000 drive days with
uncorrectable bit errors [164]. Uncorrectable bit corruption manifests as a read I/O error
returned by the drive when an application tries to access the affected data (“Read I/O
errors” in Table 2.1).

Silent Bit Corruption: This is a more insidious form of bit corruption, where the drive
itself is not aware of the corruption and returns corrupted data to the application (“Cor-
ruption” in Table 2.1). While there have been field studies on the prevalence of silent
data corruption for HDD based systems [11], there is to date no field data on silent bit
corruption for SSD-based systems. However, work based on lab experiments shows that
3 out of 15 drive models under test experience silent data corruption in the case of power
faults [202]. Note that there are other mechanisms that can lead to silent data corruption,
including mechanisms that originate at higher levels in the storage stack, above the SSD
device level.

FTL Metadata Corruption: A special case arises when silent bit corruption affects FTL
metadata. Among other things, the FTL maintains a mapping of logical to physical (L2P)
blocks as part of its metadata [7]. Metadata corruption could lead to “Read I/O errors”
or “Write I/O errors”, when the application attempts to read or write a page that does
not have an entry in the L2P mapping due to corruption. Corruption of the L2P map-
ping could also result in wrong or erased data being returned on a read, manifesting as
“Corruption” to the file system. Note that this is also a silent corruption - i.e. neither the
device nor the FTL is aware of these corruptions.

Misdirected Writes: This refers to the situation where during an SSD-internal write
operation, the correct data is being written to flash, but at the wrong location. This might
be due to a bug in the FTL code or triggered by a power fault, as explained in [202]. At the
file system level this might manifest as a “Corruption”, where a subsequent read returns
wrong data, or a “Read I/O error”. This form of corruption is silent, the device does not
detect and propagate errors to the storage stack above until invalid data or metadata is
accessed again.

Shorn Writes: A shorn write is a write that is issued by the file system, but only
partially done by the device. In [202], the authors observe such scenarios surprisingly
frequently during power faults, even for enterprise class drives, while issuing properly
synchronized I/O and cache flush commands to the device. A shorn write is similar
to a “torn write", where only part of a multi-sector update is written to the disk, but
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it applies to sector(s) which should have been fully persisted due to the use of a cache
flush operation. One possible explanation is the mismatch of write granularities between
layers. The default block size for file systems is larger (e.g. 4KB for ext4/F2FS, and 16KB
for Btrfs) than the physical device (e.g. 512B). A block issued from the file system is
mapped to multiple physical blocks inside the device. As a result, during a power fault,
only some of the mappings are updated while others remain unchanged. Even if physical
block sizes match that of the file system, another possible explanation is because SSDs
include on-board cache memory for buffering writes, shorn writes may also be caused by
alignment and timing bugs in the drive’s cache management [202]. Moreover, recent SSD
architectures use pre-buffering and striping across independent parallel units, which do
not guarantee atomicity between them for an atomic write operation [19]. The increase in
parallelism may further expose more shorn writes.

At the file system level, a shorn write is not detected until its manifestation during a
later read operation, where the file system sees a 4KB block, part of which contains data
from the most recent update to the block, while the remaining part contains either old or
zeroed out data (if the block was recently erased). While this could be viewed as a special
form of silent bit corruption, we consider this as a separate category in terms of how it
manifests at the file system level (called “Shorn Write” corresponding to column (d) in
Table 2.1). This form of corruption creates a particular pattern (each sequence of 512 bytes
within a 4KB block is either completely corrupted or completely correct), compared to the
more random corruption event referred to by column (c).

In [202], the authors observe shorn writes manifesting in two patterns, where only
the first 3/8th or the first 7/8th of a block gets written and the rest is not. Similarly, in
our experiments, we keep only the first 3/8th of a 4KB block. We assume the block has
been successfully erased, so the rest of the block remains zeroed out. Our module can be
configured to test other shorn write sizes and patterns as well.

Dropped writes: The authors in [202] observe cases where an SSD internal write op-
eration gets dropped even after an explicit cache flush (e.g. in the case of a power fault
when the update was in the SSD’s cache, but not persisted to flash). If the dropped write
relates to FTL metadata, in particular to the L2P mapping, this could manifest as a “Read
I/O error”, “Write I/O error” or “Corruption” on a subsequent read or write of the data.
If the dropped write relates to a file system write, the result is the same as if the file
system had never issued the corresponding write. We create a separate category for this
manifestation which we refer to as “Lost Write” (column (e) in Table 2.1).

Incomplete Program operation: This refers to the situation where a flash program
operation does not fully complete (without the FTL noticing), so only part of a flash page
gets written. Such scenarios were observed, for example, under power faults [202]. At the
file system level, this manifests as a “Corruption” during a subsequent read of the data.
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SSD/Flash Errors (a) (b) (c) (d) (e)
Uncorrectable Bit Corruption ✓

Silent Bit Corruption ✓

FTL Metadata Corruption ✓ ✓ ✓

Misdirected Writes ✓ ✓

Shorn Writes ✓

Dropped Write ✓ ✓ ✓ ✓

Incomplete Program Operation ✓ ✓

Incomplete Erase Operation ✓

Table 2.1: Different types of flash errors and their manifestation in the file system.
(a) Read I/O error (b) Write I/O error (c) Corruption (d) Shorn Write (e) Lost
Write.

Incomplete Erase operation: This refers to the situation where a flash erase operation
does not completely erase a flash erase block (without the FTL detecting and correcting
this problem). Incomplete erase operations have been observed under power faults [202].
They could also occur when flash erase blocks wear-out and the FTL does not handle
a failed erase operation properly. Subsequent program operations to the affected erase
block can result in incorrectly written data and consequently “Corruption”, when this
data is later read by the file system.

2.4.2 Comparison with HDD faults

We note that there are also HDD-specific faults that would manifest in a similar way at
the file system level. However, the mechanisms that cause faults within each medium
are different and can for example affect the frequency of observed errors. One such case
are uncorrectable read errors which have been observed at a much higher frequency in
production systems using SSDs than HDDs [164], a trend that will likely only get worse
with QLC. There are faults though whose manifestation does actually differ from HDDs
to SSDs, due to inherent differences in their overall design and operation. For instance, a
part affected by a shorn write may contain previously written data in the case of an HDD
block, but would contain zeroed out data if that area within the SSD has been correctly
erased. In addition, the large degree of parallelism inside SSDs makes correctness under
power faults significantly more challenging than for HDDs (for example, ensuring atomic
writes across parallel units). Finally, file systems might modify their behavior and apply
different fault recovery mechanisms for SSDs and HDDs. For example, Btrfs turns off
metadata duplication by default when deployed on top of an SSD.
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Programs
mount, umount, open, creat, access, stat, lstat, chmod, chown,
utime, rename, read, write, truncate, readlink, symlink,
unlink, chdir, rmdir, mkdir, getdirentries, chroot

Table 2.2: The programs used in our study. Each one stresses a single system call
and is invoked several times under different file system images to increase coverage.

2.4.3 Device Mapper Tool for Error Emulation

The key observation from Section 2.4 is that all SSD faults we consider manifest in one of
five ways, corresponding to the five columns (a) to (e) in Table 2.1. This section describes
a device mapper tool we created to emulate all five scenarios.

In order to emulate SSD error modes and observe each individual file system’s re-
sponse, we need to intercept the block I/O requests between the file system and the block
device. We leverage the Linux device mapper framework to create a virtual block device
that intercepts requests between the file system and the underlying physical device. This
allows us to operate on block I/O requests and simulate faults as if they originate from a
physical device. It also helps us observe the file system’s reaction without modifying its
source code. In this way, we can perform tracing, parse file system metadata, and alter
block contents online, for both read and write requests, while the file system is mounted.
For this study, we use the Linux kernel version 4.17.

Our module can intercept read and write requests for selected blocks as they pass
through the block layer and return an error code to the file system, emulating categories
(a) “Read Error” and (b) “Write Error” in Table 2.1. Possible parameters include the re-
quest’s type (read/write), block number, and data structure type. In the case of multiple
accesses to the same block, one particular access can be targeted. We also support cor-
ruption of specific data structures, fields and bytes within blocks, allowing us to emulate
category (c) “Corruption”. The module can selectively shear multiple sectors of a block
before sending it to the file system or writing it on disk, emulating category (d) “Shorn
Write”. Our module can further drop one or more blocks while writing the blocks cor-
responding to a file system operation, emulating the last category (e) “Lost Write”. The
module’s API is generic across file systems and can be expanded to different file systems.
Our module can be found at [62].

2.4.4 Test Programs

We perform injection experiments while executing test programs chosen to exercise dif-
ferent parts of the POSIX API, similar to the “singlets” used by Prabhakaran et al. [143].
Each individual program focuses on one system call, such as mkdir or write. Table 2.2
lists all the test programs that we used in our study. For each test program, we populate
the disk with different files and directory structures to increase code coverage. For exam-
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ple, we generate small files that are stored inline within an inode, as well as large files
that use indirect blocks. All our programs pedantically follow POSIX semantics; they call
fsync(2) and close(2), and check the return values to ensure that data and metadata
has successfully persisted to the underlying storage device.

2.4.5 Targeted Error Injection

Our goal is to understand the effect of block I/O errors and corruption in detail depending
on which part of a file system is affected. That means our error injection testbed requires
the ability to target specific data structures and specific fields within a data structure for
error injection, rather than randomly injecting errors. We therefore need to identify for
each program which data structures are involved and how the parts of the data structure
map to the sequence of block accesses generated by the program. We rely on a combina-
tion of approaches to derive the relationship between sequence of block accesses and data
structures within each file system.

First, we initialize the file system to a clean state with representative data. We then
run a specific test program (Table 2.2) on the file system image, capturing traces from
blktrace and the kernel to learn the program’s actual accessed blocks. Reading the file
system source code also enables us to put logic inside our module to interpret blocks as
requests pass through it. Lastly, we use offline tools such as dumpe2fs, btrfs-inspect,
and dump.f2fs to inspect changes to disk contents. Through these multiple techniques,
we can identify block types and specific data structures within the blocks. Table 2.3
summarizes our approach to identify different data structures in each of the file systems.

After identifying all the relevant data structures for each program, we re-initialize the
disk image and repeat test program execution for error injection experiments. We use the
same tools, along with our module, to inject errors to specific targets. A single block I/O
error or data corruption is injected into a block or data structure during each execution.
This allows us to achieve better isolation and characterization of the file system’s reaction
to the injected error.

Our error injection experiments allow us to measure both immediate and longer-term
effects of device faults. We can observe immediate effects on program execution for some
cases, such as user space errors or kernel panics (e.g. from write I/O errors). At the end
of each test program execution, we unmount the file system and perform several offline
tests to verify the consistency of the disk image, regardless of whether the corruption
was silent or not (e.g. persisting lost/shorn writes): we invoke the file system’s integrity
checker (fsck), check if the file system is mountable, and check whether the program’s
operations have been successfully persisted by comparing the resultant disk image against
the expected one. We also explore longer-term effects of faults where the test programs
access data that were previously persisted with errors (read I/O, reading corrupted or
shorn write data). In this study, we use btrfs-progs v4.4, e2fsprogs v1.42.13, and f2fs-tools
v1.10.0 for our error injection experiments.
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ext4
Data Structure Approach
super block, group descriptor, inode
blocks, block bmap, inode bmap

dumpe2fs

dir_entry debugfs, get block inode, stat on
inode number, check file type

extent debugfs, check for extent of a file
or directory path

data debugfs, get block inode, stat on
inode number, check file type

journal debugfs, check if parent inode
number is 8

Btrfs
Data Structure Approach
DIR_ITEM, DIR_INDEX, INODE_REF,
INODE_DATA, EXTENT_DATA

btrfs-debug-tree

F2FS
Data Structure Approach
superblock, checkpoint, SIT, NAT, inode,
d/ind node, dir. block, data

device mapper module

Table 2.3: The approach to type blocks collected using either blktrace or our
own device mapper module.

2.4.6 Detection and Recovery Taxonomy

We report the detection and recovery policies of all three file systems with respect to the
data structures involved. We characterize each file system’s reaction via all observable
interfaces: system call return values, changes to the disk image, log messages, and any
side-effects to the system (such as kernel panics). We classify the file system’s detection
and recovery based on a taxonomy that was inspired by previous work [143], but with
some new extensions: unlike [143], we also experiment with file system integrity checkers
and their ability to detect and recover from errors that the file system might not be able
to deal with and as such, we add a few additional categories within the taxonomy that
pertain to file system checkers. Also, we create a separate category for the case where
the file system is left in its previous consistent state prior to the execution of the program
(RPrevious). In particular, if the program involves updates on the system’s metadata, none
of it is reflected to the file system. Table 2.4 presents our taxonomy in detail.

A file system can detect the injected errors online by checking the return value of the
block I/O request (DErrorCode), inspecting the incoming data and performing some sanity
checks (DSanity), or using redundancies, e.g. in the form of checksums (DRedundancy). A
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Symbol Level Description
⃝ DZero No detection.
– DErrorCode Check the error code returned from the lower levels.
\ DSanity Check for invalid values within the contents of a block.
/ DRedundancy Checksums, replicas, or any other form of redundancy.
| DFsck Detect error using the system checker.
⃝ RZero No attempt to recover.
/ RRetry Retry the operation first before returning an error.
| RPropagate Error code propagated to the user space.
\ RPrevious File system resumes operation from the state exactly before the

operation occurred.
– RStop The operation is terminated (either gracefully or abruptly); the

file system may be mounted as read-only.
■ RFsck_Fail Recovery failed, the file system cannot be mounted.
■ RFsck_Partial The file system is mountable, but it has experienced data loss in

addition to operation failure.
■ RFsck_Orig Current operation fails, file system restored to pre-operation

state.
■ RFsck_Full The file system is fully repaired and its state is the same with the

one generated by the execution where the operation succeeded
without any errors.

Table 2.4: The levels of our detection and recovery taxonomy.

successful detection should alert the user via system call return values or log messages.
To recover from errors, the file system can take several actions. The most basic action is
simply passing along the error code from the block layer (RPropagate). The file system can
also decide to terminate the execution of the system call, either gracefully via transaction
abort, or abruptly such as crashing the kernel (RStop). Lastly, the file system can perform
retries (RRetry) in case the error is transient, or use its redundancy data structures to
recover the data.

It is important to note that for block I/O errors, the actual data stored in the block is
not passed to the disk or the file system. Hence, no sanity check can be performed and
DSanity is not applicable. Similarly, for silent data corruption experiments, our module
does not return an error code, so DErrorCode is not relevant.

We also run each file system’s fsck utility and report on its ability to detect and recover
file systems errors offline. It may employ different detection and recovery strategies than
the online file system. The different categories for fsck recovery are shown in Table 2.4.

2.4.7 I/O Latency Injection

I/O latency is another characteristic that can potentially impact the reliability of the file
system. Flash devices are well known to suffer from latency spikes due to various reasons,
from internal ECC calculations to FTL garbage collection [199, 193]. Some of these have
been categorized as fail-slow failures in the literature. While the increased latency may not
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affect the correctness of the individual device I/O, it can potentially have an impact on
higher-level software [68, 136]. To investigate whether increased I/O delays would have
adverse effects on the file system, we inject artificial delays to targeted block requests using
our module. We can specify delays from millisecond granularities to many seconds, and
can delay any individual block request during a sequence of accesses.

2.5 Results

Tables 2.5 and 2.6 provide a high-level summary of the results from our error injection ex-
periments following the detection and recovery taxonomy from Table 2.4. Our results are
organized into six columns corresponding to the fault modes we emulate. The six tables
in each column represent the fault detection and recovery results for each file system un-
der a particular fault. The columns (a-w) in each table correspond to the programs listed
in Table 2.2, which specify the operation during which the fault mode was encountered,
and rows correspond to the file system specific data structure, that was affected by the
fault.

Note that the columns in Tables 2.5 and 2.6 have a one-to-one correspondence to the
fault modes described in Section 2.4 (Table 2.1), with the exception of shorn writes. After
a shorn write is injected during test program execution and persisted to the flash device,
we examine two scenarios where the persisted partial data is accessed again: during fsck
invocation (Shorn Write + Fsck column) and test program execution (Shorn Write + Program
Read column).

2.5.1 Btrfs

Btrfs [154] is a copy-on-write file system that uses a B-tree as its main on-disk data struc-
ture. An overwrite of any data structure or block leads to the creation of a new block with
the updated contents.

B-Tree Semantics.

All B-trees in the file system contain multiple tree nodes. Each tree node contains a
reference count. The reference count of a child node is incremented each time a new or
updated parent node points to the child node. Similarly, a child node’s reference count
is decremented upon the deletion of any of its parent nodes. When the reference count
becomes equal to zero, then the corresponding child node is reclaimed by the file system.

We observe in Table 2.5 that Btrfs is the only file system that consistently detects all
I/O errors as well as corruption events, including those affecting data (rather than only
metadata). It achieves this through the extensive use of checksums.

However, we find that Btrfs is much less successful in recovering from any issues
than the other two file systems. It is the only file system where four of the six error
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Table 2.5: The results of our analysis on the detection and recovery policies of Btrfs, ext4, and
F2FS for different read, write, and corruption experiments. The programs that were used are: a:
access b: truncate c: open d: chmod e: chown f: utimes g: read h: rename i: stat j: lstat k: readlink
l: symlink m: unlink n: chdir o: rmdir p: mkdir q: write r: getdirentries s: creat t: mount v:
umount w: chroot. An empty box indicates that the block type is not applicable to the program in
execution. Superimposed symbols indicate that multiple mechanisms were used.

⃝ DZero – DErrorCode \ DSanity / DRedundancy | DFsck

⃝ RZero / RRetry | RPropagate \ RPrevious – RStop
■ RFsck_Full ■ RFsck_Orig ■ RFsck_Partial ■ RFsck_Fail ■ Crash/Panic+RFsck_fail
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Table 2.6: The results of our analysis on the detection and recovery policies of Btrfs, ext4, and
F2FS for different shorn write + program read, shorn write + fsck, and lost write experiments. The
programs that were used are: a: access b: truncate c: open d: chmod e: chown f: utimes g: read
h: rename i: stat j: lstat k: readlink l: symlink m: unlink n: chdir o: rmdir p: mkdir q: write
r: getdirentries s: creat t: mount v: umount w: chroot. An empty box indicates that the block
type is not applicable to the program in execution. Superimposed symbols indicate that multiple
mechanisms were used.

⃝ DZero – DErrorCode \ DSanity / DRedundancy | DFsck

⃝ RZero / RRetry | RPropagate \ RPrevious – RStop
■ RFsck_Full ■ RFsck_Orig ■ RFsck_Partial ■ RFsck_Fail ■ Crash/Panic+RFsck_fail
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modes can lead to a kernel crash or panic and subsequently a file system that cannot be
mounted even after running btrfsck. It also has the largest number of scenarios that
result in an unmountable file system after btrfsck (even if not preceded by a kernel
crash). Furthermore, we find that node level checksums, although good for detecting
block corruption, they remove an entire node even if a single byte becomes corrupted. As
a result, large chunks of data are removed, causing data loss.

The copy-on-write nature of Btrfs makes it efficient for creating snapshots and sub-
volumes. Each instance of the Btrfs file system contains one or more subvolumes. Each
subvolume may contain one or more files and directories. Subvolumes may also share file-
extents. For every subvolume, a snapshot can be created as a read-only or a read-write
point-in-time image of the file system. Any changes made to a newly created subvolume
do not effect the files and directories of the main subvolume. Btrfs can be mounted using
the default subvolume at root directory, or any other subvolume snapshot which appear
as directories within the root directory of the file system.

Before we describe the results in more detail below, we provide a brief summary of
Btrfs data structures. The Btrfs file system arranges data in the form of a forest of trees,
each serving a specific purpose (e.g. file system tree (fstree) stores file system metadata,
checksum tree (csumtree) stores file/directory checksums). Btrfs maintains checksums for
all metadata within tree nodes. Checksum for data is computed and stored separately
in a checksum tree. A root tree stores the location of the root of all other trees in the file
system. Since Btrfs is a copy-on-write file system, all changes made on a tree node are
first written to a different location on disk. The location of the new tree nodes are then
propagated across the internal nodes up to the root of the file system trees. Finally, the
root tree needs to be updated with the location of the other changed file system trees.

Read errors.

All errors get detected (DErrorCode) and registered in the operating system’s message log,
and the current operation is terminated (RStop). btrfsck is able to run, detect and correct
the file system in most cases, with two exceptions. When the fstree structure is affected,
btrfsck removes blocks that are not readable and returns an I/O error. Another exception
is when a read I/O error is encountered while accessing key tree structures during a mount

procedure: mount fails and btrfsck is unable to repair the file system.

Corruption.

Corruption of any B-tree node. Checksums inside each tree node enable reliable de-
tection of corruption; however, Btrfs employs a different recovery protocol based on the
type of the underlying device. When Btrfs is deployed on top of a hard disk, it provides
recovery from metadata corruption using metadata replication. Specifically, reading a cor-
rupted block leads to btrfs-scrub being invoked, which replaces the corrupted primary
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metadata block with its replica. Note that btrfs-scrub does not have to scan the entire
file system; only the replica is read to restore the corrupted block. However, in case the
underlying device is an SSD, Btrfs turns off metadata replication by default for two rea-
sons [23]. First, an SSD can remap a primary block and its replica internally to a single
physical location, thus deduplicating them. Second, SSD controllers may put data written
together in a short time span into the same physical storage unit (i.e. cell, erase block,
etc.), which is also a unit of SSD failures. Therefore, btrfs-scrub is never invoked in the
case of SSDs, as there is no metadata duplication. This design choice causes a single bit
flip of fstree to wipe out files and entire directories within a B-Tree node. If a corrupted
tree node is encountered while mount reads in all metadata trees into memory, the con-
sequences are even more severe: the operation fails and the disk is left in an inconsistent
and irreparable state, even after running btrfsck.

Directory corruption. We observe that when a node corruption affects a directory,
the corruption could actually be recovered, but Btrfs fails to do so. For performance
reasons, Btrfs maintains two independent data structures for a directory (DIR_ITEM and
DIR_INDEX). If one of these two becomes corrupted, the other data structure is not used
to restore the directory. This is surprising considering that the existing redundancy could
easily be leveraged for increased reliability.

Write errors.

Superblock & Write I/O errors. Btrfs has multiple copies of its superblock, but interest-
ingly, the recovery policy upon a write error is not identical for all copies. The superblocks
are located at fixed locations on the disk and are updated at every write operation. The
replicas are kept consistent, which differs from ext4’s behavior. We observe that a write
I/O error while updating the primary superblock is considered severe; the operation is
aborted and the file system remounts as read-only. On the other hand, write I/O errors for
the secondary copies of the superblock are detected, but the overall operation completes
successfully, and the secondary copy is not updated. While this allows the file system
to continue writing, this is a violation of the implicit consistency guarantee between all
superblocks, which may lead to problems in the future, as the system operates with a
reduced number of superblock copies.

Tree Node & Write I/O errors. A write I/O error on a tree node is registered in the
operating system’s message log, but due to the file system’s asynchronous nature, errors
cannot be directly propagated back to the user application that wrote the data. In almost
all cases, the file system is forced to mount as read-only (RStop). A subsequent unmount and
btrfsck run in repair mode makes the device unreadable for extentTree, logTree, rootTree
and the root node of the fstree.
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Shorn Write + Program Read.

We observe that the behavior of Btrfs during a read of a shorn block is similar to the one
we observed earlier for corruption. The only exception is the superblock, as its size is
smaller than the 3/8th of the block and it does not get affected.

Shorn Write + Fsck.

Shorn writes on root tree cause the file system to become unmountable and unrecover-
able even after a btrfsck operation. We also find kernel panics during shorn writes as
described in Section 2.5.1.

Lost Writes.

Errors get detected only during btrfsck. They do not get detected or propagated to
user space during normal operation. btrfsck is unable to recover the file system, which
is rendered unmountable due to corruption. The only recoverable case is a lost write
to the superblock; for the remaining data structures, the file system eventually becomes
unmountable.

Subvolume creation.

create_pending_snapshots ( )
create_pending_snapshot ( ) // BUG( ) on non−zero value

b t r f s _ s e t _ i n o d e _ i n d e x ( )
b t r f s_se t_ inode_ index_count ( )

b t r f s _ s e a r c h _ s l o t ( )
read_block_for_search ( )

b t r f s _ b u f f e r _ u p t o d a t e ( ) // re turns −EIO
b t r f s _ v e r i f y _ l e v e l _ k e y ( ) // re turns −EUCLEAN

Listing 2.1: Error propagation during Btrfs snapshot creation

Table 2.7 summarizes our error injection results regarding subvolume creation. The
data structures updated are the root tree, superblock and the file system extent tree. We note
that a write error on the root tree leads to an unmountable and unrecoverable file system
- similar to our test programs in Table 2.5 and Table 2.6. Although btrfsck is able to
detect the errors, it fails to recover the file system which remains unmountable. Write I/O
errors related to the extent tree are detected by the file system and the subvolume creation
procedure is terminated. However, shorn writes and lost writes on the extent tree are not
detected and not repaired by the file system checker. An error on the superblock during
subvolume creation results in an unmountable file system only during a shorn write.
Write I/O errors are detected by the file system; in this case, the subvolume creation
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operation is terminated but the superblock is recovered using the secondary superblock
replica. A lost write on the primary superblock is recovered from the backup replica and
the requested subvolume is successfully created.

Snapshot creation.

Table 2.8 summarizes error injection results for snapshot creation. A snapshot is also a
subvolume that has the same initial contents as the original subvolume. To ensure that the
snapshot creation workflow accesses a range of data structures, we first create a snapshot
of the root subvolume after running the initialization workload. We then create a snapshot
of the initialization workload, which leads to a range of block-type accesses. In addition to
trees that get accessed by test programs in 2.5 and 2.6, snapshot creation also updates the
uuid tree to create a persistent universally unique identifier (uuid) to subvolume mapping
for fast access.

For all read related errors, we find that errors related to an fstree block lead to a kernel
panic that has the same root cause as the one shown in Listing 2.1. During a fstree read
corruption or a shorn write, btrfs_verify_level_key() fails and an EIO is returned.
During a read I/O error, btrfs_buffer_uptodate() checks the state of the read buffer,
which is set to EXTENT_BUFFER_READ_ERR during the read I/O request. Both errors are
propagated upwards to btrfs_

create_pending_snapshot() that crashes with a generic BUG() statement1. This shows
that there are still loose ends to tie in file system workflows when it comes to handling
media corruptions, and file system developers should gracefully terminate upon receiving
media errors from the underlying storage medium. Finally, a read error on an extent tree
does not lead to a file system inconsistency, is not detected by the file system and leads to
successful snapshot creation.

While analyzing write errors, we find that all write errors on the root tree remain
undetected and lead to an unmountable file system, similar to our observations for the
test programs in Tables 2.5, 2.6 and subvolumes in Table 2.7. A write I/O error on the
superblock and the uuid tree is detected and stopped by the file system. A shorn write and
lost write on the root tree, uuid tree and superblock renders the file system unmountable,
except a lost write on the superblock, which can be recovered using the backup superblock
replica.

Bugs found/reported.

We submitted 2 bug reports for Btrfs. The first bug report is related to the corruption of
a DIR_INDEX key. The file system was able to detect the corruption but deadlocks while
listing the directory entries. This bug was fixed in a later version [22]. The second bug

1 BUG() is a statement used as a debugging help and indicates that something went wrong inside the kernel.
In this case, the kernel prints out the contents of the registers and the stack trace associated with the current
process and then immediately kills the process.
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R W C SW+PR SW+F LW

fs tree –| –| |

root tree | | |

superblock –| | ⃝
D

et
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on

extent tree ⃝–| –| | | | ⃝
uuid tree

R W C SW+PR SW+F LW

fs tree | | |

root tree ⃝ ⃝ ⃝
superblock | | ⃝

R
ec

ov
er

y

extent tree ⃝ | ⃝ | | ⃝
uuid tree

Table 2.7: Btrfs subvolume creation

R W C SW+PR SW+F LW

fs tree | | |

root tree ⃝ ⃝ ⃝
superblock –| | ⃝

D
et

ec
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on

extent tree | | |

uuid tree –| ⃝ ⃝

R W C SW+PR SW+F LW

fs tree – – –

root tree – ⃝ ⃝
superblock | ⃝ |

R
ec

ov
er

y

extent tree ⃝ ⃝ ⃝
uuid tree | ⃝ ⃝

Table 2.8: Btrfs snapshot creation

Table 2.9: *
The results of our analysis on the detection and recovery policies of Btrfs during subvolume and snapshot
creation. The error modes that were used are: R: Read I/O, W: Write I/O, C: Corruption, SW+PR: Shorn
Write + Program Read, SW+F: Shorn Write + Fsck, and LW: Lost Write. An empty box indicates that
the block type is not applicable to the program in execution. Superimposed symbols indicate that multiple
mechanisms were used.

⃝ DZero – DErrorCode \ DSanity / DRedundancy | DFsck

⃝ RZero / RRetry | RPropagate \ RPrevious – RStop
■ RFsck_Full ■ RFsck_Orig ■ RFsck_Partial ■ RFsck_Fail ■ Crash/Panic+RFsck_fail

is related to read I/O errors specifically on the root directory, which can cause a kernel
panic for certain programs. We encountered 2 additional bugs during a shorn write that
result in a kernel panic, both having the same root cause. The first case involves a shorn
write to the root of the fstree, while the second case involves a shorn write to the root of
the extent tree. In both cases, there is a mismatch in the leaf node size, which forces Btrfs to
print the entire tree in the operating system’s message log. While printing the leaf block,
another kernel panic occurs where the size of a Btrfs item does not match the Btrfs header.
Rebooting the kernel and running btrfsck fails to recover the file system.

2.5.2 ext4

ext4 is the default file system for many widely used Linux distributions and Android
devices. The entire file system is divided into multiple block groups. Each block group
contains a group descriptor table, an inode table, a block and inode bitmap, and free
blocks that can be used for creating either a file or a directory. Like Btrfs and F2FS, ext4
also has a superblock. ext4 is an in-place or overwrite file system, i.e. any changes made
to any data structure in the file system overwrite its previous version.

ext4 makes use of a journal to provide recovery against crash faults. The journal is
a circular log where all metadata updates are sequentially written before the main file
system is updated. First, data corresponding to a file system operation is written to the
in-place location of the file system. Next, a transaction log is written on the journal. Once
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the transaction log is written on the journal, the transaction is said to be committed. When
the journal is full or sufficient time has elapsed, a checkpoint operation takes place that
writes the in-memory metadata buffers to the in-place metadata location on the disk. On
the event of a crash before the transaction is committed, the file system transaction is
discarded. If the commit has taken place successfully on the journal but the transaction
has not been checkpointed, the file system replays the journal during remount, where all
metadata updates that were committed on the journal are recovered from the journal and
written to the main file system.

The ext4 file system employs physical journaling, where all metadata blocks that have
to be written to the main file system are logged as-is on the journal. Each transaction
written on the ext4 journal consists of three types of blocks - the transaction descriptor
block, the metadata blocks, and the transaction commit block. The transaction descriptor
block contains important fields like the transaction id and metadata tags, which denote the
metadata block numbers that are part of the current transaction, while the transaction
commit block signifies the end of the transaction.

ext4 is able to recover from an impressively large range of fault scenarios. Unlike Btrfs,
it makes little use of checksums unless the metadata_csum feature is enabled explicitly
during file system creation. Furthermore, it deploys a very rich set of sanity checks when
reading data structures such as directories, inodes and extents2, which helps it deal with
corruptions.

It is also the only one of the three file systems that is able to recover lost writes of
multiple data structures, due to its in-place nature of writes and a robust file system
checker. However, there are a few exceptions where the corresponding issue remains
uncorrectable (see the red cells in Table 2.6 associated with ext4’s recovery).

Furthermore, we observe instances of data loss caused by shorn and lost writes involv-
ing write programs, such as create and rmdir. For shorn writes, ext4 may incur silent
errors, and not notify the user about the errors.

Before describing some specific issues below, we point out that our ext4 results are very
different from those reported for ext3 in [143], where a large number of corruption events
and several read and write I/O errors were not detected or handled properly. Clearly,
in the 13 years that have passed since then, ext developers have made improvements in
reliability a priority, potentially motivated by the findings in [143].

I/O errors, corruption and shorn writes of inodes.

The most common scenario leading to data loss (but still a consistent file system) is a
fault, in particular read I/O error, corruption or shorn write, that affects an inode, which
results in the data of all files having their inode structure stored inside the affected inode
block becoming inaccessible.

2 We report failure results for both directory and file extents together. Since our pre-workload generation
creates a number of files and directories in the root directory, at least 1 extent block corresponding to the
root directory gets accessed by all programs.
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R W C SW LW

Superblock – –| –| ⃝ ⃝
Descriptor Block –| –| ⃝| –| ⃝
Metadata –| –| –| –| ⃝

D
et

ec
ti

on

Commit Block –| –| ⃝ ⃝ ⃝

R W C SW LW

Superblock –| –| –| ⃝ ⃝
Descriptor Block –| – ⃝ –| ⃝
Metadata –| – –| –| ⃝

R
ec

ov
er

y

Commit Block –| – ⃝ ⃝ ⃝

Table 2.10: The results of our analysis on the detection and recovery poli-
cies of ext4 during journal replay. The error modes that were used are: R:
Read I/O, W: Write I/O, C: Corruption, SW: Shorn Write, and LW: Lost
Write. An empty box indicates that the block type is not applicable to the program
in execution. Superimposed symbols indicate that multiple mechanisms were used.

⃝ DZero – DErrorCode \ DSanity / DRedundancy | DFsck

⃝ RZero / RRetry | RPropagate \ RPrevious – RStop
■ RFsck_Full ■ RFsck_Orig ■ RFsck_Partial ■ RFsck_Fail ■

Crash/Panic+RFsck_fail

Read I/O errors, corruption and shorn writes of directory blocks.

A shorn write involving a directory block is detected by the file system and eventually,
the corresponding files and directories are removed. Empty files are completely removed
by e2fsck by default, while non-empty files are placed into the lost+found directory. How-
ever, the parent-child relationship is lost, which we encode as RFsck_Partial.

Write I/O errors and group descriptors.

There is only one scenario where e2fsck does not achieve at least partial success: When
e2fsck is invoked after a write error on a group descriptor, it tries to rebuild the group
descriptor and write it to the same on-disk location. However, as it is the same on-disk
location that generated the initial error, e2fsck encounters the same write error and keeps
restarting, running into an infinite loop for 3 cases (see RFsck_Fail).

Read I/O error during mount.

ext4 fails to complete the mount operation if a read I/O error occurs while reading a
critical metadata structure. In this case, the file system cannot be mounted even after
invoking e2fsck. We observe similar behavior for the other two file systems as well.
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Journal corruption.

In all our previous experiments, listed in Table 2.5 and Table 2.6, we safely unmount the
file system before checking for error detection and recovery. In order to test the resiliency
of ext4’s journal against corruptions, we use an alternative approach to ensure that the
data structures logged on the journal are accessed during remount. Since each transaction
written on the journal is accessed only if an unclean shutdown occurs, we simulate im-
proper shutdown by forcefully rebooting the system. Once the system reboots, ext4 reads
and replays journal contents in three passes. We analyze the effect of error injection on
different journal data structures while rebooting and describe our observations. Note that
unlike our previous experiments, we show both Shorn Read + Program Write and Shorn
Write + Fsck in the same table as our test program in both cases is the mount operation. A
repeated I/O error on accessing the journal superblock leads to an unmountable file system.
Although e2fsck detects the error, it is unable to recover the file system. A corruption of
the journal superblock is fixed by the file system checker. Both shorn writes and lost writes
of the journal superblock remain undetected; however, a subsequent file system mount op-
eration is successful. We observe two cases where silent data loss might occur while the
ext4 file system is being mounted; a corruption or a lost write of the journal descriptor block
or the journal commit block aborts the journal replay procedure. Internally, journal replay
consists of three passes - the scan pass, the revoke pass, and the replay pass. During the scan
pass, the file system checks the integrity of different transactions logged on the journal. To
identify any transaction, a journal header is added at the beginning of all journal metadata
blocks. When a corruption or a lost write occurs, the scan pass terminates as it cannot find
the relevant journal header magic number at the beginning of the expected block; as a re-
sult, all subsequent transactions are discarded. A subsequent mount operation takes place
without any errors, but a recursive directory traversal reveals metadata inconsistency, that
can be fixed by a subsequent e2fsck invocation.

A write I/O error on both the journal descriptor block and the journal commit block is
detected and the file system stops all subsequent write operations by remounting as read-
only. A e2fsck scan fixes any inconsistencies and the file system becomes mountable once
again. A lost write of both the journal descriptor block and the journal commit block is not
detected during file system operation. A subsequent remount and recursive scan of the
file system reveals metadata inconsistency which is successfully repaired by a subsequent
e2fsck invocation. Any error to the journal metadata block is not detected during a sub-
sequent mount operation. A recursive directory scan of the file system reveals metadata
inconsistency which is subsequently fixed using e2fsck.

It is important to note that the role of journaling is to ensure that the time-consuming
fsck operation does not run each time a crash occurs. However, when a journal corruption
takes place, we observe that e2fsck still needs to be invoked in order to ensure file system
consistency. e2fsck replays the journal and subsequently performs a full file system check
to ensure the integrity of the file system, which defeats the purpose of journaling.
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2.5.3 F2FS

F2FS is a log-structured file system designed for devices that use an FTL. The file system
is composed of fixed-size segments, which are groups of blocks. The default size of a
block is equal to 4K, while that of a segment is 2MB, which corresponds to 512 blocks in
each segment. At any given time, data and metadata are separately written into 6 (default
configuration) active segments, called log segments, which are grouped by data/metadata,
files/directories, and other heuristics. This multi-head logging allows similar blocks to be
placed together and increases the number of sequential write operations.

F2FS divides its logical address space into the metadata region and the main area. The
metadata region is stored at a fixed location and includes the Checkpoint (CP), the Seg-
ment Information Table (SIT), and the Node Address Table (NAT). The checkpoint stores
information about the state of the file system and is used to recover from system crashes.
SIT maintains information on the segments (the unit at which F2FS allocates storage blocks)
in the main area, while NAT contains the block addresses of the file system’s nodes, which
comprise file/directory inodes, direct, and indirect nodes. F2FS uses a two-location ap-
proach for these three structures. In particular, one of the two copies is “active” and used
to initialize the file system’s state during mount, while the other is a shadow copy that gets
updated during the file system’s execution. Finally, each copy of the checkpoint points to
its corresponding copy of SIT and NAT.

F2FS’s behavior when encountering read/write errors or corruption differs signifi-
cantly from that of ext4 and Btrfs. While read failures are detected and appropriately
propagated in nearly all scenarios, we observe that F2FS consistently fails to detect and
report any write errors, independently of the operation that encounters them and the af-
fected data structure. Furthermore, our results indicate that F2FS is not able to deal with
lost and shorn writes effectively and eventually suffers from data loss. In some cases, a
run of the file system’s checker (called fsck.f2fs) can bring the system to a consistent
state, but in other cases, the consequences are severe. We describe some of these cases in
more detail below.

Read errors.

Checkpoint / NAT / SIT blocks & read errors. During its mount operation, if F2FS en-
counters a read I/O error while trying to fetch any of the checkpoint, NAT, or SIT blocks,
then it mounts as read-only. Specifically for NAT and SIT blocks, the file system retries the
operation before eventually switching to a read-only mode. Additionally, F2FS cannot be
mounted if the inode associated with the root directory cannot be accessed. In general,
fsck.f2fs cannot help the file system recover from the error since it terminates with an
assertion error every time it cannot read a block from the disk.
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Write errors & Lost Writes.

We observe that F2FS does not detect write errors (as injected by our framework), lead-
ing to different issues, such as corruption, reading garbage values, and potentially data
loss. As a result, during our experiments, newly created or previously existing entries
have been completely discarded from the system, applications have received garbage val-
ues, and finally, the file system has experienced data loss due to an incomplete recovery
protocol (i.e. when fsck.f2fs is invoked). We describe several cases in detail below.

Inodes & write errors. We observe that when the write operation for an updated
inode returns an error, the file system does not detect this and eventually experiences
data loss. This happens because the updated inode is never persisted on disk, but the file
system’s metadata has been updated to point to the new location. When called fsck.f2fs

is invoked, it detects that an invalid inode is written on disk and discards the entry from
the system, leading to loss of the corresponding file.

Direct/indirect nodes & write errors. We observe that errors when writing direct
or indirect nodes are not detected and recovered. As a result, the file system might
later access these blocks and read garbage data that is interpreted to locate blocks. If
this garbage data can be interpreted as a valid file system location, then a read by an
application might receive garbage. If it is not a valid file system location, then an error is
returned to the application.

Directory entries & write errors. When the structure of a directory is modified by
inserting or removing entries, then the file system takes a new checkpoint. However,
when our error injecting framework prevents the write operation of the block containing
the directory’s entries from occurring, we observe that eventually, the file system experi-
ences data loss. Once again, the file system’s metadata is updated during the checkpoint
procedure and stores a new on-disk location for the block containing the directory’s en-
tries. Since the write operation for that particular block never occurred, all the entries in
that block are marked as unreachable during the invocation of fsck.f2fs. Individual sub-
directories are never created inside the lost_found directory; only regular files are moved
into that directory. As all files are stored together inside the lost_found directory, if there
are different files with the same name, only one is stored in the end.

Data & write errors. We observe that errors during a write operation of a file’s data
(either involving a data block or an indirect node) go undetected and are not recovered.
In particular, if the update to the corresponding inode succeeds, but the write of the data
fails, an application later reading the data will receive garbage, instead of an error.

Lost writes.

The difference between a lost write and a write I/O error is that a lost write is silent, i.e.
the operation does not return with an error. Since F2FS does not detect write I/O errors,
lost writes have the same effect (as described above).
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Corruption.

Data corruption is reliably detected only for inodes and checkpoints, which are the only
data structures protected by checksums, but even for those two data structures, recovery
can be incomplete, resulting in the loss of files (and the data stored in them). The corrup-
tion of other data structures can lead to even more severe consequences. For example, the
corruption of the superblock can go undetected and lead to an unmountable file system,
even if the second copy of the superblock is intact. We have filed two bug reports related
to the issues we have identified and one has already resulted in a fix. Below we describe
some of the issues around corruption in more detail.

Inode block corruption. Inodes are one of only two F2FS data structures that are
protected by checksums, yet their corruption can still create severe problems. One such
scenario arises when the information stored in the footer section of an inode block is
corrupted. In this case, fsck.f2fs will discard the entry without even attempting to
create an entry in the lost_found directory, resulting in data loss.

Another scenario is when an inode associated with a directory is corrupted. Then
all the regular files stored inside that directory and its sub-directories are recursively
marked as unreachable by fsck.f2fs and are eventually moved to the lost_found directory
(provided that their inode is valid). However, we observe that fsck.f2fs does not attempt
to recreate the structure of sub-directories. It simply creates an entry in the lost_found
directory for regular files in the sub-directory tree, not sub-directories. As a result, if there
are different files with the same name (stored in different paths of the original hierarchy),
then only one is maintained at the end of the recovery procedure.

Checkpoint corruption. Checkpoints are the other data structure, besides inodes, that
is protected by checksums. We observe that issues only arise if both copies of a checkpoint
become corrupted, in which case the file system cannot be mounted. Otherwise, the
uncorrupted copy will be used during the system’s mount operation.

Superblock corruption. While there are two copies of the superblock, the detection
of corruption to the superblock relies completely on a set of sanity checks performed on
(most) of its fields, rather than checksums or comparison of the two copies. If sanity
checks identify an invalid value, then the backup copy is used for recovery. However,
our results show that the sanity checks are not capable of detecting all invalid values and
thus, depending on the corrupted field, the reliability of the file system can suffer.

One particularly dangerous situation is a corruption of the offset field, which is used to
calculate a checkpoint’s starting address inside the corresponding segment, as it causes the
file system to boot from an invalid checkpoint location during a mount operation and to
eventually hang during its unmount operation. We filed a bug report which has resulted
in a new patch that fixes this problem during the operation of fsck.f2fs; specifically,
the patch uses the (checksum-protected) checkpoint of the system to restore the correct
value. Future releases of F2FS will likely include a patch that enables checksums for the
superblock.
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Another problem with superblock corruption, albeit less severe, arises when the field
containing the counter of supported file extensions, which F2FS uses to identify cold data,
is corrupted. The corruption goes undetected and as a result, the corresponding file exten-
sions are not treated as expected. This might lead to file system performance problems,
but should not affect reliability or consistency.

SIT corruption. SIT blocks are not protected against corruption through any form of
redundancy. We find cases where the corruption of these blocks severely compromises
the consistency of the file system. For instance, we were able to corrupt a SIT block’s
bitmap (which keeps track of the allocated blocks inside a segment) in such a way that the
file system hit a bug during its mount operation and eventually, became unmountable.

Recently, a series of patches has been introduced to increase the sanity checks per-
formed every time a SIT block is read from the underlying storage device. The developers
have implemented more thorough and strict check statements, but still, these sanity checks
are not capable of capturing every single invalid value.

NAT corruption. This data structure is not protected against corruption and we ob-
serve several problems this can create. First, the node ID of an entry can be corrupted and
thus, point to another entry inside the file system, to an invalid entry or a non-existing
one. Second, the block address of an entry can be corrupted and thus, point to another
entry in the system or an invalid location. In both cases, the original entry is eventually
marked as unreachable by fsck.f2fs, since the reference to it is no longer available in-
side the NAT copy, and placed in the lost_found directory. As already mentioned, files
with identical names overwrite each other and eventually only one is stored inside the
lost_found directory.

Recently, the developers have implemented a few patches to increase the level of check
operations every time a NAT block is read from the underlying storage device. The new
check operations verify that both the node ID and the block address of a NAT entry
actually point to a valid entry and a valid location inside the file system respectively.
Nonetheless, these patch files are not able to capture the case where a NAT entry becomes
corrupted, but still points to a valid location inside the file system (i.e., the boundaries of
the systems are not violated).

Direct/Indirect Node corruption. These blocks are used to access the data of large
files and also, the entries of large directories (with multiple entries). Direct nodes contain
entries that point to on-disk blocks, while indirect nodes contain entries that point to
direct nodes. Neither single nor double indirect nodes are protected against corruption.
We observe that corruption of these nodes is not detected by the file system. Even when
an invocation of fsck.f2fs detects the corruption, problems can arise. For example, we
find a case where after the invocation of fsck.f2fs the system kept reporting the wrong
(corrupted) size for a file. As a result, when we tried to create a copy of the file, we
received a different content.

Directory entry corruption. Directory entries are stored and organized into blocks.
Currently, there is no mechanism to detect corruption of such a block and we observe
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numerous problems this can create. For example, when the field in a directory entry
that contains the length of the entry’s name is corrupted the file system returns garbage
information when we try to get the file’s status. Moreover, the field containing the node ID
of the corresponding inode can be corrupted and as a result point to any node currently
stored in the system. Finally, an entry can “disappear” by storing a zero value into the
corresponding index inside the directory’s bitmap.

In the last two cases, any affected entry is eventually marked as unreachable by fsck.f2fs,
since their parent directory does no longer point to it. As already mentioned, files
with identical names overwrite each other and eventually only one is stored inside the
lost_found directory.

Shorn Write + Program Read.

The results when a program reads a block previously affected by a shorn write are similar
to those for corruption, since shorn writes can be viewed as a special type of corruption.
The only exception is the superblock, as it is a small data structure that happened not to
be affected by our experiments.

Shorn Write + Fsck.

Directory entries and shorn writes. Blocks that contain directory entries are not pro-
tected against corruption. Therefore, a shorn write goes undetected and can cause several
problems. First, valid entries of the system “disappear” after invoking fsck.f2fs, in-
cluding the special entries that point to the current directory and its parent. Second, in
some cases, we additionally observed that after re-mounting the file system, an attempt
to list the contents of a directory resulted in an infinite loop. In both cases, the affected
entries were eventually marked as unreachable by fsck.f2fs and were dumped into the
lost_found directory. As we have already mentioned, files with identical names in different
parts of the directory tree conflict with each other and eventually, only one makes it to the
lost_found directory. In some cases, fsck.f2fs is not capable of detecting the entire dam-
age a shorn write has caused; we ran into a case where after remounting the file system,
all the entries inside a directory ended up having the same name, eventually becoming
completely inaccessible.

Bugs found/reported.

We have filed two bug reports related to the issues we have identified around handling
corrupted data and one has already resulted in a fix [48, 50]. Moreover, we have reported
F2FS’s failure to handle write I/O errors [49].



CHAPTER 2. EVALUATING FILE SYSTEM RELIABILITY ON SSDS 36

2.5.4 I/O Latency Results

We injected varying delays to selected blocks for typical accesses. The delays range from
milliseconds to several seconds. We found that the file systems tested were largely able to
cope with the increased I/O delay, even for extremely long times (seconds) as long as the
request eventually returns successfully. The only side effect is longer wait times observed
by the test programs. Note that since we inject the delays at the block layer, it bypasses
any error handling mechanisms that may be present in the device driver level (e.g. SCSI).
From inspecting the source code, it is possible that the I/O latencies are handled at the
device or driver levels and are masked from the upper layers. One example is the error
handling mechanisms built into the device firmware and the SCSI driver. These layers
could automatically retry failed requests or abort if they timed out, and ultimately present
the upper layer with meaningful return values [165]. The file system and user programs
react base on the return code, without any information regarding access latencies.

2.6 Implications

• ext4 has significantly improved over ext3 in both detection and recovery from data cor-
ruption and I/O injection errors. Our extensive test suite generates only minor errors or
data losses in the file system, in stark contrast with [143], where ext3 was reported to
silently discard write errors.
• On the other hand, Btrfs, which is a production grade file system with advanced fea-
tures like snapshot and cloning, has good failure detection mechanisms, but is unable to
recover from errors that affect its key data structures, partially due to disabling metadata
replication when deployed on SSDs.
• F2FS has the weakest detection against the various errors our framework emulates. We
observe that F2FS consistently fails to detect and report any write errors, regardless of the
operation that encounters them and the affected data structure. It also does not detect
many corruption scenarios. The result can be as severe as data loss or even an unmount-
able file system. We have filed 3 bug reports; 1 has already been fixed and the other 2 are
currently under development.
• File systems do not always make use of the existing redundancy. For example, Btrfs
maintains two independent data structures for each directory entry for enhanced perfor-
mance, but upon failure of one, does not use the other for recovery.
• We notice potentially fatal omissions in error detection and recovery for all file systems
except for ext4. This is concerning since technology trends, such as continually growing
SSD drive capacities and increasing densities as QLC drives which are coming on the
market, all seem to point towards increasing rather than decreasing SSD error rates in the
future. In particular for flash-focused file systems, such as F2FS, where for a long time
focus has been on performance optimization, an emphasis on reliability is needed if they
want to be a serious contender for ext4.
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• File systems should make every effort to verify the correctness of metadata through
sanity checks, especially when the metadata is not protected by a mechanism, such as
checksums. The most mature file system in our study, ext4, does a significantly more
thorough job at sanity checks than for example F2FS, which has room for improvement.
There have also been recent efforts towards this direction in the context of a popular en-
terprise file system [94].
• Checksums can be a double-edged sword. While they help increase error detection,
coarse granularity checksums can lead to severe data loss. For instance, manipulation of
even 1 byte of the checksummed file system unit leads to discard of the entire file system
unit in the case for Btrfs. Ideally having a directory or a file system level checksum that
discards only 1 entity instead of all co-located files/directories should be implemented.
A step in this direction is File-Level Integrity proposed for Android [47, 55]. The tradeoff
of adding fine-grained checksums is the space and performance overhead, since a check-
sum protects a single inode instead of a block of inodes. Finally, note that checksums can
only help with detecting corruption, but not with recovery (ideally a file system can both
detect corruption and recover from it). These points have to be considered together when
implementing checksums inside the file system.
• One might wonder whether added redundancy as described in the Iron file systems
paper [143] might resolve many of the issues we observe. We hypothesize that for flash-
based systems, redundancy can be less effective in those (less likely) cases where both
the primary and replica blocks land in the same fault domain (same erase block or same
flash chip), after being written together within a short time interval. Even though modern
flash devices keep multiple erase blocks open and stripe incoming writes among them
for throughput, this does not preclude the scenario where both the primary and replica
blocks land in the same fault domain.
• Maybe not surprisingly, a few key data structures (e.g. the journal’s superblock in ext4,
the root directory inode in ext4 and F2FS, the root node of fstree in Btrfs) are responsible
for the most severe failures, usually when affected by a silent fault (e.g. silent corruption
or silently dropped write). It might be worthwhile to perform a series of sanity checks
for such key data structures before persisting them to the SSD e.g. during an unmount

operation.

2.7 Limitations and Future Work

In this section, we discuss the limitations of our work, along with suggestions for future
work.

Some of the fault types we explore in our study are based on SSD models that are
several years old by now, whose internal behavior could have changed since then. How-
ever, we observe that some issues are inherent to flash and therefore likely to persist in
new generations of drives, such as retention and disturb errors, which will manifest as
read errors at the file system level. The manifestation of other faults, e.g. those related
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to firmware bugs or changes in page and block size, might vary for future drive models.
Our tool is configurable and can be extended to test new error patterns.

The device mapper module operates at the block layer. Therefore, it is oblivious to any
errors and mitigation that occur at lower levels, such as device drivers or the firmware.
However, since this is the layer immediately below the file systems, we believe it is the
appropriate place to manipulate the I/O requests and inject errors that are based on real
SSD faults. This approach is also file system agnostic, allowing us to study multiple file
systems simultaneously without modifying their code. It may be useful to inject errors
into other parts of the I/O stack to test error propagation and interaction between layers.
This will also allow observing each layer’s response to errors in isolation.

Additionally, this work can be expanded to include additional file systems, such as
XFS, NTFS and ZFS. Another extension to this work could be exploring how file systems
respond to timing anomalies as those described in [64], where I/Os related to some blocks
can become slower, or the whole drive is slow.

Our framework runs a rich suite of 7000+ test cases. One additional work would be to
eliminate test cases between different file system versions using static analysis, and only
run tests corresponding to the new on-disk data structure changes.

2.8 Impact

The work presented in this chapter has resulted in reliability discussions across different
file systems in the form of Linux mailing list threads and bugs on file systems bug report
tool. We have published the work presented in this thesis at the USENIX Annual Technical
Conference [78] 2019 and in ACM Student Research competition [73] 2019. Our paper was
also one of the 2 papers in the conference (of 27 accepted storage based papers) that was
fast-tracked to appear in the ACM Transactions of Storage [79] 2020.

Our work has also resulted in active research in the area of file system reliability and
has been referred by other publications. For instance, in [150], Rebello et. al. describe how
file systems and user space storage applications recover from fsync() failures. Their work
is complementary to the work presented in this thesis and extends to storage systems
beyond file systems. In [46], Domingo et. al. create a parallel file system checker to
accelerate the file system recovery against errors. Their work is based on our findings
of how crucial file system recovery is in the face of underlying media errors. This work
has also inspired the design of low overhead file-systems for embedded devices [196] and
for reliability characterization in 3D TLC SSDs for large scale storage systems [103]. We
believe that with time, the work presented in this chapter will shape other file system
reliability studies on a range of next generation of storage stacks.



Chapter 3

Improving Reliability of High
Density SSDs using WOM-v
Codes

Although there are no textbooks on simplicity, simple systems work
and complex don’t.

James Nicholas "Jim" Gray

In this chapter, we focus on improving the reliability of SSD hardware in the context of
high-density SSDs. In particular, new generations of SSDs offer increased storage density
with higher bits per cell storage, but an order of magnitude lower Program and Erase
(P/E) cycles. This decreases the number of times one can rewrite on the SSD, and hence,
the overall lifetime of the drive.

One way of improving drive lifetime is by applying Write-Once Memory (WOM) codes
which can rewrite on top of pre-existing data without erasing previous data. This in-
creases the total logical data that can be written on the physical medium before an erase
operation is required.

Traditional WOM codes are not scalable for high density SSDs. This is primarily
because traditional WOM codes were designed for media that stored data in the form
of bits instead of voltages. Imposing bit-level constraints to media reduce WOM code
scalability. Further, such treatment of underlying media is acceptable for media such as
punch-cards and tapes, but not for voltage-based media such as SSDs.

In this work we present a novel, simple and highly efficient family of WOM codes
called WOM-v codes. Our design is generic and could be applied to any N-Level cell
drive. In this work, we focus on QLC drives to demonstrate and evaluate the proposed
scheme. We first present the theoretical gains that can be achieved on QLC flash. Next, we
implement WOM-v codes in Linux LightNVM and FEMU. We then describe 2 novel opti-
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mizations - GC_OPT (Optimized Garbage Collection) and NR (No-Reads Configuration)
to further improve reliability and performance of the underlying flash media. A careful
evaluation, including micro-benchmarks and trace-driven evaluation, demonstrates that
WOM-v codes can reduce the erase cycles for QLC drive by 4.4x-11.1x for real world work-
loads with minimal performance overheads resulting in improved QLC SSD lifetime.

3.1 Introduction

Flash-based Solid State Drives (SSDs) offer a faster alternative to Hard Disk drives (HDDs),
but have a major limitation: unlike HDDs, where previously written data is over-writable,
a flash cell needs to be erased before it can be programmed, and each erase operation
causes wear-out that reduces a cell’s lifetime. Older generations of flash were based on
single-level cells (SLC), which store only a single-bit in a cell and can typically tolerate
around one hundred thousand program and erase cycles before wearing out. However,
to keep up with the increasing demand for storage capacity, newer SSD generations en-
abled storing more bits in each flash cell, and at the same time reduced the size of each
cell. Such SSDs are called multi-bit cell SSDs. Recent work [173] shows that with each
additional bit stored in one SSD cell, the number of erase cycles that the SSD can endure
reduces by 3 times with each new SSD generation. Figure 3.1 illustrates the problem

Figure 3.1: SSD Endurance with increased density. As the density of SSD in-
creases, the number of times the device can be erased reduces by a factor of 3X.
PLC drives are in experimental stage [180] and their P/E cycle limit is based on
projected values.

based on recent projections. Flash based on Multi-level Cells (MLC) and Triple Level
Cells (TLC), which are common nowadays, can tolerate a significantly smaller number of
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P/E cycles. Recently QLC drives have started being deployed in datacenters. Even more
worrisome is a look into the future with PLC drives, which might see P/E cycle limits
drop to tens or a few hundred. To make high-density SSD drives usable beyond archival
applications, it is paramount to reduce the number of times the storage media needs to
be erased. In this thesis, first we introduce the idea f voltage-based WOM-v codes [77]
to improve the endurance of multi-bit cell SSDs by enabling overwrites between erases.
WOM-v codes present a new way of modeling flash-cells with multiple voltage levels that
allows WOM-v codes to scale better for denser flash compared to traditional binary WOM
codes. Moreover, WOM-v codes involve just a single table look-up for read and write op-
erations resulting in much smaller performance overheads compared to other codes that
allow additional overwrites before erase and are more space optimal, but involve multi-
ple iterations before encoding and decoding is completed and are therefore performance
inefficient. Further, WOM-v codes provide a family of codes that can be adapted to the
amount of space overheads the underlying storage media can tolerate. In this thesis, we
first present some simple back-of-the-envelope calculations based on a simplistic model
of an individual cell and show that up to 500% additional writes might be achievable
on QLC drives using WOM-v codes. While these back-of-the envelope calculations show
great promise for improving SSD endurance, it is not clear how much of these improve-
ments can be achieved in practice. First, in the real world, SSDs have several restrictions
while overwriting data. SSD contains multiple erase-blocks containing multiple pages.
Writes to erase-blocks are done at page granularity, where pages can be written to in se-
quential order from the first to the last page. Only a limited number of erase-blocks can
be programmed at a time. Once the pages are programmed their voltage level can only
be increased further, and hence, in general it is not possible to overwrite new data on
them before they are first erased. In order to erase pages in an erase-block while avoiding
data loss, the SSD must first relocate all valid pages from target erase-block to another
erase-block. Once the valid pages are relocated, the entire erase-block can be erased and
is available to be reprogrammed. This "copy before overwrite" step, also called garbage
collection, considerably increases the overall writes done to the device, which counters the
gains we get from WOM-v codes. The simple estimates provided in our theoretical model
ignore the garbage collection and its effect on endurance. Moreover, modern SSDs employ
parallelism for higher performance. Multiple erase-blocks are arranged in groups called
Erase Units (EUs). Only one EU is active at a time. Incoming data is first buffered and sub-
sequently sharded across all erase-blocks in the active EU. Any performance based metric
computation may not capture such nuances involved in writing data to a shared buffer
that requires the use of locks to prevent race conditions, nor the gains due to striping the
data across different parallel units. The work in [59] does not provide any performance
evaluation. Finally, real world workloads vary in their storage access patterns. The access
pattern determines the amount of garbage collection in the device. A thorough analysis of
WOM-v codes over multiple real world workloads is required to assess the practical gains
of WOM-v codes. The contribution of our work is to demonstrate that WOM-v codes have
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real gains in practice. Toward this end, we present the first work to our knowledge that
provides a detailed design, implementation and evaluation of Non-Binary WOM codes
on next generation dense (QLC) SSD drives to improve SSD lifetimes. Our implemen-
tation includes two novel optimizations targeted at high write amplification workloads -
GC-OPT and NR-Mode - which significantly reduce erase operations while retaining high
performance. Our simulator is open-sourced and can be used as a test-bed to evaluate
future WOM code designs on next generation SSDs. We then use the simulator for a
detailed evaluation of WOM-v codes using micro-benchmarks and traces and show that
even when taking all real world factors into account WOM-v codes still offer significant
gains in endurance: we find that WOM-v codes improve the lifetime of QLC flash by 4.4x-
11.1x. Moreover, these gains do not come with any significant impact on performance.
Counter intuitively, we also show that higher-order WOM-v codes do not provide Erase
Cycle reductions if the workload generates high write amplification. Finally, we extend
an existing analytical framework to WOM-v codes to derive theoretical bounds on the
number of erase operations. We find that when comparing against the WOM-v coding
implementation with the optimal scheme of garbage collection, all the existing analytical
models, including the one introduced in this work, will only provide upper-bounds on the
number of required erase operations, and in many cases these bounds are not tight. Lastly,
we show how WOM-v codes can be easily extended to higher density, future generation
of SSDs such as PLC SSDs and more sophisticated coding schemes.

3.2 Limitations of traditional WOM codes

data Gen1 Gen2
00 000 111

01 100 011

10 010 101

11 001 110

Table 3.1: WOM(2,3)

data Gen1 Gen2
00 0000 0111

01 0100 0011

10 0010 0101

11 0001 0110

Table 3.2: WOM(2,4)
Historically, Write Once Memory (WOM) Codes were motivated by media, such as

punch cards and optical disk, where data is written at the granularity of bits, and once
written a bit can only be changed in one direction, e.g. from 0 to 1. Seminal work by
Rivest and Shamir [153] presents a way to accommodate multiple writes on such media
by encoding x bits of (data bit sequences) into a code-word of y bits such that a certain
number of overwrites in place are possible. This is referred to as a WOM(x,y) code.

We call each time data is transferred to the media for writing as one Write Cycle (WC).
For example, writing the 4 data bit sequences 01, 01, 10, 10 requires only two writes to the
medium (100 and 101), but count as 4 Write Cycles.

The assumption of being able to change a bit in only one direction (from 0 to 1) matches
the characteristics of a (single-level) flash cell and inspired prior work [191, 186, 184, 110]
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to use WOM codes to increase the lifetime of flash. However, these prior applications of
WOM codes have several limitations:

3.2.1 Modelling cells as group of bits

WOM codes, as described before in the context of flash, work at bit-level and assume
bits can only be changed from 0 to 1. We call such codes bit based codes. Prior work has
explored non-binary WOM codes [58] but not in the context of QLC flash. The bit-based
model is not a good fit for modern flash, which stores multiple bits in a cell. For example,
a QLC cell distinguishes 16 different voltage levels, where each voltage level represents
a 4 bit binary code. Any transition between different states of a cell is governed by the
current voltage level: reducing the voltage level is not possible without first erasing, but
increasing is possible. It is not dependent on the individual bit values of the 4 bit value
stored in a cell (represented by the current voltage level).

3.2.2 Scalability

Non-Binary WOM codes have been well studied and optimized for various metrics [58,
17, 53, 56, 24, 35, 95, 70, 185, 167] but we limit extending to a code-word scheme with
4 bits per code-word and 4 code-words per generation each representing a unique data
bit sequence to model a QLC cell. The bit based model creates unnecessary constraints
that limit the usability for QLC flash. In order to show these restrictions, we introduce
a naive extension of WOM(2, 3) to a WOM(2, 4) code which encodes any 2 bits of data
into 4 coded bits to be written in a cell for a QLC drive where all the bit-level constraints
are still satisfied. To this end we try and extend WOM(2, 3) to WOM(2, 4) only to find
that we are unable to arrange codewords in a way such that bit based constraint can be
satisfied. Although WOM(2,4) allows us to write 2 generations before erasure, only 8 out
of 16 possible four-bit code-words that could be written in a QLC drive’s cell are used in
this scheme as we try to maintain the bit-level constraint. This limits the total number of
potential generations to 2 instead of 4 generations. The artificial reduction in code-word
usability due to bit constraints will only worsen with denser media.

3.3 Solution

SSD cells that store multiple bits have different characteristics than how WOM codes in
the past have modeled them. In [110] Margaglia et al. examined possible reprogram-
ming operations between different intermediate states in MLC SSDs. Their observation
confirms that some transitions are possible which are not compatible with the bit-level
constraints. Moreover, there are cases where the bit-level constraints assume the transi-
tion is possible but in practice that transition is not possible due to hardware constraints.
In order to design WOM codes that are capable of utilizing the full potential of QLC
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drives, we consider a different model for WOM code constraints. Although we evaluate
our approach on the most recent and dense drive commercially available, our approach is
generic and can be extended to any N-Level Cell drive, and also matches better with the
actual underlying constraints of the flash cell hardware to the best of our knowledge.

3.3.1 Voltage Based QLC WOM Code

Figure 3.2: Voltage based codes for encoding 3 2 and 1 data bit(s) into 4 coded
bits respectively. Each oval represents a generation. Each generation contains a
set of code-words mapped to a set of all possible data bit sequence for the code.

In this section we change the model by imposing the invariant constraints for WOM
coding in terms of voltage levels stored in flash cells rather than encoded bits. In this
model the only invariant constraint that should be satisfied in WOM code reprogram op-
erations is that the voltage level in each flash cell can only be increased or kept unchanged
before an erasure. We refer to WOM codes designed based on this constraint model as
voltage based WOM codes, and denote them by WOM-v(k, n) when the coding scheme maps
any k data bits to one of 2n voltage levels stored in the flash cell.

In a QLC drive, each voltage level could be considered as a sequence of 4 coded bits.
In Figure 3.2, we present 3 instances of a family of WOM-v codes, WOM-v(3,4), WOM-v(2,
4) and WOM-v(1,4). In summary, a WOM-v(k, n) code is a unique mapping between any
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sequence of k data bits and a set of voltage levels (or equivalently their coded bit sequence
representations), referred to as code-words. A set of consecutive code-words that cover all
possible data bit sequence make one generation. Each coding scheme can have GEN_MAX
number of generations, which are 2, 5 and 15 in WOM-v(3, 4),WOM-v(2, 4) and WOM-v(1,
4) respectively. All coding schemes have a maximum voltage V_MAX (shown in red)
after which the cell needs to be erased. Consider WOM-v(2, 4) code (Figure 3.2 center)
where 2 data bits are encoded into 4 code bits. Therefore, we have four possible data bit
sequences, indicated by 00, 01, 10 and 11. Each generation has 4 code-words mapped to a
unique data bit sequence within a generation. With voltage based coding, the following three
optimizations help us accommodate 5 generations for WOM-v(2,4) efficiently:

Code-word Sharing

One feature used in the design of this WOM-v code family is that each pair of con-
secutive generations are sharing one common code-word. A voltage based model has a
linear structure where we are able to overlap code-words between successive generations.
This compresses all generations leaving space for additional generations. For example, in
WOM-v(2, 4) code, without sharing code-words we would only be able to accommodate 4
generations consisting of voltage levels 0-3, 4-7, 8-11 and 12-15 respectively (not shown).
With shared code-words between generations, we now can have 5 generations from 0-3, 3-6,
6-9, 9-12, 12-15, (Fig 3.2) with shared code-words 3,6,9 and 12 between consecutive gener-
ations (shown in yellow). The data bit sequence corresponding to each shared code-word
is the same in both generations. For example, code-word 0011 maps to data bit sequence
11 in both Gen 1 and Gen 2. Note that having larger GEN_MAX translates into more log-
ical data write cycles before erasure. The gain of code-word sharing are much higher in
WOM-v(1, 4), where GEN_MAX increases from 8 disjoint generations, to 15 generations
with overlapping states, Fig 3.2).

Same Generation Transition

Another feature we suggest in the design of this WOM-v code family is to perform re-
program operations by transition to a higher voltage level within the same generation
whenever possible. In other words, in each write cycle, we suggest to simply increase the
voltage level in each cell to the lowest voltage level corresponding to the data bit sequence
we need to write in that cell which is not below the current voltage level in that cell. For
example, consider WOM-v(2,4), if data bit sequences 01, 01, 10 and 00 are written in 4
successive write cycles, we would encode and change the voltage level to 0001, 0001, 0010
and 0100 for the write cycles one through four respectively. The second write does not
change the first code-word as the corresponding data bit sequences are the same. While
writing the third code-word on 0001, instead of transitioning to 0110 in the next higher
generation, we increase the voltage level from 0001 to 0010. Finally, the fourth write cy-
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cle involves writing data bits 00 so we overwrite 0010 to 0100. Note that without self
generation transition, the code-word would have the following order 0001, 0001, 0110 and
1000.

As demonstrated in this example, with the same generation transitions we could po-
tentially achieve a significant saving in voltage level increase during write cycles, and
therefore, it enables us to perform more write cycles before we need an erasure. However,
this comes with a drawback, which is addressed in the next subsection. The drawback
here is that the voltage level stored in different cells in a page would end up being in
different generations after a few write cycles. That is due to the fact that the pattern of
voltage level increment in each cell depends on the pattern of data bits written in suc-
cessive write cycles. This is a problem as some cells may no longer be programmable as
they have reached the highest voltage level, while others remain underutilized since they
still have a few additional write cycles they can accomodate before an erase operation is
required. It is important to note that this does not affect correctness of reading the stored
data, since the decoding mapping from voltage levels to data bits continues to remain
unique.

Reusing underutilized Cells

In this section we present another optimization that further increases the number of writes
before an erase becomes unavoidable. Our idea is based on two key observations: a) A
page spans many flash cells and as soon as only one of the cells in a page reaches a state
where it needs to be erased the entire page becomes unusable for rewriting. b) Flash
drives incorporate ECC for each page and this ECC is designed conservatively for the
high bit error rates that are expected at the end of a drive’s life, i.e. for much of the drive’s
life (when bit error rates are still low) the ECC could handle significantly larger error rates
than what it actually experiences.
Our idea is to allow further rewrites of pages where only some limited number of cells
have reached the V-MAX by marking those cells as invalid and let ECC recover the value
in those cells. Considering random data bits, it is easy to see the variance in stored voltage
levels across different cells in a page increases with the number of generations designed
in the WOM-v code. While each WOM-v code certainly guarantee at least GEN_MAX
number of possible write cycles in each cell, one could see that for a WOM-v code with
larger GEN_MAX, there is a good chance to have majority of the cells still being capable of
accommodating more reprograms after write cycle GEN_MAX. In order to enable writing
beyond the write cycle GEN_MAX, we suggest to identify the cells not writable anymore
by increasing the voltage level in them to V-MAX which would be interpreted as invalid
for write cycles beyond GEN_MAX. As long as the percentage of such cells remains low
in each page, a slightly stronger error correcting code (ECC) could handle these cells as
noise, and enable reading stored data from the page.
Current literature on QLC flash drive reliability [173] provides limited insight to the ex-
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isting ECC within a QLC drive. Given the increasing trend in error rates with denser
media, we hypothesize QLC drive to have provisions for strong ECC mechanisms to cor-
rect uncorrectable bit errors. We suggest to use an enhanced ECC mechanism, rather than
the already existing ECC embedded in the flash drives to correct raw bit errors in the
SSDs. Since invalid cells in our proposed scheme would be identified as cells reaching
V-MAX for write cycles beyond GEN_MAX, correcting this type of noise is easier than
other types such as rotten bits caused by retention or program interference errors. This is
because unlike traditional errors or corruptions that require reading parity or checksums
for identifying the location of corrupted or errored cell, our approach simply checks for
the value in a cell reaching the V-MAX voltage level.

Note that the maximum voltage level is marked as invalidated or EINVAL after the num-
ber of write cycles become more than GEN_MAX. This gives us a guaranteed GEN_MAX
number of write cycles even without using ECC. Since all pages in a block undergo the
same number of write cycles before erase, keeping count of write cycles has minimal
storage overhead. Using pre-existing flash ECC to correctly reconstruct cells in V-MAX
after write cycles reach GEN_MAX helps reprogram under-utilized cells which are still at
lower Generations. By correcting cells that cannot be reprogrammed further, we increase
the number of write cycles. For example, in WOM-v(1,4), increasing the number of writes
helps increase logical space from 15X to 20X with a 4X physical space overhead. This
raises the total logical writable bytes from 375% to 500% of the original physical storage
capacity of the drive.

Each of the three optimizations - code-word sharing, same generation transition and
reusing underutilized cells, may be done for TLC drives as well, but the resultant gains
will not be significant. However, as the disks become denser (eg. PLC) which is an
upcoming trend for SSDs, our optimizations will reap great benefits while using WOM
codes.

3.4 Theoretical Evaluation

Our WOM coding scheme is based on simple table lookups and does not involve large
firmware changes or complicated computation. In this section, we provide an analysis of
the tradeoffs involved in implementing our scheme for QLC drives.

3.4.1 P/E Cycle versus Physical Space Tradeoff

Each WOM coding scheme offers a trade-off between number of write cycles possible
before erase and the physical space overhead. For instance, in WOM(2,3) (Table 3.1), if a
user has 1 unit of physical storage, we may write at least 2X logical data before erase is
required. However, for each 2-bit data sequence, a 3-bit code-word is written, increasing
storage overhead by 50%. While this might seem like a large space overhead, let’s compare
it with a solution that does not use codes, and therefore needs to perform an erase after
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Figure 3.3: Each point represents physical space required for 1 unit of user data,
and corresponding logical writes possible before erase.

every write. The only way to double the number of writes that is feasible for such a
device is to double the physical capacity and spread all writes and erases over twice as
many cells. This would be an additional 100% physical storage overhead.

Figure 3.3 shows the increased logical data before an erase versus the physical space
overhead. With no coding NO WOM(+), the total amount of logical space written equals
the total amount of physical space available. For more logical writes with a constant
number of P/E cycles, the physical space required needs to be increased proportionately.
For a 2X increase in logical writes using WOM(2,3)(X), we only need 1.5X physical space.
Similarly, using WOM(2,4)(⋆), one can write 3X more logical data, with a space overhead
of 2X.
For WOM-v codes, although we need 1.33X, 2X and 4X physical space, we are able to write
2X, 5X and 15X amount of logical data for WOM-v(3,4), WOM-v(2,4) and WOM-v(1,4)
respectively, before any cell reaches V-MAX. This is a huge gain over existing WOM(2,4)
coding scheme that gives us a 50% additional logical space per physical unit. Using WOM-
v(1,4) scheme, we get 375% additional logical space per physical unit. The lines joining
WOM-v points show that underlying firmware may choose to take a middle-ground and
use a combination of multiple codes based on available physical storage.

For example, if a firmware encodes half of the user data using WOM-v(2,4) and the
other half using WOM-v(1,4), the overall physical space overhead per 1 unit of user facing
physical storage equals 0.5 × 2 + 0.5 × 4 = 3 units. The corresponding logical data that
can be written before we need an erase operation would be 0.5 × 5 + 0.5 × 15 = 10 units
increasing overall logical space usage of physical media before erase by 333%.
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Figure 3.4: Number of cells that reach EINVAL versus Logical Data Writable
before erase. Each point shows the conditional probability of a cell being in V-MAX
and the Write cycle (WC). Each additional WC increases Logical data writable
before erase by 1. The probability of the cell in EINVAL is 5 and 16 for WOM-
v(2,4) and WOM-v(1,4), not shown in figure due to log scale on the X-Axis. The
probability is conditional based on a cell having a lower voltage than EINVAL.

3.4.2 Reprogramming beyond GEN_MAX

Once a cell in a page reaches V-MAX it can no longer be reprogrammed. The number of
cells that have reached V-MAX can be easily computed in practice by reading cell values.
In order to determine the probability of a cell reaching V-MAX, we use a Markov model
considering each data bit sequence that is written to be an Independent and Identically
Distributed (IID) random variable. At each voltage level, a transition to the same code-word
or one of the other valid code-words takes place with equal probability. Therefore, in the
worst case a cell will become unwritable only if each write cycle (WC) writes different data
GEN_MAX times. Recall that after WC equals GEN_MAX, we treat V-MAX as EINVAL and
treat all cells having EINVAL value unwritable. A coding scheme with larger GEN_MAX
has less unwritable cells when WC equals GEN_MAX.

Figure 3.4 shows the amount of logical data that can be written for a given fraction of
cells in EINVAL state after each WC for two coding schemes. We observe that for the same
percentage of cells (0.02) in EINVAL, we are able to write more logical data beyond each
code’s respective GEN_MAX with WOM-v(1,4) as compared to WOM-v(2,4). We propose
that if the fraction of cells reaching EINVAL beyond GEN_MAX is low (Eg. 0.02) and
correctable using ECC, we can enhance the number of logical bytes written from 5X to 7X
and from 15X to 20X in WOM-v(1,4) and WOM-v(2,4) respectively. To analyze the total
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Figure 3.5: Binomial distribution of the number of cells reaching EINVAL in a
4096 cell page for each write cycle for WOM-v(2,4) and WOM-v(1,4). The X axis
denotes the number of cells (k) in a flash page. The Y axis denotes the probability
of k cells having EINVAL value. 1/p denotes 1 additional ECC correction bit that
needs to be maintained for every p data bits to continue reprogramming underuti-
lized cells WC times.

number of cells in a flash page that reaches EINVAL after GEN_MAX write cycles, we
create a binomial distribution for each WC as shown in Figure 3.5. We consider the flash
page size to be 4096. The X axis denotes the number of cells (k) in a flash page (between
0 and 4096). The Y axis denotes the probability of k cells having EINVAL value. For each
WC, we provide the minimum correctable error rate (superscript on each curve) that needs
to be maintained in flash ECC to correct cells in EINVAL. As the number of WC increase,
the total number of cells in EINVAL in a page increase, which requires a stronger ECC.

We leave determining the exact value of ECC to the system designer based on the un-
derlying media being used, as the uncorrectable bit error rate varies widely across flash
media [173]. Rather, we provide an estimate of the ECC required to recover data in cells
that have reached EINVAL after specific number of write cycles. For example, an ECC
with error correction capability of 1/35 would help us do WC 7 and WC 20 increasing the
logical bytes writable before erase from earlier 250% to 350% for WOM-v(2,4) and from
earlier 375% to 500% for WOM-v(1,4) respectively.
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3.5 Limitations of a Theoretical Model

Although the theoretical gains show significant improvement, it is not clear how the theo-
retical gains can be translated in practice. In the real-world, SSDs have several restrictions
while overwriting data.

First, SSD contains multiple erase blocks containing multiple pages. Writes to erase
blocks is done at page granularity, where pages can be written to in sequential order from
the first to the last page. Only a limited number of erase blocks can be programmed at
a time. Unless all the pages within the target erase block are invalidated, the SSD must
first relocate all valid pages from target erase block to another erase block. Once the
valid pages are relocated, the entire erase block is available to be reprogrammed. This
"copy before overwrite" step, also called garbage collection, considerably increases the
overall writes done to the device, which counters the gains we get from WOM-v codes.
The evaluation in Section 3.4 falls short as it completely ignores the garbage collection
workflow in SSDs.

Second, modern SSDs employ parallelism for higher performance. Multiple erase
blocks are arranged in groups called Erase Units. Only one Erase Unit is active at a
time. Incoming data is first buffered and subsequently sharded across all erase blocks
in the active erase unit. Any performance based metric computation may not capture
such nuances involved in writing data to a shared buffer that requires preventing race
conditions using locks, nor the gains due to striping the data across different parallel
units. The evaluation in Section 3.4 fails to take performance evaluation into account,
and hence needs a real-world flash emulator to evaluate any impact of WOM code on
application performance.

Finally, real-world workloads have varying patterns of accessing the SSD device. The
block access pattern determines the amount of garbage collection in the device. In prac-
tice, real-world workloads from different production datacenters have varying access pat-
terns. A thorough analysis of WOM-v codes over multiple real-world workloads is re-
quired to assess the practical gains of WOM-v codes introduced by Section 3.4.

The contribution of the remaining sections is to demonstrate that the codes have real
gains in practice. In Section 3.6 we present the first work to our knowledge that provides
a detailed design, implementation and evaluation of applying Non-Binary WOM codes
on next generation of dense SSD (QLC) drives to improve SSD lifetime. Second, we show
that there is a difference in theory and practical reduction in SSD Erase Cycles obtained
using WOM-v codes. Moreover, counter intuitively, higher order WOM-v codes do not
provide Erase Cycle reduction if the workload generates high write amplification. Third,
our simulator can be used as a test-bed to evaluate future WOM code designs on next
generation SSDs. Finally, we show how WOM-v codes improve the lifetime of QLC flash
by 4.4x − 11.1x with negligible performance overheads.
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3.6 System Implementation

The theoretical model of WOM-v code provides us with promising results of reducing
Erase Cycles and improving SSD lifetime.

With a systems implementation of the WOM-v code, we are able to measure the practi-
cal reduction in erase cycles in SSDs. We are also able to measure the impact of input data
contents, workload patterns and performance overheads of WOM-v codes that cannot be
accurately modeled in theory. This is because SSDs are programmed at the granularity
of pages and not cells. Further, SSDs are erased at the granularity of erase units before
additional data can be written on them. Ideally, we would want to implement WOM-v
code on a real world hardware by manipulating the device Flash Translation Layer (FTL).
However, we have the following challenges: 1) SSD FTL is a proprietary closed-source
software that is not available for change. 2) An evaluation done on one hardware device
configuration may not be conclusive and applicable to future SSD generations.

To address these issues, we implement WOM-v code in the Linux LightNVM Open-
Channel SSD Subsystem module [19] which allows making changes in the device FTL. We
add 445 LOC in LightNVM module and 220 LOC in FEMU. In order to emulate a QLC
device, we extend FEMU, a widely used Flash Emulator [101] for MLC devices to emulate
a QLC device. Our extension for QLC support is already merged to mainline FEMU
repository [74]. Our WOM-v implementation requires no changes in the application or
file system running on top of the device. Although our coding scheme is built within
the lightNVM module, in reality, some of the key functionality might be implemented
using special purpose hardware. We leave more efficient hardware designs and high
performance hardware implementations of encode and decode operations as part of future
work.

3.6.1 LightNVM Architecture

LightNVM is a Linux module that exposes the underlying architecture of a real or an
emulated NVMe SSD to the host. This helps us to make modifications in the way we
write to and read from the device. LightNVM also enables us to control and manipulate
the garbage collection scheme and control when an erase operation should be performed
on the underlying device. The internal architecture of the device is as shown in Figure 3.6.
The two main data structures of a LightNVM module are 1) the shared ring buffer and 2)
the Parallel Units.

Ring Buffer

The ring buffer is a circular buffer where data is placed before being written to the un-
derlying device. The device may be accessed either by the application or through the file
system as shown in Figure 3.6. Once the ring buffer is full or the user requests a sync
operation, the data copied to the ring buffer is striped across different Parallel Units in



CHAPTER 3. IMPROVING RELIABILITY OF HIGH DENSITY SSDS USING WOM-V CODES 53

Figure 3.6: LightNVM Architecture with our contributions in green. The Light-
NVM and FEMU modules together emulate a host-managed-SSD device. Our
WOM-v encoder logic is inside the Lightnvm module. We change the garbage col-
lection workflow to perform erase operations based on WOM-v configuration type.
We add QLC-flash support to FEMU.

a round robin order. The ring buffer is a shared resource between two threads, the user-
write thread that copies the incoming application/file-system data to the ring-buffer and
the gc thread that copies valid pages from the underlying device to the ring-buffer during
garbage collection.

Parallel Units

Figure 3.6 shows a device with 4 Parallel Units. A Parallel Unit (PU) is an independent
unit of storage on the device. Each Parallel Unit is divided into multiple erase blocks or
chunks. Each chunk contains a linear array of pages that can be sequentially programmed
from the first page to the last page of the chunk. A group of same-sized chunks, one
chunk from each Parallel Unit, forms an erase unit. Pages within a chunk are sequentially
programmed. Pages across chunks within an erase unit are programmed in parallel. As a
result, all chunks in an erase unit get filled at the same time. Furthermore, all chunks in
an erase unit can only been erased together and hence are garbage collected at the same
time in the default setup. At any time, a single erase unit is opened for application writes.
The erase unit is closed once all pages in the erase-unit have been programmed.

We can issue 3 types of operations to each parallel unit - 1) page read 2) page write
and 3) chunk erase which is issued in parallel to all chunks within an erase unit. Reads on
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SSD are 10 times faster than writes, and erase operations are 10 times slower than writes.
All operations are performed sequentially within a Parallel Unit. Two operations on

different Parallel Units can be performed in parallel. The number of parallel units on an
emulated lightNVM module is configurable. We use the default 4 Parallel Units for all
our experiments.

Write and Read Operation

All page writes are staged on the ring buffer. If the data available in the ring buffer is
small and a sync command is issued by the user, the data to be written is appropriately
padded for alignment and striped across Parallel Units. A single erase unit is always kept
open for writes. The opened erase unit is called an active erase unit. Equal number of
pages are simultaneously written to all chunks of an active erase unit, until the last page
of all chunks have been programmed. Once the active erase unit has been filled, the erase
unit is closed and a new erase unit is made active and opened for future writes.

All read operations are sent to the device as a block I/O (bio) request. The lightNVM
module first translates the logical block address (LBA) of the requested page from the bio
structure to the device Physical Page Address (PPA) using the Logical-to-Physical (L2P)
Map. The page contents are then copied from the device PPA to the bio request and
returned back to the user.

Garbage Collection

A logical page overwrite results in invalidation of the physical page containing the older
version of the logical page. A page may also get invalidated when the overlying file
system issues a TRIM command. All invalidated pages need to be reclaimed from the
SSD to make space for additional writes. To free SSD pages occupied by such invalidated
pages, a closed erase unit is opened in the gc-mode by the gc-thread for garbage collection.
In the garbage collection phase, all valid pages from a gc-erase-unit are copied to the ring
buffer. The entire erase unit is then reset to 0, closed and marked erased. This erase unit
is returned back to the free pool of erase-units available for the user-write thread to be
opened for future writes.

LightNVM follows a greedy approach to select an erase unit to be garbage collected.
An erase unit with the maximum number of invalidated pages is chosen first. This results
in the minimum number of valid pages being copied to the ring buffer, and hence causes
the least amount of write amplification for the device. LightNVM reserves an over provi-
sioned space of 11% in order to not run out of space while performing garbage collection.

3.6.2 WOM-v Implementation

To incorporate WOM-v codes in the lightNVM code, first, all writes to the device need to
be encoded. Second, all reads issued to the device need to decode previously written data.
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Third, the default garbage collection logic needs to be modified. Instead of erasing all the
erase units during garbage collection, an erase should now be selectively done based on
the state of the pages within an erase unit.

Moreover, for our experiments, the underlying device emulator needs to support next
generation SSD devices with QLC or denser flash medium.

Finally, we implement two optimizations, which although do not change the design
of WOM codes, help to improve the performance and reduce the overheads of WOM
coding. We first present the baseline implementation without these improvements in the
next subsection and then present these optimizations in subsection 3.6.4

3.6.3 Baseline Implementation

We add the following components to the lightNVM module (highlighted in green in Fig-
ure 3.6): 1) encode and decode logic 2) WOM-v aware garbage collection logic and 3)
QLC support for FEMU. Our framework is extensible to emulate future SSDs and future
coding schemes.

Write Operation

An application or a file system can submit a write request to lightNVM. All writes are
encoded before being written to the drive. By default, a WOM coding scheme first reads
the previously written data on the media. This data is encoded and overwritten on the
physical page, maintaining the voltage based constraint of the underlying media. Since
this default methodology causes increased read amplification, we present a simple mech-
anism to avoid such reads altogether for WOM-v codes using No-Reads configuration as
discussed in 3.6.4.

During a write operation, the ring buffer creates a mapping between the logical block
address (LBA) of pages staged in the ring buffer to the destination physical page address
(PPA) of the pages on the device before writing the pages to the device. We intercept
all writes at this stage and apply the following transformation: First, we read preexisting
encoded data in the PPA of all pages being written. Next we encode incoming pages
using the preexisting data. The encoding scheme is straightforward and involves a simple
lookup in the static WOM-v(k,N) encode table shown in Figure 3.2. Finally, we write the
new encoded pages to the device PPA on the drive.

For a WOM-v(1,4) coding scheme, each 4KB incoming write is encoded and stored in 4
x 4KB physical of a QLC page on the device. Similarly, for a WOM-v(2,4) coding scheme,
each 4KB incoming write is encoded and stored in 2 x 4KB physical pages on the device.
To reduce the performance overheads of additional page writes, we increase logical page
size at which application page is sent to the device after an encode operation to 16KB and
8KB for WOM-v(1,4) and WOM-v(2,4) configuration respectively. We maintain logical
page locality among all encoded pages. i.e. all pages belonging to the original logical
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page are encoded into consecutive logical LBAs. We describe the importance of logical
page locality during reads in the next sub-section.

Read Operation

In the read workflow, the original read block I/O (bio) request from the application is
first translated into consecutive encoded LBA address bio requests. The consecutive pages
read correspond to a single page due to logical page locality. Next, all encoded pages
that were read are simply decoded in the read return path. The decoded data is copied to
the originally submitted bio request structure and can be read by the application with no
modifications. The decoding scheme is straightforward and involves a simple lookup in
the static WOM-v(k,N) encode table shown in Figure 3.2.

Garbage Collection

With a WOM-v(k,N) coding scheme, we want to reduce the number of times each erase
unit is erased. The default garbage collection scheme in the lightNVM module erases
an erase unit during each garbage collection cycle. Hence a new strategy is required to
decide whether an erase unit needs to be erased during garbage collection.

GC-Logic

When an erase unit is opened for garbage collection by the gc-thread, all valid pages are
first read from the gc-erase-unit and written back to the ring buffer. Once valid pages have
been moved out of the gc-erase-unit, WOM-v(k,N) garbage collection erases that erase
unit only if any page in the erase-unit has cells set to maximum voltage level which needs
to be corrected using page-ECC as discussed in Section 3.2.

Using Page ECC to extend WOM-v(k,N) gains

The existing page ECC in the Out of Band (OOB) region [83] of each page is capable of
correcting a limited number of erroneous bits in each page. We use a fraction of this
existing page error correction capability, referred to hereafter as ECC_threshold, to recover
the bits we can not store in a limited number of cells in a erase unit as they reach their
maximum voltage level. As a result we determine whether an erase-unit should be erased
or not during garbage collection based on the number of cells reaching the maximum
voltage level in each page in that erase-unit. In the WOM-v(k,N) implementation, the
gc-thread first checks if any page in the erase unit has more than ECC_threshold cells in the
highest generation (GEN_MAX) for that WOM coding scheme. If the number of cells in
GEN_MAX in each page of the erase unit is less than the ECC_correction threshold, we do
not erase the erase unit, but set all cells in GEN_MAX to have a V_MAX voltage to mark
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them as cells to be corrected using ECC_threshold in a subsequent write operation. When
this erase unit is reopened by a user-thread all pages in the erase unit are overwritten.

On the other hand, if the number of cells in GEN_MAX in any page of the erase-unit
are more than the ECC correction threshold, we erase the erase-unit and reset all pages in
the erase-unit to 0.

ECC Correction without Error detection

The correction of cells at V_MAX in a page during WOM-v(k,N) is easier than conven-
tional error correction of cells that have incurred random bit errors. This is because we
already know the position of the cell that needs to be corrected by scanning for cells that
have V_MAX value. In other words, to correct the missing values from these cells the ECC
needs to perform erasure correction rather than error detection and correction used to fix
raw bit errors in flash media. Since correcting x erased bits requires half the redundancy
compared to detecting and correcting x erroneous bits [122], the ECC needs less redun-
dancy to correct unprogrammable cells in V_MAX and it is less likely for the ECC to fail
the job.

ECC_Threshold to correct unprogramable Cells

We set the ECC_threshold to 3% i.e. we erase an erase-unit that has any page with more
than 3% cells in GEN_MAX. This threshold is chosen based on theoretical evaluation in 3.4
where 7 and 20 generations could be written with 1% ECC_threshold for WOM-v(2,4) and
WOM-v(1,4) configurations respectively. Recent TLC flash devices have reported 7% ECC
in each page [135]. We predict higher ECC being reserved for QLC and future generation
drives.

It is also important to note that using ECC is not a necessity for using WOM-v(k,N)
codes. As the flash device gets older and more ECC is needed for correcting Raw Bit
Error Rates (RBER) in flash medium, the device may switch to a Non-ECC supported
WOM-v(k,N) configuration with slightly reduced gains proposed in 3.4.

3.6.4 WOM-v Optimizations

We identify two optimizations to the baseline implementation of WOM-v(k,N) codes.
First, we present GC_OPT Mode, a novel methodology for garbage collection in WOM-
v(k,N) configuration that improves SSD endurance considerably by delaying valid page
rewrites during garbage collection. Second, we present NR Mode WOM coding scheme, a
technique to perform encode operations without reading the previous state of the flash
drive that eliminates read amplification during writes.
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GC_OPT Mode

The garbage collection thread relocates all valid pages in a previously active erase-unit
to the current active erase-unit. This is followed by erasing the previous erase-unit in
the NO_WOM mode. With WOM-v(k,N) codes using the conventional garbage collection
scheme, relocation may or may not be followed by erase, based on the state of the cells
in the page. We argue that using WOM-v(k,N) codes it is possible to delay relocating
valid pages to another erase-unit. This delays relocating valid pages until all pages in
the flash block contain either valid data or are no longer programmable. Instead, we
skip writing to pages that have valid data or cannot be programmed since their cells
are in GEN_MAX. Since pages can be overwritten without erase with WOM codes, one can
continue reprogramming invalidated pages of an erase-unit as long as the cells in those
pages are yet in one of the generations bellow GEN_MAX, and hence are programmable
with WOM codes. This helps first to eliminate extra writes during garbage collection, and
second to fully utilize the reprogramming capacity of all pages in the erase-unit before
erasing it. However, as the number of programmable pages in the erase-unit decrease (by
accumulating more valid or unprogrammable pages over multiple cycles) the performance
overhead of recycling such erase-units without erasing them increase and hence we can
consider a minimum threshold for the number of programmable pages in the erase-unit
for reusing it without erasure. As we will demonstrate in Section 3.7.6, the gains achieved
using this technique is promising.

NR Mode

As described in Section 3.6.3, the baseline implementation of WOM-v(k,N) codes by de-
fault read the previous content of a page to encode and create next cell values for re-
programming the page. This read-before write, which adds performance overhead, is
necessary in WOM codes. However, in WOM-v(k,N) codes, this is only necessary for per-
forming the same generation transition optimization, discussed in Section 3.2, and can be
skipped if we always move to the next generation in each write cycle. This is because the
mapping of the voltage levels to information content in each generation is unique and in-
dependent of the codeword of the previous write cycle. We refer to such implementation
as NR (No-Read) mode.

In NR mode, ideally we can keep track of the generation of the last write cycle for
each page in the active erase-unit as the metadata, and simply encode and write the new
content for all cells in each page based on the user data using the appropriate generation.
This enforces all cells in the page to reach the GEN_MAX together. The meta data for all
pages of the active erase-unit can be kept in the memory and once we close the active
erase-unit this metadata can be written in the over provisioned space. As we open a
new active erase-unit, the metadata describing current generation of all pages in that
erase-unit will be loaded in the memory. Note that this still allows each page in the erase-
unit to be reprogrammed independent of the other pages in that erase-unit, and will not
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impose any further restrictions on the programability of pages in the active erase-unit.
However, it adds some extra storage and performance overhead footprint to keep track
of the generations of all pages in the drive adding to already high space requirements of
WOM-v(k,N) codes.

In our current implementation of NR mode, we optimize keeping pages in a single
generation by reducing the metadata tracking to a single generation number for the entire
erase-unit. This needs negligible space and minimal metadata tracking for active erase-
unit. One side-effect of this optimization is that it enforces all pages in each erase-unit
to use the same generation for each subsequent write cycle. Therefore, we might end
up having pages in generations below the current generation of the erase-unit if they
were not programmed in one or more previous write cycles since they contained valid
page in that write cycle. In the subsequent write cycle, we program such pages to the
generation dictated by the generation number of the erase-unit possibly skipping one or
more intermediate generations.

We observe that this optimization significantly improves the performance overheads of
write operation of WOM-v(k,N) codes. Note that this performance gain is achieved at the
cost of reducing the total number of possible write cycles before erasure as we will not be
able to perform same generation transition. We discuss the tradeoffs between improved
performance gains and reduced endurance gains using NR mode optimization in detail
in Section 3.7.4.

Adding QLC Support to FEMU

We use FEMU [101] to emulate the underlying SSD media. FEMU emulates the SSD
in main-memory and adds predictable I/O latency to each I/O request to mimic a real
Open Channel SSD device. In order to read or write a page, a specific amount of reference
voltage needs to be used to access the page. For high-density flash such as QLC drives,
the number of reference voltage applied is higher than lower density drives. [90].

The main challenge in using FEMU for new generation SSD device emulation is that
the existing FEMU emulator only supports an MLC SSD with 2 page levels. A page can
either be an Upper or a Lower page with write latency of 850µs and 2300µs and the
corresponding read latency of 48µs and 64µs respectively. FEMU also adds a constant
NAND read, write and erase latency of 40µs, 200µs and 2ms to each read, write and erase
I/O request respectively.

We modify the default MLC configuration of FEMUs page layout in each chunk. In-
stead of having alternating upper and lower pages with varying latency in each chunk, we
extend FEMU for QLC emulation: Each chunk in a QLC device has alternating Lower(L),
Center-Lower(CL), Centre-Upper(CU), Upper(U) pages. A write latency of 850µs, 2300µs,
3750µs and 5200µs, and read latency of 48µs, 64µs, 80µs and 96µs is applied to L,CL,CU
and U pages respectively based on the number of reference voltages [90] required to read
a specific page type.
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Testbed for Future SSDs and Coding Schemes

Our WOM-v simulator is generic and can be used as a testbed for denser SSD or higher
order coding schemes. In order to add a new WOM-v(k,N) coding scheme, first, the user
has to provide a simple lookup table mapping each data word to a code word similar
to WOM-v tables shown in Figure 3.2. Second, the user optionally sets an ECC_threshold
value. Finally, The user specifies the latency of additional page levels for next generation
SSDs in FEMU.

Our emulator can also be used standalone without any coding scheme. We open-
source our generic N-LC Simulator for more advanced coding and next generation SSD
research [74].

3.7 Evaluation

In order to correctly estimate the gains of WOM-v(k,N) codes on QLC drives, it is im-
portant to evaluate the endurance gains and performance tradeoffs associated with using
WOM-v(k,N) codes. In particular, WOM-v(k,N) code reduces the number of erase cycles
(EC) the drive endures over its lifetime and therefore leads to improved flash endurance.
However, WOM-v(k,N) also introduces space amplification during writes. Further, both
read and write workflows in WOM-v(k,N) codes introduce read amplification for the de-
vice.

The goal of this section is to use our implementation to evaluate the EC reduction and
the impact on performance for both micro-benchmarks and real world workload traces.

Since WOM-v(k,N) requires more space than NO_WOM configuration, there are two
ways to compare them. The first option is to keep the size of the user facing logical address
space constant, and increase the physical space allocated to WOM-v(k,N) configuration
by a factor of N/k. For a fair comparison of EC reduction per hardware chip, we have to
divide the resultant number of ECs encountered by NO_WOM code by N/k to account
for additional space provided to the WOM-v(k,N) scheme.

A second more practical approach to evaluate SSD hardware is to keep the physical
capacity of the hardware constant, and reduce the logical block address by a factor of
N/k for WOM-v(k,N) coding scheme. For example, we use the same 4GB physical space
in NO_WOM and WOM-v(k,N) configurations. For NO_WOM, the entire 4GB logical
address space is exposed to the application, while for all modes of WOM-v(2,4) codes
(i.e, WOM-v(2,4), WOM-v(2,4)-GC-OPT and WOM-v(2,4)-NR) the range of logical address
space on the same 4GB drive is reduced to a 2GB logical space, and similarly for all modes
of WOM-v(1,4) codes, the same drive is exposed as a 1GB logical space. We assume the
workload running on such a drive to have a logical space of 1GB.

Under the same workload this setup clearly leads to have more empty space for
NO_WOM configuration which acts as extra over provisioned space to reduce garbage
collection overheads. However, we show that for the same physical device - WOM-v(k,N)
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is able to successfully reduce the number of ECs in all our experiments with minor per-
formance overheads.

In the rest of this section, we compare the default SSD configuration (NO_WOM) with
baseline implementation of WOM-v(k,N) codes, garbage collection optimized (WOM-
v(k,N)-GC_OPT) and performance optimized no-reads mode (WOM-v(k,N)-NR) imple-
mentations.

3.7.1 Micro Benchmarks

We use micro-benchmarks to study the impact of specific access patterns and data-block
contents, on WOM-v(k,N) codes. To evaluate this impact, we use micro-benchmarks. Each
micro-benchmark writes 25GB data to 1GB physical emulated drive containing 4 Parallel
Units and 160 erase units.

Effect of change in data buffer contents

The performance of baseline WOM-v(k,N) codes depend on the data contents of the block
that is overwritten to the existing data. If blocks typically get overwritten with similar con-
tent, same generation transitions are more likely to take place as compared to overwrites
with drastically different data.

In this micro-benchmark, we fill the drive sequentially so that no garbage collection is
invoked. Once the drive is full, we flip a fraction of all bits in the data buffer, and fill the
entire drive again with this partially modified page. We continue this operation multiple
times modifying a fixed amount of data buffer contents and measure the number of erase
units erased as the rate of data buffer change increases.

Figure 3.7a shows the results of varying data buffer contents during writes. We note
that for all types of data buffer contents, WOM-v codes reduce the number of erase units
erased in the default NO_WOM configuration. However, the rate at which a cell reaches
the maximum voltage level will be slower when there is smaller rate of data change
between subsequent writes. For workloads that have a higher amount of data change, the
maximum voltage level will be reached faster, and so the EC gains will be much lower.
Unlike WOM-v codes, the NO_WOM configuration Erase Cycles remain constantly at the
higher end irrespective of the data buffer contents.

Effect of access Pattern

In order to measure the impact of access patterns, we create custom micro-benchmarks
that invalidate previously written pages in a specific order which causes varying amount
of device write amplification: Hot-S keeps updating the same data sequentially, Hot-R
updates same data in a random order, Cold only updates a fraction of pages, Low-GC and
High-GC generate medium and high amount of Garbage collection respectively.
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Figure 3.7b shows the number of erase units erased and the corresponding to different
workload patterns. Across all benchmarks, we observe that WOM-v(1,2) codes signifi-
cantly reduce erase units. However, with higher number of overwrites due to GC, we see
diminishing gains for WOM-v(1,4) code. Finally, GC_OPT mode is able to alleviate the
problems incurred and maintain low write amplification overhead.

Hot-S keeps all pages "hot" i.e. uniformly accessed over the course of the benchmark.
During garbage collection no pages from the previously written erase unit are garbage
collected and hence we do not have any write amplification. We observe that Hot-R
also does not create any garbage collection. Hence the pattern of write between two
workloads does not impact the gains by WOM-v codes if the garbage collection thread
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writes minimal or no additional pages to the drive.
For Cold benchmark, we observe a slight increase in the total number of erase units

erased for the WOM-v(2,4) configuration and an order of magnitude increase in erase unit
erases for the WOM-v(1,4) configuration as compared to Hot-S and Hot-R configurations.
This is due to localized writes on only a subset of the device. We also observe that WOM-
v(1,4)-GC-OPT and WOM-v(2,4)-GC-OPT continue to maintain lower write amplification
for this benchmark as no valid page from hot erase units are relocated and there is almost
always a candidate erase unit with at-least a single programmable page.

Low-GC creates a moderate amount of write amplification in NO_WOM configuration.
WOM-v(2,4) configuration continues to outperform NO_WOM. But WOM-v(1,4) configu-
ration starts performing poorly as compared to NO_WOM configuration. This is because
additional writes generated space amplification in WOM-v(1,4) configuration.Even with
Low-GC, since there are continuous page invalidations, both WOM-v(2,4)-GC-OPT and
WOM-v(1,4)-GC-OPT continue to reprogram an erase unit without relocating any pages.
This keeps the relative write amplification in check.

High-GC benchmarks causes severe write amplification due to high influx of valid
pages recycled during garbage collection. This causes WOM-v(1,4) to perform two orders
of magnitude worse than NO_WOM. However, Even in High-GC mode, WOM-v(1,4)
GC_OPT continues to find erase units that have intermediate pages available for repro-
gramming, and hence the write amplification remains consistent over the course of the
workload run.

Conclusion

We conclude that across all data write patterns, WOM-v codes are highly effective in
reducing the number of erase cycles. For workloads where similar or incremental data is
overwritten on the device, huge gains are possible.

WOM-v(2,4) codes are highly robust to different kinds of workload patterns. For work-
loads that exhibit increased garbage collection, WOM-v(k,N)-GC-OPT codes continue to
maintain near constant erase cycles even for artificial, extremely-high garbage collection
workload.

3.7.2 Real World Workload Traces

Trace Selection

Table 3.3 shows a summary of 844 real world traces from 5 different sources. We shortlist
and present 10 write-based traces and 6-read-based traces representing each source. The
write-based workloads have a higher number of writes than reads and help us to mea-
sure the endurance improvement (Section 3.7.3) and write performance tradeoffs (Sec-
tion 3.7.4). The read-based workloads help us better understand the impact of WOM-v
codes on read performance (Section 3.7.4).
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Source # Traces Medium Year
Alibaba [102] 814 SSD 2020
RocksDB/YCSB Trace [171] 1 SSD 2020
Microsoft Cambridge [123] 11 HDD 2008
Microsoft Production [91] 9 HDD 2008
FIU[93] 7 HDD 2010

Table 3.3: Historical HDD and recent SSD-based block traces

We selected traces that have at-least 1 million and at most 50 million page writes.
We also make sure to select traces that cover a varying number of unique block accesses
and varying number of updates per unique block. Most of the traces we chose are from
production systems with the exception of the RocksDB and YCSB traces [188]. The reason
we included those two benchmark-generated traces is that they were actually collected on
SSD-based systems, while the publicly available block traces from production systems all
come from HDD based systems (with the exception of the Alibaba trace, which is from a
system comprising both HDDs and SSDs, but the trace does not allow us to distinguish
requests to SSDs from requests to HDDs).

Trace Reduction

The real-world traces are captured on different types of disks having different storage
capacities. FEMU emulates the underlying SSD storage in memory, so the disk size for
our simulation is much smaller than the original HDD or SSD on which the trace was
collected. To standardize the real-world workload traces for our simulation, we need to
pre-process the real-world traces such that the logical block address (LBA) space of the
trace can fit into our fixed-sized 16 GB FEMU-based LightNVM emulator. While reducing
the traces, we attempt to preserve the following key characteristics:

1. The distribution of page update frequencies in the reduced trace remains the same.

2. The relative order of page accesses in the reduced trace remains the same as in the
original trace.

3. The number of pages requested in each block I/O captured by the original trace
remains the same in the reduced trace.

One key observation we make is that all logical pages written to an SSD are internally
buffered in the SSD’s ring buffer and subsequently mapped to physical pages across dif-
ferent parallel units. The actual numbering of logical pages will not affect how they are
treated by the device. For example, if we renamed logical page 1 to page 1,000 and the
original page 1,000 to page 1 the resulting trace would merit the same drive behavior.
(This is different from a hard drive which will, for example, try collocate pages that are
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close in LBA space to areas that are physically close on the disk.) We use this property to
select a subset of logical block addresses (LBAs) from the original trace maintaining the
relative order of page accesses and map it to a reduced trace that fits inside our underlying
SSD emulator configuration.

We propose two types of reduction techniques based on the way in which hot and cold
pages are distributed across the entire trace, segment-based reduction and subset-based
selection:

Segment Based Reduction: A key property we need to maintain in the reduction process is
the distribution of the update frequencies of pages (hot pages versus cold pages), as it will
significantly impact SSD operations, in particular garbage collection and therefore write
amplification. We note that if the distribution of the page update frequency is similar for
different segments of a trace then we can reduce the trace by choosing just one segment
of the trace (as this will be representative of the larger trace).

We analyze the traces and observe that for many traces the page update frequency
distribution is stable across the trace. This includes for example the Microsoft and FIU
traces. We therefore propose to reduce these traces by choosing a segment of the original
trace, where we choose the length of the segment such that the number of unique logical
pages accessed in the segment is equal to the total number of logical pages that can be
stored in the emulated device. Figure 3.7 illustrates this process, where the greyscale of
a page indicates its hotness. As we show later in the section, the reduced trace preserves
the page update frequency distribution of the original trace.

Original TraceReduced Trace

Figure 3.7: Segment-based reduction: This method is suitable where the update
frequency distribution is stable across different areas of a trace and it simply selects
a contiguous subset of the original trace. (In the illustration, the darker a page the
hotter it is.) The reduced trace is representative of the temperature distribution of
the original trace.

Subset-based Selection: Some real-world traces do not have an update frequency distribu-
tion that is stable across the trace. For these traces, the trace’s page access frequency
distribution cannot be properly captured if we limit ourselves to a continuous segment of
the trace.

To reduce such traces while ensuring the same update frequency distribution as the
original trace we specifically pick a subset of the LBAs accessed in the trace, such that the
update frequency distribution of this subset of LBAs is the same as the update frequency
distribution of the entire LBA space. We then include in the reduced trace only requests
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Figure 3.8: Alibaba-4 trace update frequency distribution for the original
and the reduced trace. Visually, both traces appear similar.

for LBAs that are part of this subset. We refer to this as subset-based selection and implement
it as follows:

First, we generate a mapping between all update frequencies U and the unique page
numbers that are present in the real-world trace. We create a list of these pages and sort
them by their update frequency.

Second, we calculate reduction factor, which is the ratio of the number of unique logical
pages in the original trace to the number of logical pages that can be accommodated in
the emulated disk. For example, a reduction factor of ten would mean the original disk
has a logical block address range ten times that of the emulated disk.

Third, we filter the blocks from the original update frequency mapping we constructed
in the first step and select every other reduction factor page from the sorted list we created
in the first stage. These list of filtered logical block addresses from the original trace form
our candidate logical block address for the reduced trace. Finally, we scan through the
original trace and only translate a page to the reduced trace if it lies in the candidate list
of pages generated in step three.

Reduced Trace Validation To ensure that our assumption above is correct and to further
verify that our range based selection and segmented selection captures a fair sample from
the original trace, we create a distribution of the Update Frequency with the Number of
Blocks for both the original and reduced traces.

We define pi as the percentage of the pages in the trace with the update frequency i.
We define ei to be the error between pi in the original trace and p

′
i in the reduced subtrace.

pi =
Number o f pages with Update Frequency i

Number o f pages in the entire trace

ei = pi − p
′
i

As an example, Figure 3.8 shows the reduction of Alibaba’s Device 4 trace. From the
reduced trace, we find that the variance is r2 = 0.006. We observe that despite having
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only one tenth of the original disk’s storage space, the reduced trace still captures the
trace collected on the original drive very well. We accept all traces that can be reduced
using either range based selection and segment selection technique with the observed
variance of r2 >= 0.05..

Page Invalidations through the TRIM Command

In addition to the differences in device capacity discussed above, another issue is that
there are no publicly available block traces where TRIM information is available. We
therefore only consider a block to be invalidated if it is overwritten. As a result our
estimate of gains using WOM-v codes are rather conservative. When considering the
addition of pages invalidated with the TRIM command, there will be more opportunity
for reprogramming physical pages that contain TRIM’ed logical pages in WOM-v codes.
Moreover, we will have lower write amplification induced by garbage collection that will
favour WOM-v codes.

Populating Block Data Contents

Finally, block-traces do not have any information about the buffer contents that are to be
written to the specified LBAs for a write request. We fill each block with random data.
This does not impact NO_WOM configuration, but impacts the WOM-v configurations
and higher gains could be possible if the data was more uniform causing less state change.

FEMU+LightNVM Drive Setup for Trace-driven Experiments.

For each workload, we compute the number of unique blocks accessed. We assume the
drive is half full, which is a characteristic of real-world drives reported in the field [6].
Hence, for each workload, we create drives that are twice the size of the total number
of unique blocks accessed. We use the same sized physical drive for NO_WOM and all
variants WOM-v(k,N) configurations. The logical address space for WOM-v(2,4), WOM-
v(2,4)-GC-OPT and WOM-v(2,4)-NR is half the logical address space of NO_WOM. The
logical address space for WOM-v(1,4), WOM-v(1,4)-GC-OPT and WOm-v(1,4)-NR is one-
fourth the logical address space of NO_WOM.

3.7.3 Reduction in Erase Cycles

Figure 3.9 compares the number of erase units erased in default NO_WOM configuration
with WOM-v(2,4), WOM-v(1,4), WOM-v(2,4)-GC_OPT and WOM-v(1,4)-GC_OPT config-
uration. In all cases, WOM-v(2,4) code reduces the number of erase units erased on the
underlying device by 29-32%. In most cases, WOM-v(1,4) also reduces the erase units
erased on the underlying device with two exceptions - for Microsoft-Production trace,
we observe that WOM-v(1,4) code erases more erase units than NO_WOM configuration.
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Figure 3.9: Reduction in Erases using WOM codes.

This is due to higher write amplification contributed by two factors. First, using higher
order WOM-v(1,4) codes with same physical drive leads to logical space reduction by 4x.
Second, there is 4 times additional data being encoded and written to the device.

For WOM-v(2,4)-GC_OPT and WOM-v(1,4)-GC_OPT, we observe WOM-v codes are
able to reduce the number of erase cycles for all workloads, including the MP-Workloads.
The gains are promising - the erase cycles are reduced by 77-83% and to 82-91% of
NO_WOM configuration for WOM-v(2,4)-GC-OPT and WOM-v(1,4)-GC-OPT respectively.
This is because unlike WOM-v(2,4) and WOM-v(1,4) codes, which relocate valid pages on
every garbage collection cycle, GC_OPT mode continues reusing a partially programmable
erase block for writes until all pages in the block are entirely unusable or contain 0 invalid
pages to overwrite.

We observe that for both MP workloads, the amount of garbage collected pages are sig-
nificantly higher as compared to other workloads, the limitation can be successfully allevi-
ated using WOM-v(1,4)-GC-OPT mode by incurring almost 0 garbage collection penalty.

We also provide the theoretical estimate (WOM-v(k,N)-Theory) of WOM codes dis-
cussed in Section 3.7.7. We note that the theoretical assumption of uniform invalidations
may give significantly different results as compared to the ones achieved on a full system
emulated WOM-v(k,N) drive.

In order to understand the effectiveness of the GC_OPT configuration, we introduce
a tunable threshold - minimum programmable page count to our workload setup. When a
erase unit is analysed during the garbage collection phase, we calculate the number of
programmable pages in the erase unit. If the number of programmable pages in the erase
unit is lower than the minimum programmable page count, we relocate all valid pages from
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Figure 3.10: Reduction in Erase Cycles with change in minimum programmable
page count.

the erase unit and then reuse the erase unit. On the other hand, if the programmable pages
is higher than the minimum programmable page count, we continue to program all pages in
the erase unit that are invalidated and still have cells below the maximum generation. For
GC_OPT, the minimum programmable page count is 0, i.e. we continue reusing a erase unit
until all pages in the erase unit are exhausted. For the default WOM-v mode, the minimum
programmable page count is 100% and defaults to relocating all pages before reprogramming
the block.

Figure 3.10 shows the resultant erase units erased for the different minimum pro-
grammable page count values. We observe that as we reduce the minimum programmable
page count parameter, the number of erase units erased significantly reduce as an erase
block keeps getting reused until all pages in the block are either valid or no longer pro-
grammable. There is significantly reduced amount of rewrites of valid pages during
garbage collection which improves overall endurance of the drive.

In conclusion, we demonstrate that higher order WOM-v codes such as WOM-v(1,4)
codes are not impossible to use in high write amplification scenarios. Their endurance
gains can still be leveraged by using GC_OPT mode.

3.7.4 Performance Optimizations

WOM-v(k,N) coding scheme has two performance overheads. First, each page write adds
additional (N/k) data to the device causing significant write amplification. To solve this
problem, we propose increasing the logical page size to 2x and 4x the size of original
logical page size for WOM-v(2,4) and WOM-v(1,4) configurations respectively. We assume
the time to program 4K, 8K and 16K pages will be the same.

Second, each page write causes read amplification because previously encoded data
needs to be read to know previous state before new encoded data can be created. To solve
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Figure 3.11: WOM-v(k,N) Baseline Endurance and Performance

this problem, we ensure all cells in the entire erase unit are always in the same generation,
and remove same generation transition optimization. WOM-v(k,N) also has advantages,
it reduce the number of erase operations issued to the device. That counters the first two
performance overheads and a combination of these factors result in overall performance
gains.
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Figure 3.12: WOM-v(k,N) GC_OPT Endurance and Performance.

Write Performance

Figure 3.11b and 3.12b show the cumulative time to run write intensive workloads for
WOM-v(k,N) baseline and WOM-v(k,N) GC_OPT modes. For WOM-v(2,4) and WOM-
v(2,4)-GC-OPT configuration, the performance overheads are only 0-2% of the NO_WOM
configuration, with EC gains between 67-69% over NO_WOM configuration as shown in
Figures 3.11a and 3.12a.

WOM-v(1,4) baseline coding scheme takes significantly high amount of time to run
as compared to default mode for high GC workloads as shown in Figure 3.11b. In such
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scenarios, using only NR mode is not sufficient. Instead, a combination of GC_OPT and
NR modes help reduce the performance to 0-2% of NO_WOM configuration while keep-
ing the endurance gains from 42%-80% of original configuration as shown in Figure 3.12b
and 3.12a.

Read Performance

Since all workloads analyzed until now were write heavy and used to study write en-
durance or performance, we curated read heavy workloads that have reasonable amount
of intermixed reads and writes to perform an analysis of the impact of WOM codes on
read performance. Specifically, we are interested to see whether the tail latency of reads
is impacted, as tail latency is a particular concern in practice. In this section, we present
results for the baseline implementation of WOM-v(k,N) coding schemes, without the op-
timizations described in 3.6.4. The results are therefore a worst case upper bound on
latency, as the WOM-v(k,N) optimization codes would only further reduce any impact on
latency. As we will see there is no significant impact on latency for WOM-v(k,N) base-
line coding schemes, and we therefore expect no impact on WOM-v(k,N)-GC-OPT and
WOM-v(k,N)-NR codes either.

Figure 3.13a, 3.13b and 3.13c show our performance results for traces from 3 different
repositories. For all three cases, we observe that the 95’th percentile tail latency is 0.6-7%
for NO_WOM and WOM-v(k,N) baseline encoding schemes, and that there is no large
tail latency introduced due to the use of WOM-v(k,N) code.

3.7.5 Comparison with MLC Drives

Given that increases in drive endurance from WOM codes come with space overheads,
an interesting question is how the WOM-v endurance/space tradeoff compares to simply
using MLC technology. MLC cells have higher PE cycle limits than QLC drives, but are
less space efficient. In particular, if we reduce a QLC drive to an MLC drive with the
same number of physical cells, we lose 50% of logical capacity (2 bits per cell instead of
4), which is identical to the logical capacity loss when applying WOM-v(2,4) codes to a
QLC drive. In exchange for the 50% capacity loss, the MLC drive's endurance will increase
because the PE cycle limit of a cell increases from 3K for a QLC drive to 10K for an MLC
drive [1, 144, 176, 169], and the WOM-v QLC drive's endurance will increase compared
to QLC due to overwrites between erases.

The goal of this section is to compare the endurance of an MLC drive to that of a
WOM-v(2,4) QLC drive with the same logical capacity and the same number of physical
cells. Endurance is the amount of user data that can be written before the PE cycle limit
is reached. We can use our results from Section 3.7.3 to estimate endurance for a WOM-
v(2,4) QLC drive for a given workload, based on the number of erases observed for the
experiment with the corresponding trace and the amount of user data written in the
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Figure 3.13: Figure 3.13a, 3.13b and 3.13c show read tail latency of MSR-
Cambridge Web1, MSR-Production Display Ads Payload and Alibaba-Server 3
workload with read:write ratios of 11:9, 4:3 and 5:6 respectively.

trace. We also ran experiments for all workloads on an MLC drive with the same physical
capacity and recorded those numbers.

Figure 3.14 compares the ratio of the endurance of an WOM-QLC drive and the en-
durance of an MLC drive for different workloads based on the methodology described
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Figure 3.14: The ratio of write endurance of WOM-v based QLC drives in
GC_OPT and NR-GC_OPT mode and the write endurance of an MLC drive with
the same logical capacity and the same number of physical cells. For all workloads,
WOM-v(2,4) enabled QLC drives provide better endurance than MLC drives.

above. We observe that for the same write pattern, the endurance of the WOM-QLC
drive exceeds the endurance of the MLC drive in all scenarios (ratio larger than 1). This
is the case even for the workloads with higher garbage collection where improvements
from WOM codes were lower than for other workloads. On average the improvement in
endurance is a factor of 3.5x for GC_OPT mode and 2.4x for GC_OPT-NR Mode, with
negligible performance overheads as compared to a NO-WOM QLC drive using the NR
Optimization. In summary, we conclude that WOM-v codes can significantly improve
drive endurance compared to standard MLC as well as QLC drives.

3.7.6 Theoretical Analysis

The goal of this section is to explore analytical approaches to obtain estimates of the
endurance gains under WOM-v. The most realistic model with greedy GC and skewed
popularity distribution is not easily analytically tractable. Instead we analyze two sim-
pler models. One with greedy GC and uniform page popularity distribution based on
prior theoretical results. One with LRW GC and skewed popularity distribution based on
a new theoretical framework we present. We find that both overestimate number of re-
quire erases, but that the model based on greedy GC and uniform popularity distribution
provides tighter bounds.

The theoretical framework we explore in this section evaluates the expected gain of a
WOM coding scheme in terms of reducing the number of required erase operations for
writing a given amount of data in an SSD, compared to the case where no WOM coding
is applied, by considering the write amplification resulted by coding overhead and the
garbage collection operation into the picture. However it makes a simplifying assumption
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that all segments of the stored data have the same rate of expiration. Later, we evaluate
the theoretical gain of the presented WOM-v scheme based on this theoretical framework
to see how well it can predict the gain of this coding scheme for new SSD generations.
Finally, we extend a different version of this theoretical framework by considering a differ-
ent garbage collection scheme, and also present a more elaborate theoretical framework
for evaluating the expected gain of WOM codes even when different segments of logi-
cal data have different expiration rates, which more accurately resembles the real world
applications.

All of the theoretical models considered in this section are based on the optimal scheme
of garbage collection, namely GC-Opt, introduced in the previous section, in which the
valid pages remaining in the erase blocks which are used for writing more data to them
without erasing (i.e., reprogramming with WOM codes) will remain in place. In the final
subsections we present a comparison between our analytical predictions of the reduction
in the number erase operations with the results of simulating real traces using the imple-
mentation of WOM-v codes in a flash simulator in Linux LightNVM Open-Channel SSD
Subsystem module that we developed and was first presented in [76]. This comparison
better demonstrates the power and limitations of the analytical frameworks. Before we
begin the presentation of theoretical framework, we need to first introduce the notations
through a general description of the WOM coding schemes.

3.7.7 Erasure Factor

As discussed above, the main goal of using WOM codes is to reduce the number of erase
cycles required for writing same amount of information to the drive. On the other hand,
they introduce a certain amount of storage overhead and therefore, increase the total
amount of writes. In order to measure the overall impact of WOM codes on the drives
endurance, Yaakobi et al [187] introduce the erasure factor metric as the ratio between the
number of block erasures and the number of logical block writes. Building on top of the
analysis of write amplification for the greedy garbage collection provided in [41] Yaakobi
et al [187] then derive the closed-form formula for erasure factor for a WOM coding
scheme with t generations and rate R as follows,

E(α) =
1

t
(

1 + α
R W

(
− R

α e−
R
α

)) , (3.1)

where α represents the ratio between the total logical and physical space in the drive. In
other words, for a drive with x% over provisioning, α = 1/(1 + x). Finally, W(·) is the
Lambert W function. Note that this formula is derived based on several over-simplified
assumptions for the greedy garbage collection scheme, which makes the analysis tractable.
For instance, page invalidation is uniformly random in the sense that all valid pages in
the drive have the same probability of getting invalidated at any time. Also, the drive is
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considered to be in a steady state, which means the workload does not change over time.
Although such simplifying assumptions are crucial to make the analysis tractable, the

real-world traces rarely satisfy them. Moreover, the erasure factor only evaluates the
impact of WOM codes on the endurance, but does not capture any aspect of performance.
Such analysis through theoretical models easily becomes intractable considering the large
number of parameters involved. Hence it is necessary to have a different method to
evaluate the implications of incorporating WOM codes in SSD drives.

3.7.8 Generalizing the WOM-v Coding Scheme

While our presentation of WOM-v coding has so far focused on QLC SSD drives, we now
show that it is easy to extend the WOM-v code design to any other flash cell configuration
with N distinguishable voltage levels.

Let n = log2(N), then each of the N distinguishable voltage levels for any cell can
be labeled as an n-bit codeword for the general WOM-v(k, n) coding scheme, whit some
k ≤ n. Such coding scheme then maps each sequence of k data bits into an n-bit codeword
that can be stored in a single cell as its corresponding voltage level. The rate of the coding
scheme, denoted by R for a WOM-v code can be computed as,

R =
k
n

Each generation in the WOM-v(k, n) coding scheme consists of a set of 2k consecutive
voltage levels, It is then clear that if we allocate disjoint sets of voltage levels for every
generation, the total number of generations, denoted by g for a WOM-v(k, n) code can
be computed as g = 2n−k. However, the codeword sharing technique introduced in Sec-
tion 3.3.1, allows the last voltage level of every generation, excepting the last generation,
to be shared with the next generation. Hence, the number of generations with codeword
sharing can be expressed as:

g =
2n − 1
2k − 1

3.7.9 Flash Friendliness of WOM-v(k,N) codes

Besides reducing the number of required erase operations, WOM-v codes also have the
added benefit that their writes are more flash friendly as they only involve voltage level
increases within a short range of voltage levels. For instance, in a standard QLC drive with
16 distinct voltage levels, the voltage increment for a non-coded configuration could be
anywhere between V0 to V15. However using a WOM-v scheme, the increase in voltage
will be bound by the voltage range spanned by one generation, since in each write we will
move up by at most one generation (e.g., the next 4 voltage levels in WOM-v(2, 4) coding
scheme). In general, for a WOM-v(k, n) coding scheme, the next write will only increase
the voltage level from V0 to the next 2k − 1 levels as compared to non-coded configuration
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where the voltage may increase anywhere between 0 to 2n levels. The implications of this
lower rate of increment in voltage level during a write operation for WOM-v(k, n) code
is that less amount of charge will be injected to each cell as compared to non-coded
configuration. This mode of programming a cell in WOM-v encoding scheme is more
flash friendly as it induces less program disturb errors in both programmed cell and
neighbouring cells as compared to non-coded configuration. Further, gradual voltage
increment may also simplify SSD circuitry as the number of possible transitions on each
state is significantly reduced in WOM-v configuration as compared to the NO-WOM
configuration.

In this work, we focus our attention on reducing the number of erase operations in
exchange for more number of writes to improve SSD endurance. We acknowledge that
there are other factors, including write operations, and temperature that would impact the
endurance of SSD drives. However, such factors have much less impact on the endurance
of SSD drives as compared to the erase operation [42].

3.7.10 Uniform Page Invalidation with LRW Garbage Collection

LRW garbage collection is the simplest and easiest scheme of garbage collection for imple-
mentation in SSDs. In this scheme, erase-blocks are chosen for garbage collection based
on the same order in which they are written to, so there is no need for any background
processing of the number of valid pages and optimizing the choice of erase-blocks selec-
tion. When no WOM coding is applied, this scheme simply treats the erase-blocks as a
single first-in-first-out queue. In a WOM coding scheme with t write cycles, however, the
blocks could be written to t times before they need to be erased. Hence, we would end up
having t consecutive queues of erase blocks, such that the fresh erased blocks are written
to at the beginning of the first queue and rewritten to without erasing at the beginning of
each of the other t − 1 queues, and finally getting garbage collected and erased at the end
of the last one.

Consider an SSD with a physical storage capacity of T erase blocks. Assume the
SSD can store U user erase blocks of data. In other words, the over provisioning is
(T − U)/U × 100%. Assume each erase block consists of Np pages. Figure 3.15 depicts
the steady state of LRW garbage collection in it where a WOM coding scheme with t
write cycles is applied. The rectangles represent the erase-blocks and the number inside
each rectangle represents the expected number of valid pages. Assuming the uniform
invalidation of pages, and noting that all erase-blocks at the beginning of each queue are
fully written to (i.e., have Np valid pages), it is easy to see that all queues have the same
expected length. We are now interested to calculate the expected write amplification, i.e.,
the ratio between the rate of physical and user data written to the drive. According to the
diagram of Fig. 3.15, it is clear that write amplification is denoted by A, the rate of writing
physical erase-blocks, normalized by the the rate of user data written to the drive.

Let the expected number of active sequences of 1/R codes pages in the erase-block at
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Figure 3.15: The LRW garbage collection scheme with a t-write-cycle WOM
coding scheme. User data is written to the first block of each row which
are called active blocks.

the end of the queue associated to each write cycle be denoted by as X0. Given that for
every single user data block written to the drive we have A physical block writes, and
assuming the steady state of the system, we have:

1 = A(1 − X0

RNp
). (3.2)

Moreover, we have T/t erase-blocks in each queue, and they move by a normalized
rate A blocks towards the end of the queues. Therefore, for each sequence of 1/R codes
pages, the expected number of 1/R-pages invalidation operations happening between
it is first written to the drive at the beginning of one of the queues until its associated
erase-block reaches the end of the queue is

TNpR
A

.

Hence we have,

X0 = RNp

(
1 − 1

UNpR

)( TNp R
A

)
≈ RNpe(

−α
A ), (3.3)

where the approximation holds when UNp is a very large number.
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From (3.2), and (3.3), we have,

A =
1

1 − e(
−α
A )

,

which we can rearrange as

e(
α
A ) =

−α
α
A − α

.

Now, multiplying both sides by
(

α
A − α

)
e−α, we have

( α

A
− α

)
e(

α
A −α) = −αe−α. (3.4)

Solving (3.4) for A, we then have,

A =
α

α + W (−αe−α)
. (3.5)

Note that A is merely the rate at which the physical erase-blocks are moving in the
diagram of the steady state in Fig. 3.15, assuming the user data is written at rate t in
parallel write cycle queues, and does not necessarily match the write amplification in this
scheme. In fact, the actual write amplification, which is defined as the ratio between the
physical and user writes, would depend on how we treat the valid pages in the erase-
blocks leaving from the end of queues 1 to t − 1. If the valid pages in the erase-blocks at
the end of queue i, for i < t, remain in place and new pages would be written on top of
the invalid pages, then write amplification would be calculated as,

Write Amplification =
t

t
R + AX0

RNp

≈ tR

t + RAe(
−α
A )

. (3.6)

Now, finally to calculate the erase factor we just note that the rate of physical erase-
blocks exiting all t queues in the diagram depicted in Fig. 3.15 is the same, and they all
have the same expected number of valid pages that should be carried over to the first
erase-block of the next queue. Hence, for one set of t erase blocks exiting from the end
of all t queues, only one of them gets erased, and the expected total amount of new user
data that could be written to them when they go to the beginning of the next queue is,
t(1 − X0/Np)/R blocks. Therefore,

Erase Factor =
1

t
(

1 − X0
RNp

) ≈ 1

t
(

1 − e
−α
A

) (3.7)
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Figure 3.16: The hot/cold model of data invalidation.

3.7.11 Hot and Cold Data Model

In this subsection, following the works of [156] and [41], we will consider a simple non-
uniform model for page invalidation probability in an attempt to have a more realistic
approximation of the real-world workloads. To this end we use the Rosenblum’s hot/-
cold model [156], to separate the pages into two categories, namely "cold" and "hot", as
demonstrated in Fig. 3.16. In each invalidation operation we assume the invalidated page
is a hot page with probability r > 0.5, and it is a cold page with probability 1 − r. Hence
the normalized rate of invalidation and arrival of the new pages for hot and cold data is
r and 1 − r respectively. Moreover, we denote the expected fraction of space occupied by
hot pages by f .

Similar to the discussion in the previous subsection, when a WOM coding scheme with
t write cycles is applied along with the LRW garbage collection, the steady state process
of the drive can be described by the diagram depicted in Fig. 3.17.

From Fig. 3.17, one can see that for the rate of moving valid hot pages from a queue
to the next, denoted by H, we have.

H = (H + r)
(

1 − r
UNp f

) αUNp
A

≈ (H + r) e−
αr
A f . (3.8)

Similarly, for the rate of moving valid cold pages to the next queue, denoted by C, we
have

C = (C + (1 − r))
(

1 − 1 − r
UNp(1 − f )

) αUNp
A

≈ (C + (1 − r)) e−
α(1−r)
A(1− f ) . (3.9)

Finally for the rate A of moving erase-blocks to the right in each queue we have,

A = H + C + 1,

where, replacing H and C from (3.8), and (3.9), respectively results in
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Figure 3.17: The steady state of the LRW garbage collection with hot and
cold data invalidation model. User data is written to the first block of each
row called the active block.

A = 1 +
r

e
αr
A f − 1

+
1 − r

e
α(1−r)
A(1− f ) − 1

. (3.10)

Now note that for every t blocks of user data written at the beginning of the t parallel
queues in Fig.3.17, we have A erase-blocks leaving from the end of each queue. However,
only the A blocks leaving the queue associated with write cycle t will be erased, and hence
we have,

Erase Factor =
A
t

,

where A can be calculated numerically from (3.10) for any particular value of r, f , α,
and the WOM coding rate R.

3.7.12 Evaluating the Analytical Models

In this subsection we compare the theoretical results introduced in the previous sub-
sections with the trace simulations in order to demonstrate how valid the simplifying
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Figure 3.18: Difference in number of Erase Units (EUs) erased of a Greedy
Uniform distribution and a Hot-Cold separated LRW analytical modeling
with Simulated trace results. We note that in most cases, the Hot-Cold
Separated Erase Units form an upper bound on the Erase Units obtained
using a real world trace.

assumptions made for analysis have been, and how accurate the analytical results can
predict the required number of erase operations for the real-world traces.

For the hot and cold data model, as introduced in the previous subsection, we ap-
proximate the real-world workload by considering two parameters in the model, namely
r, the rate of update for hot data, and f the fraction of storage space occupied by hot
data. Although, the actual update frequency of data in a real-world workload is much
more complex, this provides a simple and tractable abstract model to incorporate the
differences in temperature spectrum of different segments of stored data in various work-
loads into the analysis, and hence enables the model to differentiate between different
workloads based on their temperature profile. To this end, for each trace we considered
the hottest pages contributing to 90% of the updates as the hot pages and evaluated the
fraction of storage space occupied by them as the f parameter for that trace. The corre-
sponding value of f is then plugged in along with r = 0.9 into equation (3.10), to derive
the corresponding value of the parameter A, and from there the erase factor is calculated
for each trace. The erase factor multiplied by the total number of written blocks would
provide the predicted number of EUs erased based on this model.

Figure 3.18 shows a comparison of the required number of erase operations in the real
world traces when using WOM-v codes with GC-Opt, and what could be predicted using
each of the theoretical models, namely the Greedy Uniform Model, assuming greedy GC
and uniform page invalidation distribution based on prior theoretical results [187], and
the LRW Hot-Cold Model with LRW GC and skewed popularity distribution introduced
in the previous subsection. We find that both overestimate number of require erases,
but that the model based on greedy GC and uniform popularity distribution provides
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tighter bounds. However, in many cases neither of the theoretical models bounds are
tight. The reason is most likely that the analysis relies on several simplifying assumptions
in order to be tractable, including for example an assumption that page invalidations
happen uniformly at random, or we use LRW GC rather than greedy. This emphasises
the need of a realistic simulation framework for better evaluation of WOM coding gains.

3.8 Related Work

WOM Coding schemes[153, 52] were initially explored for tape-drives and compact-disks.
Recently, WOM codes have been introduced for MLC and TLC flash [184, 183, 190].
The implementation and limitations of such approaches considering hardware constraints
have been evaluated [191, 110, 111].

Yadgar et. al [191], propose ReusableSSD, where invalid pages inside an SSD are
reused and overwritten with encoded data. During the first iteration of write to the drive,
the data is written as-is. In the second write, invalidated pages are reprogrammed and the
disks overprovisioning space is used to handle increased storage overhead. The analyisis
limits itself to two writes. More than two overwrites are not possible.

Margaglia et. al [111] implement WOM code on hardware MLC flash. The key con-
tribution of this work is that the practical gains of WOM coding scheme for MLC flash
is lower than the theoretical gains expected. Other factors such as workload distribution,
underlying media reliability and Overprovisioning space determine the eventual reliabil-
ity increase in WOM codes. This work does not cover higher degree of WOM coding
schemes suitable for TLC and QLC flash devices.

Further, biasing code-words towards one type of data format as opposed to another to
keep voltage levels to a minimum have been studied [186, 200]. Recent work also suggests
how encoding data such that eventual code is kept at a lower or middle voltage level helps
reduce program interference errors [200, 179, 186].

3.9 Summary and Implications

Below we summarize our findings and their implications.
1. WOM-v codes reduce the amount of erase cycles by 4.4-11.1x for high-density QLC

SSDs. This directly improves the lifetime of flash media and reduces the overhead
of purchasing, replacing and restoring data from an older drive.

2. Even for workloads that exhibit high-write amplification, WOM-v codes present a
novel opportunity to delay garbage collection in GC_OPT mode until the entire erase
unit is no longer programmable. Such optimization is possible only in WOM-v codes
where data can be overwritten without erasing previous data on a SSD.

3. Even for performance-critical workflows deployed on high-density SSDs, drive en-
durance can be enhanced to a significant degree using WOM-v codes without com-
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promising on performance using the no-reads optimization.
4. The space amplification of WOM-v codes can be a cause of concern for SSDs that ex-

hibit high space utilization. For such drives, we recommend routinely transitioning
between WOM-v codes with different code rates based on the space requirement of
the drive. We leave evaluation of such dynamically transitioning coding schemes
based on space-utilization as part of future work.

5. Although this paper demonstrates the effective use of WOM-v codes and discusses
the implementation, evaluation, and optimization of WOM-v codes in the context of
QLC SSDs, WOM-v codes can be easily extended to higher density, futuristic SSDs
such as PLC SSDs.

3.10 Use cases and Impact

WOM-v coding scheme presents promising results for use cases where there is a large
amount of repeated overwrites for the same type of data. As SSDs do not have in-place
writes, a mechanism could be developed within the flash translation layer to overwrite
the erase units with data that is similar to previously written data. One way to achieve
this would be to use scrambler [108] that already controls and complements bits being
written to the underlying flash drive to reduce overall write entropy.

Another common use case could be taking data snapshots and version less backups
where older data needs to be discarded to make way for new data. In such scenarios,
WOM-v codes could simply overwrite previously existing data without having to relocate
to another location on the drive.

This work has been published at three different venues [76, 77, 75] and has received
strong acceptance, including a best paper award [76] and an invitation in the special edi-
tion of ACM TOS [75]. We have also received interest from industry including researchers
at Samsung about our technique and it’s feasibility on their recent Solid State Memory
design.

3.11 Future Work

A new family of WOM codes [76, 77, 75] for high density flash drives leads to some open
questions for future research:

1. Using Over-provisioned Space v/s ECC Once flash cells start reaching EINVAL state,
one way to not rely on ECC would be to write data of any unprogrammable cell to
the over-provisioned space in the SSD. This brings additional management overhead
but does not depend on internal ECC. This also improves the read performance as
we no longer use ECC to correct the cells in EINVAL.

2. Existing QLC RBER During our preliminary discussions with some industry part-
ners, we observed that there is a large variation in accepted values of RBER (Raw
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Bit-Error Rate) between different SSD vendors and across different SSD types. More
discussion should be done to determine what is the industry accepted range of
RBER rates for QLC flash and what error rates should academics assume for future
reliability based research on dense flash storage media.

3. Voltage Transition Limitations Some voltage levels may be reserved. Our WOM
code model can discard such reserved voltage levels while dividing different voltage
levels into generations. Hence, our model would continue to work irrespective of
forbidden voltage levels in hardware.

4. Differential error rates at different voltage levels All voltage thresholds are not
equally error prone, and some states may have a higher error rate than others [179,
200]. One approach to implement WOM-v scheme would be give a larger volt-
age range between error prone voltage states. In voltage based model this can be
achieved by merging multiple voltage states at a higher voltage level together and
assigning a single code word to that voltage range.

5. Re-programming Feasibility Previous reliability studies attribute erase operation as
a primary cause for flash wear. WOM codes involve reprogramming the same cell
multiple times. It would be interesting to explore the impact of re-programming on
flash wear and if we should take the wear into account while quantifying increased
QLC flash lifetime, as discussed for MLC flash in [189, 192].

6. Hardware Tool Kits for QLC experiments There exist limited support for QLC
flash in open sourced tool kits and simulators [182, 133] to do benchmarks and
experiments. Although our work provides a software testbed for code evaluation
it would be good to obtain a hardware where new class of WOM codes can be
programmed more efficiently.

7. Impact on simplifying SSD circuit design Our WOM coding scheme restricts the
number of transitions possible from one code word to another by 1/number of
generations. For example, with NO WOM, a voltage may transition to one of the 16
transition levels. However, with WOM-v(2,4), we may only transition to the next 4
voltage levels. A future line of research could be towards simplifying SSD circuitry.



Chapter 4

A Framework to evaluate
Near-Storage-Computation
Applications

4.1 Introduction

The end of Moore’s law coupled with the massive growth in data storage requirements
has lead to increased interest in disaggregated storage in both single node and distributed
storage environments. Disaggregated storage involves keeping the storage nodes at a sep-
arate location than the compute nodes so that they can scale independently of each other.
In a non-disaggregated storage system, data is accessed and processed locally. However,
in a disaggregated storage system, data storage is done at a remote location and trans-
ferred from a remote storage to the local compute node for processing. The continuous
back-and-forth of data between compute node and storage node contributes to network
bottleneck in two ways. First, there is a limited interconnect bandwidth between the com-
pute node and the storage node. Second, repetitive data transfer between the compute
node and the storage node leads to an increased latency in serving the application I/O
requests. One solution to reduce the data transfer for computation is to offload the data
computation to the storage node. This is possible by adding an embedded processor
within the storage device.

Recent advances in the SSD hardware help us realise such specialized devices. Tradi-
tionally, SSDs were built using HDD interconnects such as SATA, SAS and Fiberchannel.
Such interconnects help SSDs to be backward compatible with HDDs. However, SSDs
gained both speed and parallelism over time. Hence, PCI-e interconnect with low latency
and high bandwidth was introduced to access data on the SSDs. The NVMe protocol [131]
built on top of the PCI-e interconnect helps us perform data transfer at lower latency and
utilize the large PCI-e bandwidth.

The advantage of using NVMe protocol is not restricted to optimal data transfer. It

86
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also enables sending control information to the disk. This capability of NVMe protocol
helps the host to use the rich NVM-e command set to send computational instructions to
the device. Such instructions can be used by the device to perform specific computation
on the data within the device before storing it in the media or returning back to the host.
Such modern NVMe-enabled SSDs are a natural fit to be used as Near Storage Compute
(NSC) devices.

Computational storage devices give us the following advantages:
1. Reduced Bandwidth usage: Since computation is done near the data stored within

the device, only final, processed data is transferred from the device to the host.
2. Reduced Latency: Placing an on-disk processor near the data source helps coalesce

multiple instructions within the disk and send final output to the user thereby re-
ducing the overall latency involved in serving the request.

3. Reduced Host Computation: The host CPU gains free cycles by offloading a part of
data computation to the device. This additional host computational power can be
utilized to serve other foreground requests.

Multiple storage software vendors, such as Samsung [160], NGD Systems [128], Scale-
Flux [163, 198] and EidetiCom [129] have built custom Computational Storage Devices.
Although such storage devices are in high demand and are increasingly being deployed
in production, there are severe constraints that limit the use of such devices for evaluating
application computation offload and computational storage research:

1. High Cost Samsung’s SmartSSD or other specialized hardware are difficult to ac-
quire and are currently not under mass production. Any application computation
offload on such devices for evaluation in academia/research is costly and limited.

2. Device Programability The hardware device is usually an FPGA hardware or other
sophisticated on-disk accelerator that requires domain expertise in low level Verilog
and VHDL programming language. This increases overall time to write, offload and
port application computation code to the device.

3. Usefulness for the Application Application computation offload need not always
provide application speedup. The transfer time or the time to resolve the data-
dependency between computations may exceed the computation gains achieved,
which may lead to an overall reduced performance.

To address these limitations, we build NESCAFE, a Near Storage Computational
Framework to evaluate the gains of offloading storage based computation to a near-
storage computational device. A storage-based application is instrumented to direct the
underlying device to perform computation on the data being accessed. The user specifies
the semantics of computation that takes place inside the device before the data is stored
or retrieved. The application I/O requests are intercepted in the read/write path and
computation is performed on the data read or written by the application on the device.
The application may also invoke a certain computation workflow and leave the computa-
tion to take place inside the device. Finally, the original application performance can be
compared with the instrumented application performance to measure the gains (if any)
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that can be achieved on a particular configuration of host and on-disk CPU configuration
and device interconnect.

Nescafe requires $0 additional hardware cost - no specialized FPGA or hardware ac-
celerator is required to evaluate computational offload gains. Nescafe is written in C. A
new computation type on the data can be implemented in C without the use of a low-level
language. Nescafe also provides application performance gains with high fidelity, taking
storage system parameters such as caching and device read ahead into account. Nescafe
is built on QEMU and can be compiled against different hardware architectures.

Nescafe speeds up developer effort in offloading and benchmarking x86 based system
and application code before deploying the code on real hardware. Nescafe also helps
us evaluate whether computational offload is a good fit for an application as many ap-
plications may not have compute-intensive tasks that gain performance by computation
offload to the on-disk processor.

4.2 Background

4.2.1 Computational Storage Devices

With the end of Moore’s law, there is increased interest in pushing computation to domain-
specific compute-fabrics. There is increased interest in hybrid-CPU/GPU computing [119],
Programmable NICs [96], AI/ML inference chips [85] and computational storage de-
vices [163, 198, 128, 129, 160]. A computational storage device (CSD) is capable of re-
ceiving data as well as computational instructions that should be performed on the data.
A CSD contains one or multiple CPU’s and optionally a FPGA IC board. A particular
computation type can typically be specified in the FPGA. Either all data or user specified
data read or written to the device can be operated on by the computation logic. Hosts can
interact with underlying CSDs using NVMe protocol.

4.2.2 NVMe Protocol

The NVMe (Non-Volatile Memory express) Protocol is the industry standard for Non-
volatile memory (flash and persistent memory) fabrics. NVMe can run on a PCIe inter-
connect. It provides two types of commands the NVMe Admin Command and the NVMe I/O

Command. All interaction between the host and the guest take place using two circular
queue pairs - the Submission Queue (SQ) and the Completion Queue (CQ) created by the
host during NVMe device registration. The number of queue pairs match the number of
cores in the device. This helps the queues to function in a lockless manner. A request is
first queued by the host on the SQ. This request contains the Start Logical Block Address
SLBA the Physical Region Page PRP List and a few other instructions. The host then
writes the Doorbell register to inform the device of an incoming NVMe request. This up-
dates the tail pointer of SQ. The device then picks up the NVMe request, processes it and
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returns the end result of the request in the CQ. The device then sends an interrupt request
to the host. The host then services the interrupt by fetching the NVMe I/O completion
request and writing again to the Doorbell register. This updates the head of CQ register
and the I/O request is cleared from the CQ.

4.3 Prior Work
Riedel et al. [2] proposed one of the first designs of using a processor as a computation unit
within the computational storage device. This work proposes a stream based I/O interface
for processing data within a disk. Computation takes place while reading and writing
data to the disk. The application code run inside the disk is called a disklet. The rest of
the application is called a host-resident component. A disklet is sandboxed component that
only works on pre-specified memory and file storage system. This limits the possibility
of a malicious program running inside a disk. The key drawback of disklets is that it
cannot perform block I/O. Most storage applications assume a block I/O interface for
storage applications. Further, disklets cannot initiate or continue a computation on their
own limiting the capability of the computational storage device to initiate I/O requests to
the underlying media.

Insider [158] provides a FPGA based reconfigurable drive controller as the in-storage
computation unit. On the software side, Insider provides a virtual file system interface.
This reduces the host side application modifications. It also helps in providing security
and isolation to the on-disk application code. However, Insider requires compiling FPGA
HLS code into RTL code. Furthermore, complicated programs such as KV-Stores cannot
be naturally offloaded to Insider. The main reason for this is the separation of data and
control plane. The on disk controller code which is the data plane has no metadata
information to initiate sub-computations on its own. The on-disk controller relies entirely
on the host to initiate computation. This may not be sufficient for complex, reenterant
computations found in modern applications.

Multiple specialized application computation offloading techniques have been pro-
posed. CognitiveSSD [104] provides a power and compute efficient deep learning and
graph search (DLGx) computational SSD storage. The key idea here is to program graph
search and deep learning within the SSD for indexing massive unstructured data. This
helps in using the internal SSD storage bandwidth instead of CPU-Disk interconnect for
the data transfer. Since CognitiveSSD is a specialized hardware to perform graph search
and deep learning, it cannot be customized to evaluate other host applications. Simi-
larly, ScaleFlux [203] uses FPGA computational unit for PostGreSQL with inbuilt com-
pression that leads to reduced storage footprint, it is able to achieve the same IOPs as
non-compressed PostGreSQL buffer. Further, PolarDB [33] provides an interface for of-
floading analytical workloads in a Relational Database Management System. These are
customized hardware solutions for single applications instead of a generic application
computation offload framework.

Computational offload has also been explored in a distributed environments. For in-
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stance, Active Disks [152] proposed moving computation to networked attached storage
disks. More recently, Caribou [72] explored near data processing in database engines. It
provides a key value interface over TCP/IP interconnect for accessing data in SSDs at line
speed. They also provide optimizations for efficient lookups using custom bitmaps, query
over both structured and unstructured data, and provide fault tolerance through replica-
tion. The Caribou framework is good for streamed computation, for instance stream
selection or decompression. However, Caribou falls short for real world applications that
require metadata to be stored within the disk. Also, the performance gains achieved over
TCP/IP cannot be achievable over the PCI-e interconnect that is an order of magnitude
faster, specifically for embedded applications such as KV stores (RocksDB) or embedded
databases such as SQLite.

LeapIO [100] presents a technique to offload computation to ARM SoC co-processors
instead of x86 processors. The emphasis is on reducing the x86 CPU cycles in performing
storage tasks. They also demonstrate reduced power consumption for storage stacks in
the cloud. Adaptive Placement for In-memory Storage Functions [4] provides flexibilty
of computation function offload. It emphasises on moving storage functions adaptively
between server and client to save microsecond level latency for in-memory media.

Modeling Analytics for Computational Storage [151] demonstrates the gains achiev-
able through computation offload. They show performance improvement in OLAP TPC-
DS queries on SparkSQL and Presto. The key contribution is a predictability model for
improved latency and bandwidth for disk bound queries. However, this work does not
implement and evaluate systems implementation of the computational framework. Hence
the theoretical modeling can be considered as a guideline to determine upper bound of
gains from computation offload. But a more generic, implementation specific modeling is
required for real world application offload assessment.

Willow [166] proposes changing block based interface to SSD storage to enable in
storage computation. Each SSD’s computation core is treated as a specialized storage
processing unit (SPU). Each application runs on a host RPC endpoint (HRE) that send in-
structions to the underlying SPU. This requires restructuring the standard block interface
and the applications that use the block interface.

A virtual object abstraction is proposed in [3] that respects the block interface. Each
virtual object stores minimal metadata required to process storage requests. This work is
close to our work but involves using a file system interface between application and the
underlying computational device. Further, other works such as SSDSim 2.0 [63], Open-
Express [134] and FEMU [101] provide SSD emulators. They need to be modified to in-
corporate a on-disk processing unit to evaluate application performance gains with data
computation at source.

Nescafe can be run entirely in software, supports multiple interconnect latencies and
can easily be modified to add new computations.
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Computation
Storage

Full S/W
Emulation

Multiple
interconnect
Support

Customized
Application
Offload

Active Disks [2] ✓ ✓ ✗

Insider [158] ✗ ✓ ✓
Cognitive SSD [104] ✗ ✗ ✗

ScaleFlux [203] ✗ ✗ ✗

PolarDB [33] ✗ ✓ ✗

Caribou [72] ✗ ✓ ✗

LeapIO [100] ✗ ✓ ✓
Willow [166] ✗ ✗ ✓
NeSCAFe ✓ ✓ ✓

Table 4.1: Nescafe compared to other computational storage frameworks. Nescafe
provides a software only, multi-interface, multi-application framework to evaluate
near storage computation offload.

4.4 Analytical Model

We present an analytical framework to evaluate storage workloads run on our near-
storage compute framework. The goal of our framework is to enable tradeoff comparisons
between running a storage workload on the host and running on a NSC architecture. We
evaluate three metrics: request latency, host CPU utilization, and device bandwidth con-
sumption. Table 4.2 summarizes the terms we will use in our model. We note that these
terms are coarse-grained, intended to capture intuition. In Section 4.6, we show how our
simulator can give more precise estimations of performance.

4.4.1 Single Request Model

Variable Description
latsetup setup latency: time taken by the host to setup and send a request to the

device
latmedia media latency: time taken to fetch a data block from the media into the

device’s memory
x f er(·) transfer latency: time to transfer a data block across the host-device inter-

connect
execx(·) execution latency: time to perform computation on the given data block.

x ∈ {host, device}.
Dorig original (raw) data read from the device
Dresult resulting data object after computing on Dorig

Table 4.2: Variables used in our analytical model.
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We are interested in workflows that first read raw data from the storage device, perform
computation on the raw data, and derive result data.

In traditional architectures, computation is executed on the host. The host sends a
read request and performs computation after the raw data is available in host memory.
On the other hand, in NSC architectures, the computation is shipped to the device. This
enables the device to both retrieve the raw data and perform computation. In this case,
only the result data is sent back to the host.

Request Latency. Our model breaks request latency into four main contributors: (1)
submitting a request to the device, (2) fetching the data within the device, (3) transferring
the data back to the host, and (4) executing computation on the host. These individual
latencies are summarized with corresponding variables in Table 4.2. The total latency for
the workflow in a traditional architecture is:

lathost = latsetup + latmedia + x f er(Dorig) + exechost(Dorig)

A request latency in an NSC architecture also has four main contributors: (1) sub-
mitting a request to the device, (2) fetching the data within the device, (3) executing the
compute operator in the NSC compute substrate, and (4) transferring only the result data
back to the host. The total latency in a NSC architecture is:

latNSC = latsetup + latmedia + execdevice(Dorig) + x f er(Dresult)

Then the difference in request latency between the two approaches is:

lathost − latNSC = (x f er(Dorig)− x f er(Dresult))

+ (exechost(Dorig)− execdevice(Dorig))
(4.1)

The difference in bandwidth consumption is simply the difference in data size trans-
ferred:

bwhost − bwNSC =
∥∥Dorig

∥∥− ∥Dresult∥ (4.2)

Finally, the host CPU utilization saved is captured by exechost(Dorig). While this term
is a latency rather than utilization measurement, it approximates the logical time that is
freed up on the host CPU when offloading.

Equation 4.1 shows that latency savings in an NSC framework comes from two high-
order terms: the reduction in transfer latency due to data size reduction, and a reduction
in the amount of time it takes to execute the desired computation. These two terms trans-
late to (1) compute functions that greatly reduce the size of data transferred (bandwidth
reduction) (2) compute functions that can be easily accelerated on a computational device
processor. Equation 4.2 confirms the intuition derived from the transfer latency term in
Equation 4.1: compute workloads where

∥∥Dorig
∥∥− ∥Dresult∥ is large, i.e. high bandwidth

reduction, are excellent candidates for offloading.
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4.4.2 Generalizing to Data Flows

We extend the single request model to multi-access model which is representative of real
world workloads. This extends the model to workflows where the compute is a data
flow graph. This generalizes the number of computations performed during an operation
offload. Let i denote the number of sequential computations in the data flow graph. Then:

lathost = ∑
i

(
latsetup,i + latmedia,i + x f er(Dorig,i) + exechost(Dorig,i)

)
latNSC = latsetup

+ ∑
i

(
latmedia,i + execdevice(Dorig,i)

)
+ x f er(Dresult)

Note that when i = 1, the latencies degenerate to the equations in Section 4.4.1. Then
the difference in request latency is:

lathost − latNSC = ∑
i−1

latsetup,i

+ ∑
i

(
exechost(Dorig)− execdevice(Dorig)

)
+

(
∑

i
x f er(Dorig,i)

)
− x f er(Dresult)

(4.3)

Bandwidth consumption is determined by the total amount of data transferred:

bwhost = ∑
i

∥∥Dorig,i
∥∥

bwNSC = ∥Dresult∥

Bandwidth gains are given by:

⇒ bwhost − bwNSC =

(
∑

i

∥∥Dorig,i
∥∥)− ∥Dresult∥ (4.4)

The host CPU utilization saved is ∑
i

exechost(Dorig,i).

Equation 4.3 suggests that computation that are good offloading candidates should
run faster on the NSC processor, i.e. execdevice(Dorig) > exechost(Dorig) or greatly reduce
the bandwidth transferred between the host and device. The bandwidth condition is also
highlighted in Equation 4.4.

Equation 4.3 also introduces i, a third condition that affects whether a compute work-
flow should be offloaded. Equation 4.3 suggests that the larger i is, the better a workflow
is for offloading. While this is generally true as long as each additional operator i is a
compute operator, this argument does not extend to general computation.
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4.4.3 Case Studies

We apply our generalized analytical framework on simple computational tasks. We show
how our analytical framework is a useful tool for estimating computational gains.

Latency reduction

A pointer chase operation is a data-dependent operation that involves multiple round trips
between host and the disk. A series of blocks are accessed, where the address of the
next block is embedded in the previously accessed block. In a traditional disk, each block
is requested by the host, the next block address is dereferenced, and a subsequent read
request is sent back to the device. In a NSC implementation, the pointer chase takes place
within the computational device. The operation completes when end of this on-disk link-
list is reached. The workload is a good example of demonstrating latency gains through
computation offload. We show how speedup provided in Equation 4.3 can be customized
to give us an estimate of latency reduction. If both the exechost and execdevice are the same,
the speed gains become a function of the round trip time as shown in Equation 4.5.

lathost − latNSC = ∑
i−1

latsetup,i

+

(
∑

i
x f er(Dorig,i)

)
− x f er(Dresult)

(4.5)

Bandwidth reduction

Predicate filtering is an operation commonly selected for offloading. For the filtering op-
eration, exechost(Dorig) ≈ execdevice(Dorig), but

∥∥Dorig
∥∥ > ∥Dresult∥. For example, good

filtering operations can have selectivity between 0.02 and 0.04 [66], where selectivity de-
notes the fraction of data that is returned from the filter operation, i.e. ∥Dresult∥

∥Dorig∥ . Assuming

a selectivity of 0.03, then ∥Dresult∥
∥Dorig∥ = 0.03 ⇒ ∥Dresult∥ = 0.03 ·

∥∥Dorig
∥∥.

Plugging these variables into Equation 4.1 yields:

lathost − latNSC ≈ x f er(Dorig)− x f er(0.3 · Dorig)

Assuming x f er is effectively linear for large enough data sizes, we get:

lathost − latNSC ≈ x f er(0.97 · Dorig)

For large data sizes, the transfer time can be substantial. For example, for a 160GB SQL
table transmitted over a PCIe Gen 3.0 link that has a transfer rate of 1GB/s, the latency
saved by offloading can be around 155 seconds, which is substantial [66]. Workloads that
enable bandwidth reduction are often cited as offloading candidates, which confirms our
analytical model.
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Compute Acceleration

For operations that can run faster on an FPGA or ASIC, x f er(Dorig) ≈ x f er(Dresult)

but exechost(Dorig) > execdevice(Dorig) For example [168] showed that regular expression
matching, when carefully optimized on an FPGA implementation, can take as low as 1-

10% of the latency when compared to a host-side CPU. In order words,
exechost(Dorig)

10 =

execdevice(Dorig).
Plugging these variables into Equation 4.1 yields:

lathost − latNSC ≈ 0.9 · exechost(Dorig)

4.4.4 Need for a Computational Simulator

Our analytical measurement framework gives us theoretical latency, bandwidth and com-
putation gains achievable for simple computational tasks. However, we see that even
for simple intuitive micro-benchmarks, an analytical model may not give exact speedup
gains. This is because multiple device and system level nuances are not captured by the
model. For instance, the device and computation inter-process communication latency
is not taken into account. Further, the equation fails to capture system patterns such as
device read ahead and host side caching. For capturing such features, a software system
that emulates actual hardware and physically runs an offloaded computation is required.

Moreover, for more complicated tasks, all inputs to the equation may not be available.
For instance, to observe speedup gains in benchmarks such as zlib compression, the number
of compressed block sizes may not be known in advance. For offloading journal checksums,
the overall gains may depend on multi-threaded nature of journaling. Also, the transac-
tion size may not be known in advance. Hence predicting the number of checksums that
need to be computed may not be feasible. A key-value store may offload LSM-Tree com-
paction to the device. Since compaction is workload dependent, it would be difficult to
assess how many compaction operations are issued. Furthermore, applications like Spark
have an in-memory computation model. Most computations are deferred until the results
of the computation are requested by the application. Modelling such applications may be
difficult with an analytical framework.

Finally, the variance will only increase when we analyze benchmarks where gains
come from multiple sources - latency, bandwidth and host CPU usage. In the next section,
we describe the design of our software based Near-Storage Compute simulator that gives
more accurate speedup measurements than the analytical framework taking all system
nuances into account during a computation offload to the device.
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Figure 4.1: Nescafe Architecture: A NSC (Near Storage Compute) engine com-
municates with NVMe device polling thread through IPC. 3a and 3b are performed
for write based computations. 5a and 5b are performed for read based computa-
tions.

4.5 Architecture

In this section, we describe the Nescafe architecture. We build Nescafe on top of FEMU [101],
a NVMe device emulator. Nescafe does not require additional FPGA hardware or knowl-
edge of hardware level programming. It can be natively run within a QEMU Virtual
Machine environment.

More recent fast storage devices such as SSDs and persistent Memory devices such
as Intel 3D-Xpoint [195] use NVMe protocol [99, 131]. NVMe protocol exposes a queue
pair model for I/O processing. Each queue pair consists of a Submission Queue (SQ)
and a Completion Queue (CQ). The host creates these queues in the host-device shared
memory. The NVMe Admin command is used to create these queues during a host-device
handshake. The number of queue pairs correspond to the number of cores in the host.
This enables lockless access to each queue pair by each core in the host. Once the queues
are created, NVMe I/O commands can be issued to the underlying device.

A typical NVMe I/O command workflow is as shown in Figure 4.1. Each NVMe I/O
command is a 64 byte read or a write operation that is accompained by other metadata
such as start LBA (SLBA), PRP (Physical Page Region) List, and NLBA (Number of logical
block Addresses). A NVMe command is queued in the submission request queue (1) .
The host then updates a doorbell register to update the tail pointer of the circular queue.
This triggers the guest to fetch the NVMe instruction from the SQ and process it in the
device (2,4) . Once the request is processed, the device constructs a end of completion

request. This completion message is queued in the CQ (6) . Next, the device sends an
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interrupt to the host notifying the host about a completion request. Finally, the host reads
the completion request and updates the CQ head to clear the I/O.

FEMU [101] is a Flash Emulator that uses RAM as a backend device substrate. This
helps the emulator to customize and place configurable I/O access latency to emulate a
real NVMe device. In FEMU, the NVMe interrupt mechanism on completion is replaced
by a NVMe polling thread. FEMU also removes doorbell that provides significant per-
formance gains.

We build Nescafe on top of FEMU using the following approach: First, we fork a near
storage computation (NSC) process from the NVMe poller thread. This computational
process runs on a dedicated core other than the NVMe poller thread and the host vC-
PUs. the device process and computational process interact using FIFO pipes. Second,
we build an interface for the application to inform the NSC process about the type of
computation required for each I/O send to the namespace using NVMe directives. Third,
we build a number of fixed function interfaces in the NSC process for storage specific
computational tasks.

4.5.1 Near Storage Compute (NSC) Engine

Figure 4.1 shows the overall workflow of an offloaded storage computation. Before be-
ginning any I/O operation, the application sends an NVMe directive to the device. The
directive informs the NSC (Near Storage Compute) unit about the requested computa-
tion on subsequent data I/O requests. The additional dataflow in the device added to
support NSC is highlighted in blue . The application sends request that is queued in
the SQ (1) and is picked by the guest to be processed further (2) . If the Application
requested for a write based computation on the data, the data is sent to the Near Storage
computational process (3a) . The data is either altered or computed upon before being

sent back to the NVMe thread (3b) . Note that steps (3a) , (3b) and (4) may be per-

formed iteratively before proceeding to the next steps. For a read based workload, (3a)

and (3b) are bypassed, data is read from the underlying device, and sent to the NSC

process to perform appropriate computation (5a) . The NSC process may (5b) or may
not return the data after performing a specific computation. It may also issue multiple
I/Os (4) before storing the request completion result in the CQ (6) . The application
then reads the I/O completion status from the CQ and optionally computed data corre-
sponding to a read I/O. Once the application has completed I/O computation, it sends
an NVMe directive to reset and disable specific computation on all subsequent I/Os.

Next, we describe Nescafe’s user-facing interfaces, types of applications that can of-
fload their computation, and how Nescafe can be extended to support new applications.
The host-application needs to be altered to add NVMe directives. The computation logic
needs to be added to the NSC engine. The Guest OS remains unchanged.
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4.5.2 Interface

Host-Device Interface

The host informs about the type of computation to the device through NVMe directives.
A NVMe directive is a mechanism to enable host and NVM subsystem or controller infor-
mation exchange [131]. Each NVMe device is divided into namespaces. A NVMe direc-

tive can be used to create one or more streams for each namespace. When an application
opens an file descriptor within a device, the device internally associates the file descriptor
with one of the allocated streams within the namespace. A directive can then be im-
posed on the open file descriptor. This enables a specific type of computation on any data
written on the file descriptor.

At the device level, each NVMe command is directed to a particular NVMe Names-
pace. A NVMe Namespace has a NVMeDirId structure that stores directive context. When
the application in the host enables or disables a directive, the corresponding flag in this
structure is set. The device checks this directive during nvme_rw processing, and sets all
subsequent I/Os through a specific computation pipeline until the directive is disabled
by the application.

We use FEMU’s polling mechanism for sending and receiving data to and from the
underlying device. A configurable delay is added in the I/O return path in the CQ to
emulate device interconnect latency. For our purposes, we use PCIe latency of 900ns [127].
As PCIe interconnect is one of the fastest interconnects, more gains can be achieved by
computational storage on high latency, networked, disaggregated storage with slower
interconnects.

Device-NSC Interface

The NSC Process is forked from NVMe device polling process and runs on another vCPU.
The NVMe device process and NSC Process communicate over FIFO pipes. Each com-
putation operation inside NSC is assigned an opcode. Additional computation operations
can be specified by adding new opcode and specifying the corresponding computation
logic in a function.

First, the device process relays the computation type requested by host NVMe direc-

tive to the NSC process through the FIFO pipe. Next, for a write operation, the device
process sends all blocks over FIFO pipe to NSC. The NSC performs computation on the
block and optionally sends output back to the device for writing output data to disk. For
a read operation, the device first reads the block from the device. It then sends the block
to the NSC process that optionally returns output data to the device process. The device
process then copies any computed output data to shared memory and updates the CQ.

Since we cannot increase the physical CPU utilization of a processor, we emulate a
relatively powerful NSC processor by reducing host CPU processor. We use cpulimit

to reduce processor utilization of host CPU process. The cpulimit tool sends SIGSTOP
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and SIGCONT signals to a process running on a target CPU. The amortized processor
speed is calibrated to the user specified value. This makes CPU utilization of host v/s
nsc processor configurable. We run each benchmark multiple times and see negligible
difference in our results on using same CPU utilization threshold.

Device-Media Interface

The Device communicates with the in memory-emulated media. We reuse FEMU FTL’s
device media latency model. Fixed latency is added for read, write and erase operation
for the emulated SSD. FEMU emulates a MLC device by default, and additionally sup-
ports TLC and QLC flash. This latency is configurable and can be increased to emulate
remote network attached storage.

4.5.3 Computation Types

The computation operations offloaded to the NSC engine have varied requirements. Some
computations require a simple helper function to be offloaded and run on the device.
Others may require complicated I/O path. We classify computation into three categories
- block, stream and app-metadata computation. Using these APIs, we are able to support a
large variety of computation offloads.

Block Based Computation

A block based computation involves performing computation on a single block before
reading or writing to the device. Each input block I/O strictly generates a single output
computed block. The original data block and the output data block is of the same size.
The pointer-chase operation, checksum computation, count operation are examples of
such computation.

Stream Based Computation

A stream based computation involves performing computation on a sequence of blocks.
This may or may not compute and create an output block after each input block is pro-
cessed. The computed output may be of a different size than the input data. The NSC
may require multiple blocks from the NVMe device process to complete computation.
Typically, an end cleanup function is required once a disable directive or EOF is received.
This cleanup function clears any temporary in-memory buffers. Examples of stream based
computation applications include compression and encoding.
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App-Metadata Computation

Some advanced applications such as key-value stores and big data applications require
additional metadata information for computation. For example, a key-value store may
require on-disk LSM-Tree layout to perform compaction. Similarly, spark may require
SQL query metadata and table schema to perform project, scan or filter operations. We
categorize such applications as app-metadata computations. In these applications, addi-
tional metadata needs to be transferred to the device to perform computation. We modify
the application running inside the host and move the computation to our fixed-function
NSC interface. We relay relevant app-metadata to NSC which is used as in input to the
fixed computation function inside the NSC. The output (if any) is returned to the host
application.

Adding Customized Computation Type

Nescafe can be extended incorporate additional computation offloads as follows:
1. A NVMe directive opcode is assigned for the application and the NVMe Namespace.
2. Two functions enable_computation() and disable_computation() are added to

the application before and after it sends data to the computational device.
3. A fixed computation function is added corresponding to the opcode in the NSC.
4. The logic for computation is moved from the application to the NSC fixed-function.

A number of storage applications fall into one of the three categories block, stream or app
based computation ( 4.5.3). In the next section, we demonstrate how applications belong-
ing to the three categories can be offloaded. The same code can be naturally extended to
support similar computation types.

4.6 Evaluation

We evaluate Nescafe on a 14-core machine with 32 GB memory. We create a 10GB block
device on the host RAM and emulate it as a NVMe SSD. To emulate PCIe latency, we
add 2µs latency between the host and the device [127]. This is a tunable parameter. For
emulating SSD device latency, we add 1ms and 10ms latency in the read and write device
access respectively.

4.6.1 Micro-Benchmarks

In order to evaluate the latency, bandwidth and computation gains that we can achieve
using computational storage discussed in Section 4.4, we design 3 micro-benchmarks that
are widely used in many storage systems. First, we design a pointer-chase benchmark
that has latency gains when offloaded to the underlying computational device. Second,
we design a regular-expression filtering benchmark that only returns blocks that contain
a particular expression on the disk to the host. This benchmark is designed to show
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Figure 4.2: Speedup with increase in linked list length during a pointer chase
operation. Speedup is defined as the difference in execution time in Host and
Near Storage Compute configuration as described in the Analytical Model in Sec-
tion 4.4.

latency gains when only part of the data is returned to the host. Third, we design a
counting benchmark that sums the number of 1’s in a device. This benchmark shows the
latency gains one can achieve when a computational intensive task such as encryption or
checksumming is done on the device. We show using the analytical framework discussed
in Section 4.4 that these simple benchmarks when run on Nescafe indeed give speedups
close to those predicted by our analytical model.

Pointer Chase

We run a pointer chase benchmark with 100K lists of length varying from 1 to 8. The
relative speedup achieved on the simulator is shown in Figure 4.2. We compare this
speedup with the analytical model expressed in Equation 4.5. For short linked-list length,
we observe that the time to setup a request and send the request to the underlying device
is much higher. Hence the simulator performs much lower than the analytical model
estimate for short linked-list sizes. For longer linked-lists, we observe that the time to
fetch a block from the underlying device exceeds the setup time. Also, a number of
blocks get cached in the page cache. If repeated set of blocks or blocks fetched due to
device read ahead are accessed, the application request does not go to the disk and is
serviced directly by cache, thereby saving the PCI-e interconnect round trip. Hence the
amount of speedup achieved in practice on the simulator for pointer-chase is higher than
that predicted by the analytical model.
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Regular Expression Filtering
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Figure 4.3: Speedup achieved in regex match by transferring only blocks that
match the regular expression pattern. The NESCAFE Simulator under-performs
as additional step is required to communicate the next offset from which a scan
should begin in the NSC configuration.

A regular expression benchmark takes a sequence of bits as an input and checks if
the blocks on the device contain that regular expression. In the host configuration, all
blocks are read from the device and read and processed inside the host. The regex term
is matched with contents of each block. On a successful match, the regex counter is
incremented.

In a NSC configuration, a read request is sent to the device for a block. If the block
contains the requested regular expression, that block is returned. However if the term is
not present in the block, the subsequent sequence of blocks is scanned for the regex term
until a match is found.

Figure 4.3 shows the speedup achieved in NSC configuration with respect to the host
configuration on the simulator and the model. The simulator shows lower speedup as
compared to the model. This is because in the NSC configuration there is additional time
spent on communicating the next offset from which scan should restart after a block has
been found and returned to the host. This step is not required in the Host configuration
since the block device is scanned linearly one block after the other without resetting the
disk-pointer to a new location in the device. The speedup received by the model is derived
from Equation 4.4.3 and is a function of the total time taken in filtering the regex in the
host configuration. We conclude that for regex filtering operation, the mathematical model
is the higher bound of speedup that can be achieved using a real NSC engine.
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Figure 4.4: Speedup with Relatively Powerful computational device for count op-
eration. Speedup increases for both the simulator and the analytic model as the
on-disk CPU speed relative to host CPU is increased. The System CPU utiliza-
tion for NSC configuration is calculated as the sum of on-host CPU and on-disk
CPU usage and may be up to 200% of a single CPU core usage. We gain higher
performance with additional on-disk CPU core.

Figure 4.4 shows a micro-benchmark that fetches blocks from the underlying device
and computes the number of 1’s in the device. For each configuration on the X-axis, we
vary the ratio of host CPU and on-disk CPU frequency. Since we cannot increase the
CPU frequency on a host more than its maximum allowed physical value, we reduce the
host-CPU by limiting the maximum allowed CPU usage using cpulimit [39]. We record
both the speedup achieved on our simulator, and the speedup predicted by our analytical
model based on equation 4.4.3. We also show the cumulative CPU utilization in host
configuration where only host CPU is used, and NSC configuration where both host CPU
and on-disk CPU is active. Since the System CPU utilization for the NSC configuration is
calculated as the sum of on-host CPU and on-disk CPU usage and may be up to 200% of
a single CPU core usage.

As the relative CPU speed of on-disk CPU with respect to host-CPU increases, we
achieve higher speedup in both simulator and the analytical model. The simulator speedup
is lower than the analytical model for higher host-CPU to on-disk CPU configuration as
the host-CPU is also involved in sending and receiving the block requested from the un-
derlying device, which is not accounted for in the analytical model.

The CPU utilization for host configuration remains close to maximum host CPU fre-
quency allowed in a configuration. For the NSC configuration, the host CPU utilization
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is relatively lower for configurations where CPU does not get saturated (1:1 configuration
with 100% host CPU). In a more CPU constrained environment (1:4 configuration with
host-CPU set to 25% and on-disk CPU set to 100%), we observe that host CPU continues
to remain saturated, and the on-disk CPU remains 100% utilized as well.

4.6.2 Real World Workloads

In Section 4.6.1, we described simple micro-benchmarks to show that our simulator pro-
vides speedups predicted by our analytical model presented in Section 4.4. These micro-
benchmarks derive speedups based on only one of the 3 factors - latency reduction, band-
width reduction and compute acceleration. However, as we analyze more complicated
applications where the speedup achieved is a function of multiple factors, including sys-
tems parameters such as device read-ahead and caching, the analytical model is unable
to give realistic estimates of the real world speedups that can be achieved on a Com-
putational Storage Disk. Instead, prototyping the application offload on NESCAFE that
retains real systems parameters gives us more accurate speedup estimates for application
computation offload on a real computational storage disk.

In this section, we offload three real-world applications that are computationally in-
tensive in NESCAFE. We show how it is simple to deploy such applications on NESCAFE.
We show how NESCAFE can be used to evaluate the amount of on-disk CPU power re-
quired for a given host-CPU, and the achievable speedup in a Near Storage Compute
(NSC) configuration. We also show that not all applications gain performance when their
computation is offloaded to the underlying device. Sometimes, host-CPU or transfer time
may be a bottleneck for application computation offload. Further, the application compu-
tation itself may not be compute intensive enough to gain from an offloade to the on-disk
CPU.

We select one benchmark each from the three computation types described in 4.5.3:
1. zlib compression - A stream based compression library that consumes high host-
CPU. 2. ext4 journal checksum, a block based computation intensive application. and
3. sLSM tree compaction, an application based computation where file system metadata
is transferred to the near-storage CPU and the entire compaction takes place within the
drive.

zlib - Compression

Compression is a computation intensive task that has been widely used to reduce amount
of data on disk-storage or on data-streams [139]. We port zlib - a popular compression
library to Nescafe. zlib compression library works on streamed data i.e. data compression
takes place as additional bytes are available. zlib does not have a block based interface.
Internally, zlib uses a variant of LZ77 [43] compression algorithm. Compression is done
using the deflate() function that takes an input and output stream. Data compression
is done in an in-memory buffer. The data sent to deflate() may or may not result in an
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Figure 4.5: Speedup achieved for 2 GB file compression offload in NSC configura-
tion. We set the on-disk CPU limit to 100% CPU usage and vary the host-CPU.
Speedup is achieved with more powerful host-CPU. The Average System CPU
Utilization takes both on-disk CPU and host CPU into account and may be up to
200%.

output being flushed to the disk. Output is only flushed when the in-memory buffer is
full or deflate() encounters an EOF in the input stream.

We split the NSC compression operation into two functions, compression_init() and
compression_cleanup(). The compression_init() function initializes two file descrip-
tors. The first file descriptor corresponds to the incoming stream of blocks from the
NVMe device process and is directed to the input stream of deflate(). The second file
descriptor corresponds to the incoming stream of compressed blocks from the deflate()

function. The second file descriptor is directed back to the NVMe device process. Once
compression is completed, the application in the host disables stream compression. This
triggers a NVMe Admin command to reset stream directive in the device. Next, a call to the
compression_cleanup() method is made which then sends an EOF to the zlib library. This
automatically closes the output file descriptor setup in compression_init() and writes
any remaining in-memory buffer blocks to the device.

Figure 4.5 shows the speedup that we achieve by offloading zlib file compression to the
on-disk CPU. A 2GB file is read from a secondary storage media and compressed within
the host before being written to the disk. It is then compared with the NSC configuration
where the host sends raw data and compression is performed by the NSC process running
on the on-disk CPU. For each run, we limit the host-CPU utilisation to a specific value
indicated on the X-Axis. We do not limit the on-disk CPU usage in NSC configuration
and we observe it always utilizes 100% on-disk CPU. We notice that the speedup is an
order of magnitude higher with no host CPU limitation (100% on X Axis). This is because
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Figure 4.6: Speedup achieved on 2GB file compression with fixed host CPU usage
at 50% and varying on-disk CPU. We observe increased speedup with increased on
disk-CPU usage. The Average System CPU Utilization takes both on-disk CPU
and host CPU into account and may be up to 200% for NSC configuration.

in the host configuration, the file read, zlib compression and disk write to the device takes
place on the same host-CPU. However in the NSC configuration, the host only reads and
sends the data to the device that takes up to 20% host CPU, and the on-disk CPU keeps
compressing and writing any data that it receives from the host utilizing 100% CPU.

In host configuration, the CPU utilization remains at its peak with increased host-CPU
usage. Hence the host CPU increases from 20% to 100% as we vary the CPU limit on the
host. In NSC configuration, the average system CPU utilization (host-CPU and on-disk
CPU) remains constant, with host-CPU utilization not increasing more than 20% when
compression is offloaded to the device.

In Figure 4.6, we study the impact of increasing on-disk CPU utilization after limiting
the the host CPU to 50% of the maximum CPU usage. We vary the on-disk CPU usage
on the X-Axis. We observe that even with increased on-disk CPU, there is an increased
speedup in the overall compression process.

In the host configuration, the host-CPU utilization is at its peak capacity ( 50%). For the
NSC configuration, the host-CPU utilization remains close to 20% however the on-disk
CPU utilization remains at the highest CPU utlization available. Hence the total system
CPU utilization ranges from 45%- 120% for the NSC configuration.

We conclude that for zlib compression, an order of magnitude speedup can be achieved
by offloading compression to the on-disk processor. Compression speedup is achieved
primarily because we decouple data read, data transfer and data compression in NSC
configuration. A combination of high powered on-disk CPU and host-CPU power is
required to achieve optimal speedup results.
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ext4 Journal Checksum

ext4 [32] is a journal based file system. An atomic record of file-system metadata changes
that continues to keep the file system consistent is called a transaction. ext4 uses the journal
to store all intermediate transitions that take place on the file system. A file system may
crash due to power-loss or errors in the underlying media. In such cases, a journal can be
used to provide crash consistency in the file system [141].

The journaling mechanism works as follows: First, the file-system metadata is written
from the in-memory buffer cache to the journal. Second, the file-system metadata is
written from the in-memory buffer cache to the main file system. If the file system crashes,
the in memory metadata is lost. However, any previously written valid journal entries are
persisted on the journal block device. Before remounting the file system on a reboot, all
valid contents of the journal are read back and replayed on the main file system. This
ensures metadata integrity in retained on the event of a file system crash.

ext4 data structure Description crc32c components
journal_superblock_s superblock checksum

with s_checksum set to 0.
superblock

journal_block_tag3_s one tag for each meata-
data block is stored in the
journal descriptor block.

journal UUID, sequence
number and metadata
block

jbd2_journal_revoke_header
jbd2_journal_revoke_tail list of metadata blocks

journaled earlier but no
longer replayed.

journal UUID, revocation
block

commit_header checksum of the commit
block

journal UUID, commit
block

Table 4.3: ext4 journal fields that require crc32 checksum computation

jbd2 can be maintained on an external block device which drastically improves the file
system performance [94, 113, 44, 69]. jbd2 maintains transactions in the form of a circular
log. Each transaction contains multiple blocks. A typical transaction contains a journal
descriptor block, many data or revocation blocks, and a journal commit block. In order
to provide more resliency to the file system against device corruptions, the journal stores
checksums in both the journal descriptor block and the journal commit block. Table 4.3
shows the relevant fields on which each checksum is computed. We offload the check-
sum computation performed on the different journal data-structures to the on-disk CPU
in Nescafe. We evaluate performance gains using filebench varmail workload [174] that
generates a large amount of file system metadata.

We evaluate jbd2 checksum offload in two setups. First, we evaluate how increasing
on-disk processor power can improve checksum computation. Figure 4.7 shows number
of varmail IO per second (in thousands) with varying on-disk CPU utilization. We note
that increased NSC processor speed increases varmail performance. The average system
CPU utilization does not increase more than 60%.
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Figure 4.7: The host-CPU is limited to 50% and the on-disk CPU is varied.
varmail I/O per seconds increase with increased on-disk CPU limit. Increasing
on-disk CPU power increases varmail I/O performance.
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Figure 4.8: The number of varmail I/O transactions processed with increasing
Host CPU usage keeping the on-disk CPU usage constant. The total number of
transactions increase with increased host-CPU power, however the relative increase
in transactions i.e. speedup does not increase with more powerful host-CPU.

Second, we evaluate Host v/s NSC performance. In Figure 4.8, we notice that there
are no speedup gains in host v/s NSC computation. The amount of CPU host uses is
25%. As the CPU limit of host increases, we observe increased I/Os in both host and
NSC configuration. But the relative speedup between host and NSC configuration does
not change. This shows that although a powerful host CPU increases the number of I/Os,
a relative speedup increase may not be possible in NSC configuration. This shows that
journal checksum computation is not a processor intensive computation and is not an
ideal candidate for computation offload to a Computational Storage Device.
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LSM Tree Compaction

Log-Structured Merge (LSM) Tree [132] is a data structure commonly used in key-value
stores. A LSM Tree has two main components: 1) an in-memory buffer to increase random
key inserts and delete throughput, and 2) on-disk log files that store key value pair tuples
sorted by keys.

LSM tree is multi-layered, with each layer storing key-value pairs written down from
the higher layers. All key-value pair inserts are first stored in the in memory component
of the LSM tree called the L0 Layer. A deleted key is also stored as a key-value pair where
the key’s value is set to a reserved number called a tombstone [16, 162]. All key-value
pairs are sorted by keys. Whenever a threshold on the total number of keys in L0 Layer
is reached, its contents are written to a new file on disk. Each file created on the disk is
called a run. After a certain number of runs are created on the L1 layer, all key-value pairs
in each run in L1 layer are sorted and merged to form a single run in the subsequent L2
layer. Any previously deleted key recorded as a tombstone value is removed during the
merge operation. As a result of multiple runs in top layer merging into single run in the
subsequent layer, the run file size increases in each subsequent layer.

The mechanism of sorting and merging multiple runs in the upper layer into a single
run in the lower layer is called compaction. Compaction is a computation intensive activity
where sorted key-value pairs in multiple runs in the previous layer are merged into a
sorted single run in the next layer. The sorting is done using a priority queue. If the value
of the input key-value pair from previous run is a tombstone value, we ignore the key. If
the key has a valid value, we store the key-value pair in the output run in the subsequent
level. Any active I/O on the key-value store is paused when compaction is taking place
to ensure consistency. This often leads to performance variability in KV-stores [197].

We evaluate offloading compaction operation of a skip-list based LSM Tree (sLSM
Tree) [170] on Nescafe. sLSM tree uses a skipList based in-memory data structure to store
key-value pairs. Once the skipList is full, it is written to L1 on-disk level in the form of
a single run file. If a number of run files on L1 level exceed maximum number of levels
allowed (default 4), all runs in L1 are compacted and output as a single new run file on
L2. This compaction continues until a) reach the last allowed level in the LSM tree, or b)
the number of runs in the level are less than the maximum allowed runs.

We offload the heapmerge computation function [170] in NSC configuration to the
underlying on-disk CPU. The Heapmerge function requires the input run files from the
input layer and pre-allocated output run file in the output layer. In the host configuration,
the merge operation is called whenever the last run in the input layer has reached its
maximum capacity. Once the last run is full, all runs in the input layear are merged and
written into a single run on the underlying disk. All runs in sLSM tree are pre-allocated
and mmaped in memory for faster access. Further, no additional file-system metadata is
required to identify individual blocks of the input file and scan through the key-value
records.
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Figure 4.9: skipList Log structured Merge Tree workflow. In-memory component
is a linked list with bloom filters (purple) for fast access. Each flush from in-
memory skipList creates a new run file in Level0 (L0). When L0 has 4 runs,
they are compacted (merged) to a single run in the next level L1. This continues
to subsequent levels until the last level or a level with runs less than maximum
allowed runs is reached.

However, in a NSC configuration, the underlying disk does not have any knowledge
of the input run file structure. The logical continuous nature of input files in the host
cannot be assumed inside the disk due to fragmentation and unique file system allocation
policies. In order to identify and scan through each input file, the file system metadata
needs to be transferred to the underlying device to perform heap-merge operation.

The following operations are performed to inform the underlying disk about merge
operation during compaction: 1) All mmaped runs are flushed to disk and page cache
is cleared. We clear the page cache to disk so that the application reloads the on-disk
modified run files after compaction into memory again. If the page cache is not cleared,
stale key-value pairs are read by the application. 2) The LBAs of all input run files and
the preallocated output run file is identified using the hdparm tool and is sent to the
computational disk. 3) all input run key-value pairs are sorted and written to the output
run. 4) we remap the input and output runs in the application to get the updated merged
runs.

Unlike sending data blocks or data streams through file-descriptor in zlib compression
or jbd2 checksum, we use the file descriptor to send file system metadata to the underlying
device. First, we open a file descriptor and set its computation type to LSM_MERGE. This
makes the NSC process aware that the subsequent blocks will contain identifying file
system metadata to perform LSM tree compaction. Second, we write a sequence of input
file block ranges that we derived from the hdparm tool to this file descriptor. We then
send the pre-allocated output file block range. Finally, the host waits until compaction
is completed and the last offset of the output run is returned to the host. The resultant
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Figure 4.10: LSM Tree compaction overall time for insert-delete-lookup workflow.
We vary the host-CPU in both Host and NSC mode and do not bottleneck the
on-disk CPU in NSC configuration. The merge operation performs better in NSC
configuration than host Configuration in a CPU constrained environment.

last offset of the output run file after compaction may be smaller than the earlier pre-
allocated output run size as deleted keys are eliminated from the resultant output run
during compaction. The returned output file run offset from the disk is used to reset the
output run file by the host if required.

We note that sLSM tree’s compaction does not have a significant amount of CPU us-
age. This is different from prior work [197] where FPGA’s are used for compaction. The
speedup on FPGA’s is achieved as a combination of pipelining of various workflows such
as decoding a prefix-encoded key, performing compaction and then encoding the resul-
tant keys. For sLSM tree, we find that the compaction operation is not extremely compute
intensive - it consumes 30% of host CPU. We vary the amount of host-CPU utilization
and see the impact on insert-delete and a subsequent lookup.

Figure 4.10 shows the amount of time taken in the host-CPU and the NSC configura-
tion for the insert-delete-lookup benchmark in the sLSM Tree. The benchmark inserts 1
million integer key-value pairs into the LSM tree and subsequently updates and deletes
a fraction of the original set of inserted keys. Each L1 run contains 512 Key-Value pairs.
Each layer contains 4 runs. As we step down from a higher to a lower layer, the run size
quadruples to accommodate compacted runs from the previous layer.

We compare the total time to perform compaction in host configuration and NSC
configuration. We observe that as we reduce the limit of the host-CPU, the Host con-
figuration performance degrades significantly. For a similar host-CPU usage, offloading
the compaction task to the on-Disk CPU in NSC configuration continues to keep the total
operation time lower. Hence we get good speedup even with lower host-CPU usage for
LSM tree compaction.
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4.7 Power Aware Computational Storage Disks

Deployment of Computational Storage Disks on a large scale in data-centers brings ad-
ditional challenges. One of the challenges is the amount of additional power consumed
due to the presence of an additional on-disk CPU. A number of efforts in large scale
data-centers have been made to measure and reduce the power consumption of host
servers [148, 146, 51, 13] and auxiliary computation devices in the data -center [88, 130].

The Case for Energy-Proportional Computing [13] discusses high energy costs in terms
of total cost of ownership (TCO) and CO2 emissions. The paper shows that most work-
loads in their data-center (Google) use between 10-50% of the maximum CPU utilization.
Further, active servers consume 50% of CPU power, even when there is 0% CPU utiliza-
tion. CPU is the biggest power consuming component of a server. CPU’s inside the
Google servers studied in [13] consumed 45% of the total CPU power. Efforts such as
clock gating and dynamic frequency scaling can drastically help improve the total power
utilization of the data-center.

In [148] a new blade architecture is discussed where the power is managed and en-
forced at the level of the enclosure (or the chassis). Such an architecture recognizes trends
across multiple systems and implements power effectiveness at a larger scale. In [146], au-
thors propose coordinated power delivery, heat management and electricity consumption
to reduce the amount of overall power consumed by the data-center. In Power Provi-
sioning for a Warehouse-sized Computer [51] the power consumed by over 15 thousand
servers is analyzed. The servers host 3 types of workloads - Websearch, Webmail and
Map-reduce. The paper concludes that in field, 7-16% lower power than theoretically esti-
mated power consumption is utilized in the real world and this power can be used to run
more workloads on each server.

Although these studies focus on host-side active servers that have to remain powered-
on all the time, on-disk cores that perform computation on the event of receiving an I/O
request need not be active all the time. In-fact, in periods of long inactivity, the disks can
be powered-down. This power-awareness can be built inside the Computational Storage
SSD. On the event of idle cycles or no-active workload being written to the drive, the
disk cores can be turned-off entirely or run in low-power mode using a CPU governor to
reduce power usage.

In order to evaluate the usefulness of this approach, we analyse the disk I/O request ar-
rival times of two storage data center workloads - Microsoft and Alibaba. In Figure 4.11a,
we notice two trends in I/O requests. For the Microsoft build server, around 85% of the
requests arrive within a second of the previous request. However, the remaining I/O
( 15%) takes 30-35 seconds to arrive before the previous request. For the display ads data
server we see that the disk may not receive an I/O request for 30000 seconds (8 hours).
Figure 4.11b shows the arrival time of requests for four storage disks running in the Al-
ibaba Cloud. We note that 5% of the disk requests arrive after 100 or more seconds of disk
inactivity. For disks serving intermittent burst traffic followed by long time intervals of
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Figure 4.11: I/O request arrival distribution for 4.11a Microsoft and 4.11b Al-
ibaba Data Centers. Most requests arrive within a second of the previously sent
I/O request.

inactivity, we can regulate or completely turn of the on-disk CPU core after a few seconds
of inactivity and save power.

Although the disks power-down for 5-10% of I/O requests, the total time duration for
which the CPU is turned off will be much higher. For instance, if 95% of 1 million requests
take less than 1 second to arrive, and 5% of the requests take 10 or more seconds, the total
time to serve the requests is more than 1.45 million seconds. If the disk stays idle and
powered off or in a low power consumption after a second of inactivity, the disk will save
power for atleast 0.5 million seconds or 33% of the total time. Hence with a power-aware
Computational Storage Disk, the total power consumption can be significantly reduced,
especially for data-centers where there are burst requests with intermittent long duration
of inactivity.
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4.7.1 Related Work

Our work is closest in spirit to XRP [205, 204] that uses BPF to push light-weight storage
functions into the Linux NVMe driver. XRP has shown great gains on a custom Key-
Value store and WiredTiger database. However, replacing the entire kernel storage stack
is neither desirable nor feasible due to limitations with BPF [38].

A number of other approaches have been suggested for accelerating computation by
using auxiliary hardware. ASIC processors provide great opportunities with order of
magnitude improvements for image and video compression [147, 8]. Unfortunately, ASIC
processors are non-programmable and can only be designed for specific applications.
For example [147] is designed specifically for neural network based image compression
whereas [8] focusses on optimizing Fractal image compression.

StreamBox [116] and StreamBox-HBM [115] propose a model of performing transfor-
mation of streamed data that may arrive out of order. They exploit parallelism and mem-
ory hierarchy of out of memory hardware. The near compute storage is used at a lower
level of storage hierarchy and can work complementary to in-memory computation ap-
proaches. The advantage of performing computation at storage is less data is forwarded
to in-memory structures for processing thereby saving High bandwidth memory (HBM)
for other critical data such as metadata.

Accelerating computation over auxiliary processors such as Graphic Processor Units (
GPUs) [140, 80, 138], ASICs [147, 8], FPGAs [14] and TPUs [87, 86] have also been widely
explored. Our current approach does not aim to replace such hardware based approaches
but complement them. For example, computation that needs to be done on TPUs can
first be performed on a near storage compute framework before it is offloaded to a Tensor
Processor Unit.

Approximate Storage [159, 149, 82, 106, 125] proposes relaxing correctness in storing
media friendly data on the underlying media and computing the correctness on demand.
For e.g., most data structures employ correction strategy already to recover from bit level
media errors. This helps writing media friendly data to the underlying storage, especially
Solid-state memories that have differential voltage levels for different types of data being
written. We see near storage computation as an opportunity to accelerate approximate
storage. We could compute exact data from approximate storage by using mechanisms
such as Error Correction Codes (ECC) within the media prior to returning the exact data
to the host. Such computation performed within the storage reduces the computation
required on the host computation unit or CPU.

4.8 Conclusion and Future Work

We propose a software-only framework to evaluate application computation offload to a
near storage computational device. We present both an analytical mathematical model
and a full system implementation that describes how applications can leverage computa-
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tion offload to achieve higher performance. We show with both micro-benchmarks and
real world applications that it is easy to realise and evaluate application offload using
Nescafe. We also show that not all applications benefit from offload or a more power-
ful on-disk CPU. In particular, we demonstrate that a) zlib compression can get order
of magnitude speedup using a Near Storage Computation disk. This speedup is largely
due to raw data read and transfer being decoupled from writing data to the disk rather
than a powerful on-disk processor. b) jbd2 checksum computation and metadata intensive
operations such as varmail are entirely dependent on the host-CPU and give negligible
speedups when offloaded to a Near Storage Computation engine. Finally, c) LSM tree
compaction is not a compute intensive task and gives high speedup only in CPU con-
strained environments.

To summarize, Nescafe helps us to understand the amount of speedup that can be
achieved, the on-disk CPU power required to obtain speedup and whether an application
can benefit from the use of a Computational Storage Device. Nescafe framework opens
a range of possibilities to conduct software-only computational offload investigation and
research:

1. Revisiting IPC interface: Our current Nescafe model assumes that hardware accel-
erators in SSDs have a disaggregated memory model - there is no shared memory
between the device process and the near storage computation process. We rely on
named pipes to perform inter-process communication. Inter-process communication
over named pipes are less efficient than shared memory communication. We would
like to explore this research direction for Nescafe.

2. Multithreaded Application Offload: Our current Model has a uni-threaded compu-
tation process that can only process one I/O block at a time. Extending this model to
real-world applications such as RocksDB that do multi-threaded compaction would
help expand the range of applications that Nescafe can support.

3. High Level Language Application Support: A number of in-memory, big-data pro-
cessing applications such as spark are written in scala or other high-level JVM based
runtime environment. Porting such applications to a C based testbed is challenging,
because of limitations in transferring Java programs to C or using JNI [81] interface.



Chapter 5

Summary and Future Work

This thesis presents the reliability and performance challenges and solutions to evolving
Solid State Drive media. As SSD media gets denser due to huge space and low operating
cost requirements, the errors in such media will only increase over time. Furthermore,
the reliability of SSDs are largely dependent on the number of erase operations the drive
encounters. The reduction in the P/E cycle limit as SSDs get denser is a cause of concern.
Hence design, implementation and evaluation of novel coding schemes that reduce erase
operations by overwriting on previous data is the need of the hour.

From a performance perspective, devices such as NIC cards and SSDs are being
equipped with specialized on-chip or on-disk CPUs. We have presented a software only
mechanism to evaluate the speedup gains one can obtain from such computational stor-
age disks. We have also developed a framework that makes it easy to offload real world
block, stream and entire application workflows to the underlying Computational Storage
Device.

This thesis forms a basis for the following future research directions:

Storage Reliability Evaluation Frameworks

In this thesis, we present a file-system focussed error injection framework specifically
in the context of SSDs. An in-depth study of other types of emerging media, such as
ZNS SSDs [18], Persistent Media [194] and Glass [9] can open a range of possibilities in
enhancing our error injection framework. The file systems we analyzed can be readily
checked for errors on other media specific errors once the error injection mechanisms are
enhanced. On the software front, we can analyze a range of other block based software
such as bare-metal hypervisors [12] and bare-metal key-value stores [5] that run without
the presence of an intermediate file system layer while interacting with the SSD.

116
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Improving SSD Hardware Reliability

The Voltage based Write-Once-Memory codes presented in this work treats underlying
SSD cells as monotonically increasing voltage based media. Although the code is high-
performance with encode and decode mechanisms requiring only a single table lookup,
the code is not space optimal - i.e. there is significant space overheads in using WOM-
v codes. It would be interesting to revisit other, low-performance codes that require
multiple retires but are space optimal in the context of SSDs being treated as voltage
based media instead of groups of cells. The WOM-v coder framework presented in this
thesis can be readily extended to do such experiments on other coding schemes without
any modifications to the remaining LightNVM and FEMU workflow. Further, in this thesis
we limit our gains to QLC drives, but our framework can be easily extended to PLC or
higher density drives where WOM-v code gains would be much higher.

Performance aware Computational Storage Offload

The Near Storage Computational Framework (Nescafe) presented in this thesis evaluates
application computation offload to a PCI-e connected on-disk CPU for a single node stor-
age medium. We can extend Nescafe to operate on distributed file systems and volume
managers, object stores and key-value stores to asses gains in large-scale, distributed com-
putation offload. The PCI-e latency can be increased to reflect TCP/IP or RDMA latency.
Our evaluation considers the storage substrate to be a MLC SSD. Extending the gains
of computational storage to a QLC SSD or Persistent media could be easily done my
changing the latency configuration of the underlying media. Further, the current imple-
mentation of Nescafe considers only one on-disk CPU core. Multiple cores within the
same disk could be added to run multi-threaded computation offloads that are prevalent
in advanced storage systems such as RocksDB. Hence the Nescafe framework can be ex-
tended in multiple research directions based on the real-world environment that we want
to test the application computation offload gains.
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[14] Matěj Bartík, Sven Ubik, and Pavel Kubalik. “LZ4 compression algorithm on FPGA”.
In: 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS).
IEEE. 2015, pp. 179–182.

[15] Hanmant P Belgal, Nick Righos, Ivan Kalastirsky, Jeff J Peterson, Robert Shiner,
and Neal Mielke. “A new reliability model for post-cycling charge retention of
flash memories”. In: Proceedings of the 40th Annual International Reliability Physics
Symposium. IEEE. 2002, pp. 7–20.

[16] Michael A Bender, Martin Farach-Colton, William Jannen, Rob Johnson, Bradley C
Kuszmaul, Donald E Porter, Jun Yuan, and Yang Zhan. “An Introduction to B-trees
and Write-Optimization”. In: login; magazine 40.5 (2015).

https://doi.org/10.1109/ASIC.1996.551998
https://doi.org/10.1109/ASIC.1996.551998
https://www.usenix.org/conference/hotstorage18/presentation/anderson
https://www.usenix.org/conference/hotstorage18/presentation/anderson
https://doi.org/10.1109/DSN.2008.4630121
https://doi.org/10.1109/MC.2007.443


BIBLIOGRAPHY 120

[17] Nicolas Bitouzé, Alexandre Graell i Amat, and Eirik Rosnes. “Using short syn-
chronous WOM codes to make WOM codes decodable”. In: IEEE transactions on
communications 62.7 (2014), pp. 2156–2169.

[18] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh, Damien Le
Moal, Gregory R. Ganger, and George Amvrosiadis. “ZNS: Avoiding the Block
Interface Tax for Flash-based SSDs”. In: 2021 USENIX Annual Technical Confer-
ence (USENIX ATC 21). USENIX Association, July 2021, pp. 689–703. isbn: 978-
1-939133-23-6. url: https://www.usenix.org/conference/atc21/presentation/
bjorling.

[19] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. “LightNVM: The Linux
Open-Channel SSD Subsystem”. In: Proceedings of the 15th USENIX Conference on
File and Storage Technologies (FAST ’17). Santa Clara, CA: USENIX Association, 2017,
pp. 359–374. isbn: 978-1-931971-36-2. url: https://www.usenix.org/conference/
fast17/technical-sessions/presentation/bjorling.

[20] Simona Boboila and Peter Desnoyers. “Write Endurance in Flash Drives: Measure-
ments and Analysis”. In: Proceedings of the 8th USENIX Conference on File and Storage
Technologies (FAST ’10). USENIX Association, 2010, pp. 115–128.

[21] Adam Brand, Ken Wu, Sam Pan, and David Chin. “Novel read disturb failure
mechanism induced by FLASH cycling”. In: Proceedings of the 31st Annual Interna-
tional Reliability Physics Symposium. IEEE. 1993, pp. 127–132.

[22] Btrfs Bug Report. https://bugzilla.kernel.org/show_bug.cgi?id=198457. 2019.

[23] Btrfs mkfs man page. https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.
btrfs. [Online; accessed 23-Oct-2019]. 2019.

[24] Sarit Buzaglo and Tuvi Etzion. “Tilings With n-dimensional chairs and their appli-
cations to asymmetric codes”. In: IEEE transactions on information theory 59.3 (2012),
pp. 1573–1582.

[25] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur Mutlu. “Error char-
acterization, mitigation, and recovery in flash-memory-based solid-state drives”.
In: Proceedings of the IEEE 105.9 (2017), pp. 1666–1704.

[26] Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F Haratsch.
“Vulnerabilities in MLC NAND flash memory programming: experimental analy-
sis, exploits, and mitigation techniques”. In: 23rd International Symposium on High-
Performance Computer Architecture (HPCA). IEEE. 2017, pp. 49–60.

[27] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai. “Error patterns in MLC
NAND flash memory: Measurement, Characterization, and Analysis”. In: Proceed-
ings of the Conference on Design, Automation and Test in Europe. EDA Consortium.
2012, pp. 521–526.

https://www.usenix.org/conference/atc21/presentation/bjorling
https://www.usenix.org/conference/atc21/presentation/bjorling
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://bugzilla.kernel.org/show_bug.cgi?id=198457
https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.btrfs
https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.btrfs


BIBLIOGRAPHY 121

[28] Yu Cai, Yixin Luo, Erich F Haratsch, Ken Mai, and Onur Mutlu. “Data retention in
MLC NAND flash memory: Characterization, optimization, and recovery”. In: 21st
International Symposium on High Performance Computer Architecture (HPCA). IEEE.
2015, pp. 551–563.

[29] Yu Cai, Onur Mutlu, Erich F Haratsch, and Ken Mai. “Program interference in
MLC NAND flash memory: Characterization, modeling, and mitigation”. In: 31st
International Conference on Computer Design (ICCD). IEEE. 2013, pp. 123–130.

[30] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F Haratsch, Adrian Cristal, Osman S Un-
sal, and Ken Mai. “Flash correct-and-refresh: Retention-aware error management
for increased flash memory lifetime”. In: 30th International Conference on Computer
Design (ICCD). IEEE. 2012, pp. 94–101.

[31] Jinrui Cao, Om Rameshwar Gatla, Mai Zheng, Dong Dai, Vidya Eswarappa, Yan
Mu, and Yong Chen. “PFault: A General Framework for Analyzing the Reliability
of High-Performance Parallel File Systems”. In: Proceedings of the 2018 International
Conference on Supercomputing. ACM. 2018, pp. 1–11.

[32] Mingming Cao, Suparna Bhattacharya, and Ted Ts’o. “Ext4: The Next Generation
of Ext2/3 Filesystem.” In: LSF. 2007.

[33] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu, Linqiang
Ouyang, Peng Wang, Yijing Wang, Ray Kuan, Zhenjun Liu, Feng Zhu, and Tong
Zhang. “POLARDB Meets Computational Storage: Efficiently Support Analyti-
cal Workloads in Cloud-Native Relational Database”. In: 18th USENIX Conference
on File and Storage Technologies (FAST 20). Santa Clara, CA: USENIX Association,
Feb. 2020, pp. 29–41. isbn: 978-1-939133-12-0. url: https://www.usenix.org/
conference/fast20/presentation/cao-wei.

[34] Paolo Cappelletti, Roberto Bez, Daniele Cantarelli, and Lorenzo Fratin. “Failure
mechanisms of Flash cell in program/erase cycling”. In: Proceedings of the IEEE
International Electron Devices Meeting. IEEE. 1994, pp. 291–294.

[35] Yuval Cassuto and Eitan Yaakobi. “Short Q-ary fixed-rate WOM codes for guar-
anteed rewrites and with hot/cold write differentiation”. In: IEEE transactions on
information theory 60.7 (2014), pp. 3942–3958.

[36] Feng Chen, David A. Koufaty, and Xiaodong Zhang. “Understanding Intrinsic
Characteristics and System Implications of Flash Memory Based Solid State Drives”.
In: Proceedings of the 2009 ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS ’09). Seattle, WA, 2009, pp. 181–
192. doi: 10.1145/1555349.1555371. url: http://doi.acm.org/10.1145/
1555349.1555371.

https://www.usenix.org/conference/fast20/presentation/cao-wei
https://www.usenix.org/conference/fast20/presentation/cao-wei
https://doi.org/10.1145/1555349.1555371
http://doi.acm.org/10.1145/1555349.1555371
http://doi.acm.org/10.1145/1555349.1555371


BIBLIOGRAPHY 122

[37] Vijay Chidambaram, Tushar Sharma, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. “Consistency without ordering”. In: Proceedings of the 10th USENIX
conference on File and Storage Technologies (FAST ’12). USENIX Association. 2012,
pp. 9–9.

[38] Johnathan Corbett. Bounded Loops in BPF Programs. Linux Weekly News. Linux
Plumbers Conference, 2018.

[39] CPU Limit. Linux CPU Limit Utility. url: https : / / manpages . ubuntu . com /

manpages/xenial/man1/cpulimit.1.html.

[40] Robin Degraeve, F Schuler, Ben Kaczer, Martino Lorenzini, Dirk Wellekens, Paul
Hendrickx, Michiel van Duuren, GJM Dormans, Jan Van Houdt, L Haspeslagh,
et al. “Analytical percolation model for predicting anomalous charge loss in flash
memories”. In: IEEE Transactions on Electron Devices 51.9 (2004), pp. 1392–1400.

[41] Peter Desnoyers. “Analytic models of SSD write performance”. In: Proceedings of
the 5th Annual International Systems and Storage Conference. 2012.

[42] Peter Desnoyers. “What Systems Researchers Need to Know about NAND Flash”.
In: Proceedings of the 5th USENIX Conference on Hot Topics in Storage and File Systems.
HotStorage’13. San Jose, CA: USENIX Association, 2013, p. 6.

[43] P. Deutsch. RFC1951: DEFLATE Compressed Data Format Specification Version 1.3.
USA, 1996.

[44] Borislav Djordjevic and Valentina Timcenko. “Ext4 file system in linux environ-
ment: Features and performance analysis”. In: International Journal of Computers 6.1
(2012), pp. 37–45.

[45] dm-inject: A device mapper error Injector framework. url: https : / / github . com /
uoftsystems/dm-inject.

[46] David Domingo and Sudarsun Kannan. “pFSCK: Accelerating File System Check-
ing and Repair for Modern Storage”. In: 19th USENIX Conference on File and Storage
Technologies (FAST 21). USENIX Association, Feb. 2021, pp. 113–126. isbn: 978-1-
939133-20-5. url: https://www.usenix.org/conference/fast21/presentation/
domingo.

[47] Jake Edge. File-level Integrity. https://lwn.net/Articles/752614/. [Online; ac-
cessed 23-Oct-2019]. 2018.

[48] F2FS Bug Report. https://bugzilla.kernel.org/show_bug.cgi?id=200635. 2019.

[49] F2FS Bug Report - Write I/O Errors. https://bugzilla.kernel.org/show_bug.
cgi?id=200871. 2019.

[50] F2FS Patch File. https://sourceforge.net/p/linux-f2fs/mailman/message/
36402198/. 2019.

https://manpages.ubuntu.com/manpages/xenial/man1/cpulimit.1.html
https://manpages.ubuntu.com/manpages/xenial/man1/cpulimit.1.html
https://github.com/uoftsystems/dm-inject
https://github.com/uoftsystems/dm-inject
https://www.usenix.org/conference/fast21/presentation/domingo
https://www.usenix.org/conference/fast21/presentation/domingo
https://lwn.net/Articles/752614/
https://bugzilla.kernel.org/show_bug.cgi?id=200635
https://bugzilla.kernel.org/show_bug.cgi?id=200871
https://bugzilla.kernel.org/show_bug.cgi?id=200871
https://sourceforge.net/p/linux-f2fs/mailman/message/36402198/
https://sourceforge.net/p/linux-f2fs/mailman/message/36402198/


BIBLIOGRAPHY 123

[51] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. “Power Provisioning
for a Warehouse-Sized Computer”. In: SIGARCH Comput. Archit. News 35.2 (June
2007), 13–23. issn: 0163-5964. doi: 10.1145/1273440.1250665. url: https://doi.
org/10.1145/1273440.1250665.

[52] Amos Fiat and Adi Shamir. “Generalized’write-once’memories”. In: IEEE Transac-
tions on Information Theory 30.3 (1984), pp. 470–480.

[53] Hilary Finucane, Zhenming Liu, and Michael Mitzenmacher. “Designing floating
codes for expected performance”. In: 2008 46th Annual Allerton Conference on Com-
munication, Control, and Computing. IEEE. 2008, pp. 1389–1396.

[54] Daniel Fryer, Kuei Sun, Rahat Mahmood, Tinghao Cheng, Shaun Benjamin, Ashvin
Goel, and Angela Demke Brown. “Recon: Verifying File System Consistency at
Runtime”. In: ACM Transactions on Storage (TOS) 8.4 (Dec. 2012), 15:1–15:29. issn:
1553-3077. doi: 10.1145/2385603.2385608. url: http://doi.acm.org/10.1145/
2385603.2385608.

[55] fs-verity: File System-Level Integrity Protection. https://www.spinics.net/lists/
linux-fsdevel/msg121182.html. [Online; accessed 23-Oct-2019]. 2019.

[56] Fang-Wei Fu and AJ Han Vinck. “On the capacity of generalized write-once mem-
ory with state transitions described by an arbitrary directed acyclic graph”. In:
IEEE Transactions on Information Theory 45.1 (1999), pp. 308–313.

[57] Tomonori Fujita and Mike Christie. “tgt: Framework for storage target drivers”. In:
Proceedings of the Linux Symposium. Vol. 1. Citeseer. 2006, pp. 303–312.

[58] Ryan Gabrys and Lara Dolecek. “Constructions of nonbinary WOM codes for
multilevel flash memories”. In: IEEE Transactions on Information Theory 61.4 (2015),
pp. 1905–1919.

[59] Eran Gal and Sivan Toledo. “Algorithms and Data Structures for Flash Memories”.
In: ACM Computing Survey (CSUR) 37.2 (June 2005), pp. 138–163. issn: 0360-0300.
doi: 10.1145/1089733.1089735.

[60] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi
H. Arpaci-Dusseau. “Redundancy Does Not Imply Fault Tolerance: Analysis of
Distributed Storage Reactions to Single Errors and Corruptions”. In: Proceedings of
the 15th USENIX Conference on File and Storage Technologies (FAST ’17). Santa Clara,
CA: USENIX Association, 2017, pp. 149–166. isbn: 978-1-931971-36-2. url: https:
//www.usenix.org/conference/fast17/technical-sessions/presentation/

ganesan.

[61] Om Rameshwar Gatla, Mai Zheng, Muhammad Hameed, Viacheslav Dubeyko,
Adam Manzanares, Filip Blagojevic, Cyril Guyot, and Robert Mateescu. “Towards
Robust File System Checkers”. In: ACM Trans. Storage 14.4 (Dec. 2018), 35:1–35:25.
issn: 1553-3077. doi: 10.1145/3281031. url: http://doi.acm.org/10.1145/
3281031.

https://doi.org/10.1145/1273440.1250665
https://doi.org/10.1145/1273440.1250665
https://doi.org/10.1145/1273440.1250665
https://doi.org/10.1145/2385603.2385608
http://doi.acm.org/10.1145/2385603.2385608
http://doi.acm.org/10.1145/2385603.2385608
https://www.spinics.net/lists/linux-fsdevel/msg121182.html
https://www.spinics.net/lists/linux-fsdevel/msg121182.html
https://doi.org/10.1145/1089733.1089735
https://www.usenix.org/conference/fast17/technical-sessions/presentation/ganesan
https://www.usenix.org/conference/fast17/technical-sessions/presentation/ganesan
https://www.usenix.org/conference/fast17/technical-sessions/presentation/ganesan
https://doi.org/10.1145/3281031
http://doi.acm.org/10.1145/3281031
http://doi.acm.org/10.1145/3281031


BIBLIOGRAPHY 124

[62] Github Code Repository. https://github.com/uoftsystems/dm-inject. 2019.

[63] D. Gouk, M. Kwon, J. Zhang, S. Koh, W. Choi, N. S. Kim, M. Kandemir, and M.
Jung. “Amber*: Enabling Precise Full-System Simulation with Detailed Modeling
of All SSD Resources”. In: 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 2018, pp. 469–481.

[64] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel, and
J. K. Wolf. “Characterizing Flash Memory: Anomalies, Observations, and Appli-
cations”. In: 42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 2009, pp. 24–33. doi: 10.1145/1669112.1669118.

[65] Laura M Grupp, John D Davis, and Steven Swanson. “The bleak future of NAND
flash memory”. In: Proceedings of the 10th USENIX conference on File and Storage
Technologies (FAST ’12). USENIX Association. 2012.

[66] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun
Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. “Biscuit: A Framework for Near-Data Processing of
Big Data Workloads”. In: 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). 2016, pp. 153–165. doi: 10.1109/ISCA.2016.23.

[67] Haryadi S. Gunawi, Cindy Rubio-González, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dussea, and Ben Liblit. “EIO: Error Handling is Occasionally Correct”. In:
Proceedings of the 6th USENIX Conference on File and Storage Technologies (FAST ’08).
San Jose, CA, 2008, 14:1–14:16.

[68] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Casey Golliher, Swaminathan
Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin Harms, Robert B. Ross, An-
dree Jacobson, Robert Ricci, Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe
Hao, and Huaicheng Li. “Fail-Slow at Scale: Evidence of Hardware Performance
Faults in Large Production Systems”. In: 16th USENIX Conference on File and Stor-
age Technologies (FAST 18). Oakland, CA: USENIX Association, Feb. 2018, pp. 1–14.
isbn: 978-1-931971-42-3. url: https://www.usenix.org/conference/fast18/
presentation/gunawi.

[69] Dave Hitz, James Lau, and Michael A Malcolm. “File System Design for an NFS
File Server Appliance”. In: USENIX winter. Vol. 94. 1994.

[70] Qin Huang, Shu Lin, and Khaled AS Abdel-Ghaffar. “Error-correcting codes for
flash coding”. In: IEEE transactions on information theory 57.9 (2011), pp. 6097–6108.

[71] S Hur, J Lee, M Park, J Choi, K Park, K Kim, and K Kim. “Effective program
inhibition beyond 90nm NAND flash memories”. In: Proc. NVSM (2004), pp. 44–
45.

https://github.com/uoftsystems/dm-inject
https://doi.org/10.1145/1669112.1669118
https://doi.org/10.1109/ISCA.2016.23
https://www.usenix.org/conference/fast18/presentation/gunawi
https://www.usenix.org/conference/fast18/presentation/gunawi


BIBLIOGRAPHY 125

[72] Zsolt István, David Sidler, and Gustavo Alonso. “Caribou: Intelligent Distributed
Storage”. In: Proc. VLDB Endow. 10.11 (Aug. 2017), pp. 1202–1213. issn: 2150-8097.
doi: 10.14778/3137628.3137632. url: https://doi.org/10.14778/3137628.
3137632.

[73] Shehbaz Jaffer. “Reclaiming good transactions from a corrupt journal”. In: (2019).

[74] Shehbaz Jaffer. “WOM-v Code Simulator”. In: 2021.

[75] Shehbaz Jaffer, Kaveh Mahdaviani, and Bianca Schroeder. “Improving the En-
durance of Next Generation SSD’s Using WOM-v Codes”. In: ACM Trans. Storage
18.4 (2022). issn: 1553-3077. doi: 10.1145/3565027. url: https://doi.org/10.
1145/3565027.

[76] Shehbaz Jaffer, Kaveh Mahdaviani, and Bianca Schroeder. “Improving the Relia-
bility of Next Generation SSDs using WOM-v Codes”. In: 20th USENIX Conference
on File and Storage Technologies (FAST 22). Santa Clara, CA: USENIX Association,
Feb. 2022, pp. 117–132. isbn: 978-1-939133-26-7. url: https://www.usenix.org/
conference/fast22/presentation/jaffer.

[77] Shehbaz Jaffer, Kaveh Mahdaviani, and Bianca Schroeder. “Rethinking WOM Codes
to Enhance the Lifetime in New SSD Generations”. In: 12th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 20). USENIX Association, July
2020. url: https://www.usenix.org/conference/hotstorage20/presentation/
jaffer.

[78] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder. “Evaluating
file system reliability on solid state drives”. In: 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19). 2019, pp. 783–798.

[79] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder. “The Relia-
bility of Modern File Systems in the Face of SSD Errors”. In: ACM Trans. Storage
16.1 (Mar. 2020). issn: 1553-3077. doi: 10.1145/3375553. url: https://doi.org/
10.1145/3375553.

[80] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and Jaehyuk Huh.
“Heterogeneous isolated execution for commodity gpus”. In: Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. 2019, pp. 455–468.

[81] Java Native Interface. https://docs.oracle.com/javase/8/docs/technotes/
guides/jni/. url: https://docs.oracle.com/javase/8/docs/technotes/
guides/jni/.

[82] Djordje Jevdjic, Karin Strauss, Luis Ceze, and Henrique S. Malvar. “Approximate
Storage of Compressed and Encrypted Videos”. In: SIGPLAN Not. 52.4 (2017),
361–373. issn: 0362-1340. doi: 10.1145/3093336.3037718. url: https://doi.
org/10.1145/3093336.3037718.

https://doi.org/10.14778/3137628.3137632
https://doi.org/10.14778/3137628.3137632
https://doi.org/10.14778/3137628.3137632
https://doi.org/10.1145/3565027
https://doi.org/10.1145/3565027
https://doi.org/10.1145/3565027
https://www.usenix.org/conference/fast22/presentation/jaffer
https://www.usenix.org/conference/fast22/presentation/jaffer
https://www.usenix.org/conference/hotstorage20/presentation/jaffer
https://www.usenix.org/conference/hotstorage20/presentation/jaffer
https://doi.org/10.1145/3375553
https://doi.org/10.1145/3375553
https://doi.org/10.1145/3375553
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://doi.org/10.1145/3093336.3037718
https://doi.org/10.1145/3093336.3037718
https://doi.org/10.1145/3093336.3037718


BIBLIOGRAPHY 126

[83] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven Swanson. “Im-
proving SSD lifetime with byte-addressable metadata”. In: Proceedings of the Inter-
national Symposium on Memory Systems. 2017, pp. 374–384.

[84] Seok Jin Joo, Hea Jong Yang, Keum Hwan Noh, Hee Gee Lee, Won Sik Woo, Joo
Yeop Lee, Min Kyu Lee, Won Yol Choi, Kyoung Pil Hwang, Hyoung Seok Kim,
et al. “Abnormal disturbance mechanism of sub-100 nm NAND flash memory”.
In: Japanese Journal of Applied Physics 45.8R (2006), p. 6210.

[85] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. “In-
datacenter performance analysis of a tensor processing unit”. In: Proceedings of the
44th annual international symposium on computer architecture. 2017, pp. 1–12.

[86] Norman P. Jouppi, Cliff Young, Nishant Patil, and David A. Patterson. “A domain-
specific architecture for deep neural networks”. In: Commun. ACM 61.9 (2018),
pp. 50–59. doi: 10.1145/3154484. url: https://doi.org/10.1145/3154484.

[87] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Process-
ing Unit”. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017. ACM, 2017, pp. 1–
12. doi: 10.1145/3079856.3080246. url: https://doi.org/10.1145/3079856.
3080246.

[88] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Process-
ing Unit”. In: SIGARCH Comput. Archit. News 45.2 (June 2017), 1–12. issn: 0163-
5964. doi: 10.1145/3140659.3080246. url: https://doi.org/10.1145/3140659.
3080246.

[89] Myoungsoo Jung and Mahmut Kandemir. “Revisiting Widely Held SSD Expecta-
tions and Rethinking System-level Implications”. In: Proceedings of the 2013 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer Sys-
tems (SIGMETRICS ’13). Pittsburgh, PA, 2013, pp. 203–216. isbn: 978-1-4503-1900-3.
doi: 10.1145/2465529.2465548. url: http://doi.acm.org/10.1145/2465529.
2465548.

[90] Arpith K and K. Gopinath. “Need for a Deeper Cross-Layer Optimization for Dense
NAND SSD to Improve Read Performance of Big Data Applications: A Case for
Melded Pages”. In: 12th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 20). USENIX Association, July 2020. url: https://www.usenix.org/
conference/hotstorage20/presentation/k.

[91] Swaroop Kavalanekar, Bruce Worthington, Qi Zhang, and Vishal Sharda. “Charac-
terization of storage workload traces from production windows servers”. In: 2008
IEEE International Symposium on Workload Characterization. IEEE. 2008, pp. 119–128.

[92] Steve R Kleiman et al. “Vnodes: An Architecture for Multiple File System Types in
Sun UNIX.” In: USENIX Summer. Vol. 86. 1986, pp. 238–247.

https://doi.org/10.1145/3154484
https://doi.org/10.1145/3154484
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/2465529.2465548
http://doi.acm.org/10.1145/2465529.2465548
http://doi.acm.org/10.1145/2465529.2465548
https://www.usenix.org/conference/hotstorage20/presentation/k
https://www.usenix.org/conference/hotstorage20/presentation/k


BIBLIOGRAPHY 127

[93] Ricardo Koller and Raju Rangaswami. “I/O deduplication: Utilizing content sim-
ilarity to improve I/O performance”. In: ACM Transactions on Storage (TOS) 6.3
(2010), pp. 1–26.

[94] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sumith Makam. “High Perfor-
mance Metadata Integrity Protection in the WAFL Copy-on-Write File System”. In:
Proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST ’17).
Santa Clara, CA: USENIX Association, 2017, pp. 197–212. isbn: 978-1-931971-36-
2. url: https://www.usenix.org/conference/fast17/technical-sessions/
presentation/kumar.

[95] BM Kurkoski. “Notes on a lattice-based WOM construction that guarantees two
writes”. In: Proc. 34th Symp. Information Theory and Applications. 2011, pp. 520–524.

[96] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin Wang, Aditya Akella, Michael
M Swift, and TV Lakshman. “UNO: Uniflying host and smart NIC offload for flex-
ible packet processing”. In: Proceedings of the 2017 Symposium on Cloud Computing.
2017, pp. 506–519.

[97] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. “F2FS: A New
File System for Flash Storage”. In: Proceedings of the 13th USENIX Conference on File
and Storage Technologies (FAST ’15). Santa Clara, CA: USENIX Association, 2015,
pp. 273–286. isbn: 978-1-931971-201. url: https://www.usenix.org/conference/
fast15/technical-sessions/presentation/lee.

[98] Jae-Duk Lee, Chi-Kyung Lee, Myung-Won Lee, Han-Soo Kim, Kyu-Charn Park,
and Won-Seong Lee. “A new programming disturbance phenomenon in NAND
flash memory by source/drain hot-electrons generated by GIDL current”. In: Non-
Volatile Semiconductor Memory Workshop, 2006. IEEE NVSMW 2006. 21st. IEEE. 2006,
pp. 31–33.

[99] Huaicheng Li. Evolving Storage Stack for Predictability and Efficiency. PhD. Thesis,
University of Chicago. University of Chicago, 2020.

[100] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sriram Govindan,
Dan R. K. Ports, Irene Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and Anirudh
Badam. “LeapIO: Efficient and Portable Virtual NVMe Storage on ARM SoCs”.
In: Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’20. Lausanne, Switzerland:
Association for Computing Machinery, 2020, pp. 591–605. isbn: 9781450371025.
doi: 10.1145/3373376.3378531. url: https://doi.org/10.1145/3373376.
3378531.

[101] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman,
Matias Bjørling, and Haryadi S. Gunawi. “The CASE of FEMU: Cheap, Accurate,
Scalable and Extensible Flash Emulator”. In: Proceedings of the 16th USENIX Con-
ference on File and Storage Technologies (FAST ’18). Oakland, CA: USENIX Associa-

https://www.usenix.org/conference/fast17/technical-sessions/presentation/kumar
https://www.usenix.org/conference/fast17/technical-sessions/presentation/kumar
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://doi.org/10.1145/3373376.3378531
https://doi.org/10.1145/3373376.3378531
https://doi.org/10.1145/3373376.3378531


BIBLIOGRAPHY 128

tion, 2018, pp. 83–90. isbn: 978-1-931971-42-3. url: https://www.usenix.org/
conference/fast18/presentation/li.

[102] Jinhong Li, Qiuping Wang, Patrick PC Lee, and Chao Shi. “An In-Depth Analysis
of Cloud Block Storage Workloads in Large-Scale Production”. In: (2020).

[103] Peng Li, Wei Dang, Congmin Lyu, Min Xie, Quanyang Bao, Xiaofeng Ji, and Jian-
hua Zhou. “Reliability Characterization and Failure Prediction of 3D TLC SSDs in
Large-Scale Storage Systems”. In: IEEE Transactions on Device and Materials Reliabil-
ity 21.2 (2021), pp. 224–235. doi: 10.1109/TDMR.2021.3063164.

[104] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang, Huawei Li, and Xiaowei Li.
“Cognitive SSD: A Deep Learning Engine for In-Storage Data Retrieval”. In: 2019
USENIX Annual Technical Conference (USENIX ATC 19). Renton, WA: USENIX Asso-
ciation, July 2019, pp. 395–410. isbn: 978-1-939133-03-8. url: https://www.usenix.
org/conference/atc19/presentation/liang.

[105] Ren-Shuo Liu, Chia-Lin Yang, and Wei Wu. “Optimizing NAND flash-based SSDs
via retention relaxation”. In: Proceedings of the 10th USENIX conference on File and
Storage Technologies (FAST ’12). San Jose, CA: USENIX Association, 2012, p. 11. url:
https://www.usenix.org/conference/fast12/optimizing-nand-flash-based-

ssds-retention-relaxation.

[106] Jan Lucas, Mauricio Alvarez-Mesa, Michael Andersch, and Ben Juurlink. “Sparkk:
Quality-scalable approximate storage in DRAM”. In: The memory forum. 2014, pp. 1–
9.

[107] Yixin Luo, Saugata Ghose, Yu Cai, Erich F Haratsch, and Onur Mutlu. “Heat-
Watch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-
Recovery and Temperature Awareness”. In: 24th International Symposium on High
Performance Computer Architecture (HPCA). IEEE. 2018, pp. 504–517.

[108] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. “Improving
3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process
Variation”. In: Abstracts of the 2018 ACM International Conference on Measurement
and Modeling of Computer Systems. SIGMETRICS ’18. Irvine, CA, USA: ACM, 2018,
pp. 106–106. isbn: 978-1-4503-5846-0. doi: 10.1145/3219617.3219659. url: http:
//doi.acm.org/10.1145/3219617.3219659.

[109] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. “Improving
3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process
Variation”. In: Proceedings of the 2018 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS ’18) 2.3 (Dec. 2018),
37:1–37:48. issn: 2476-1249. doi: 10.1145/3224432. url: http://doi.acm.org/10.
1145/3224432.

https://www.usenix.org/conference/fast18/presentation/li
https://www.usenix.org/conference/fast18/presentation/li
https://doi.org/10.1109/TDMR.2021.3063164
https://www.usenix.org/conference/atc19/presentation/liang
https://www.usenix.org/conference/atc19/presentation/liang
https://www.usenix.org/conference/fast12/optimizing-nand-flash-based-ssds-retention-relaxation
https://www.usenix.org/conference/fast12/optimizing-nand-flash-based-ssds-retention-relaxation
https://doi.org/10.1145/3219617.3219659
http://doi.acm.org/10.1145/3219617.3219659
http://doi.acm.org/10.1145/3219617.3219659
https://doi.org/10.1145/3224432
http://doi.acm.org/10.1145/3224432
http://doi.acm.org/10.1145/3224432


BIBLIOGRAPHY 129

[110] Fabio Margaglia and André Brinkmann. “Improving MLC flash performance and
endurance with extended P/E cycles”. In: 2015 31st Symposium on Mass Storage
Systems and Technologies (MSST). IEEE. 2015, pp. 1–12.

[111] Fabio Margaglia, Gala Yadgar, Eitan Yaakobi, Yue Li, Assaf Schuster, and Andre
Brinkmann. “The Devil Is in the Details: Implementing Flash Page Reuse with
WOM Codes”. In: 14th USENIX Conference on File and Storage Technologies (FAST 16).
Santa Clara, CA: USENIX Association, Feb. 2016, pp. 95–109. isbn: 978-1-931971-
28-7. url: https://www.usenix.org/conference/fast16/technical-sessions/
presentation/margaglia.

[112] Ashlie Martinez and Vijay Chidambaram. “CrashMonkey: A Framework to Auto-
matically Test File-System Crash Consistency”. In: 9th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage 17). Santa Clara, CA: USENIX Associ-
ation, 2017.

[113] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex
Tomas, and Laurent Vivier. “The New ext4 Filesystem: Current Status and Future
Plans”. In: Proceedings of the Linux symposium. Vol. 2. 2007, pp. 21–33.

[114] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. “A Large-Scale Study of
Flash Memory Failures in the Field”. In: Proceedings of the 2015 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems (SIGMET-
RICS ’15). Portland, OR, 2015, pp. 177–190. isbn: 978-1-4503-3486-0. doi: 10.1145/
2745844.2745848. url: http://doi.acm.org/10.1145/2745844.2745848.

[115] Hongyu Miao, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S. McKinley, and
Felix Xiaozhu Lin. “StreamBox-HBM: Stream Analytics on High Bandwidth Hy-
brid Memory”. In: Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. ASPLOS ’19.
Providence, RI, USA: Association for Computing Machinery, 2019, 167–181. isbn:
9781450362405. doi: 10.1145/3297858.3304031. url: https://doi.org/10.1145/
3297858.3304031.

[116] Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S.
McKinley, and Felix Xiaozhu Lin. “StreamBox: Modern Stream Processing on a
Multicore Machine”. In: 2017 USENIX Annual Technical Conference (USENIX ATC
17). Santa Clara, CA: USENIX Association, July 2017, pp. 617–629. isbn: 978-1-
931971-38-6. url: https://www.usenix.org/conference/atc17/technical-
sessions/presentation/miao.

[117] Neal Mielke, Hanmant P Belgal, Albert Fazio, Qingru Meng, and Nick Righos.
“Recovery Effects in the Distributed Cycling of Flash Memories”. In: Proceedings of
the 44th Annual International Reliability Physics Symposium. IEEE. 2006, pp. 29–35.

https://www.usenix.org/conference/fast16/technical-sessions/presentation/margaglia
https://www.usenix.org/conference/fast16/technical-sessions/presentation/margaglia
https://doi.org/10.1145/2745844.2745848
https://doi.org/10.1145/2745844.2745848
http://doi.acm.org/10.1145/2745844.2745848
https://doi.org/10.1145/3297858.3304031
https://doi.org/10.1145/3297858.3304031
https://doi.org/10.1145/3297858.3304031
https://www.usenix.org/conference/atc17/technical-sessions/presentation/miao
https://www.usenix.org/conference/atc17/technical-sessions/presentation/miao


BIBLIOGRAPHY 130

[118] Neal Mielke, Todd Marquart, Ning Wu, Jeff Kessenich, Hanmant Belgal, Eric Schares,
Falgun Trivedi, Evan Goodness, and Leland R Nevill. “Bit error rate in NAND flash
memories”. In: Proceedings of the 46th Annual International Reliability Physics Sympo-
sium. IEEE. 2008, pp. 9–19.

[119] Sparsh Mittal and Jeffrey S Vetter. “A survey of CPU-GPU heterogeneous comput-
ing techniques”. In: ACM Computing Surveys (CSUR) 47.4 (2015), pp. 1–35.

[120] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and Vijay
Chidambaram. “Finding Crash-Consistency Bugs with Bounded Black-Box Crash
Testing”. In: 13th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI ’18). USENIX Association. Carlsbad, CA, 2018.

[121] Keshava Munegowda, GT Raju, and Veera Manikandan Raju. “Evaluation of file
systems for solid state drives”. In: Proceedings of the Second International Confer-
ence on Emerging Research in Computing, Information, Communication and Applications.
2014, pp. 342–348.

[122] Kevin P Murphy. “Elements of information theory”. In: In: Advances in Knowledge
Discovery and Data Mining, Fayyad, U. Citeseer. 1998.

[123] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. “Write off-loading:
Practical power management for enterprise storage”. In: ACM Transactions on Stor-
age (TOS) 4.3 (2008), pp. 1–23.

[124] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash Sharma, Laura Caulfield,
Anand Sivasubramaniam, Ben Cutler, Jie Liu, Badriddine Khessib, and Kushagra
Vaid. “SSD Failures in Datacenters: What? When? And Why?” In: Proceedings of
the 9th ACM International on Systems and Storage Conference (SYSTOR ’16). Haifa,
Israel, 2016, 7:1–7:11. isbn: 978-1-4503-4381-7. doi: 10.1145/2928275.2928278.
url: http://doi.acm.org/10.1145/2928275.2928278.

[125] Jacob Nelson, Adrian Sampson, and Luis Ceze. “Dense approximate storage in
phase-change memory”. In: ASPLOS Ideas & Perspectives (2011).

[126] Nescafe: A near Storage Computational Framework. Private Repo to be published with
paper. url: https://github.com/shehbazj/femu_iscos.

[127] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W. Moore. “Understanding PCIe Performance for End
Host Networking”. In: Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication. SIGCOMM ’18. Budapest, Hungary: Association for
Computing Machinery, 2018, pp. 327–341. isbn: 9781450355674. doi: 10.1145/
3230543.3230560. url: https://doi.org/10.1145/3230543.3230560.

[128] NGD Systems. https : / / www . ngdsystems . com / technology / computational -

storage. url: https : / / www . ngdsystems . com / technology / computational -

storage.

https://doi.org/10.1145/2928275.2928278
http://doi.acm.org/10.1145/2928275.2928278
https://github.com/shehbazj/femu_iscos
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3230543.3230560
https://www.ngdsystems.com/technology/computational-storage
https://www.ngdsystems.com/technology/computational-storage
https://www.ngdsystems.com/technology/computational-storage
https://www.ngdsystems.com/technology/computational-storage


BIBLIOGRAPHY 131

[129] NoLoad U.2 Computational Storage Platform. https://www.eideticom.com/uploads/
images/NoLoad_U2_Computational_Storage_Product_Brief.pdf. url: https:
//www.eideticom.com/uploads/images/NoLoad_U2_Computational_Storage_

Product_Brief.pdf.

[130] V NVIDIA. TESLA K20 GPU accelerator board specification. 2013.

[131] NVMe 1.4 Specification. https://nvmexpress.org/developers/nvme-specification/.
url: https://nvmexpress.org/developers/nvme-specification/.

[132] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. “The log-
structured merge-tree (LSM-tree)”. In: Acta Informatica 33.4 (1996), pp. 351–385.

[133] Open-Source Solid-State Drive Project for Research and Education. http://openssd.io.
Accessed: 2020-03-24.

[134] “OpenExpress: Fully Hardware Automated Open Research Framework for Fu-
ture Fast NVMe Devices”. In: 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, July 2020, pp. 649–656. isbn: 978-1-939133-14-4. url:
https://www.usenix.org/conference/atc20/presentation/jung.

[135] Yuqian Pan, Haichun Zhang, Mingyang Gong, and Zhenglin Liu. “Process-variation
Effects on 3D TLC Flash Reliability: Characterization and Mitigation Scheme”. In:
().

[136] Biswaranjan Panda, Deepthi Srinivasan, Huan Ke, Karan Gupta, Vinayak Khot,
and Haryadi S. Gunawi. “IASO: A Fail-Slow Detection and Mitigation Frame-
work for Distributed Storage Services”. In: 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). Renton, WA: USENIX Association, July 2019, pp. 47–
62. isbn: 978-1-939133-03-8. url: https://www.usenix.org/conference/atc19/
presentation/panda.

[137] Nikolaos Papandreou, Thomas Parnell, Haralampos Pozidis, Thomas Mittelholzer,
Evangelos Eleftheriou, Charles Camp, Thomas Griffin, Gary Tressler, and Andrew
Walls. “Using Adaptive Read Voltage Thresholds to Enhance the Reliability of MLC
NAND Flash Memory Systems”. In: Proceedings of the 24th Edition of the Great Lakes
Symposium on VLSI (GLSVLSI ’14). Houston, TX, 2014, pp. 151–156. isbn: 978-1-
4503-2816-6. doi: 10.1145/2591513.2591594. url: http://doi.acm.org/10.
1145/2591513.2591594.

[138] Ritesh A Patel, Yao Zhang, Jason Mak, Andrew Davidson, and John D Owens.
Parallel lossless data compression on the GPU. IEEE, 2012.

[139] Gennady Pekhimenko, Chuanxiong Guo, Myeongjae Jeon, Peng Huang, and Li-
dong Zhou. “TerseCades: Efficient Data Compression in Stream Processing”. In:
2018 USENIX Annual Technical Conference (USENIX ATC 18). Boston, MA: USENIX
Association, July 2018, pp. 307–320. isbn: 978-1-939133-01-4. url: https://www.
usenix.org/conference/atc18/presentation/pekhimenko.

https://www.eideticom.com/uploads/images/NoLoad_U2_Computational_Storage_Product_Brief.pdf
https://www.eideticom.com/uploads/images/NoLoad_U2_Computational_Storage_Product_Brief.pdf
https://www.eideticom.com/uploads/images/NoLoad_U2_Computational_Storage_Product_Brief.pdf
https://www.eideticom.com/uploads/images/NoLoad_U2_Computational_Storage_Product_Brief.pdf
https://www.eideticom.com/uploads/images/NoLoad_U2_Computational_Storage_Product_Brief.pdf
https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-specification/
http://openssd.io
https://www.usenix.org/conference/atc20/presentation/jung
https://www.usenix.org/conference/atc19/presentation/panda
https://www.usenix.org/conference/atc19/presentation/panda
https://doi.org/10.1145/2591513.2591594
http://doi.acm.org/10.1145/2591513.2591594
http://doi.acm.org/10.1145/2591513.2591594
https://www.usenix.org/conference/atc18/presentation/pekhimenko
https://www.usenix.org/conference/atc18/presentation/pekhimenko


BIBLIOGRAPHY 132

[140] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan Yang,
and Xuehai Qian. “Capuchin: Tensor-Based GPU Memory Management for Deep
Learning”. In: Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems. ASPLOS ’20. Lau-
sanne, Switzerland: Association for Computing Machinery, 2020, 891–905. isbn:
9781450371025. doi: 10.1145/3373376.3378505. url: https://doi.org/10.1145/
3373376.3378505.

[141] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagap-
pan, Samer Al-Kiswany, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
“Crash consistency”. In: Communications of the ACM 58.10 (2015), pp. 46–51.

[142] Vijayan Prabhakaran, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
“Analysis and Evolution of Journaling File Systems.” In: USENIX Annual Technical
Conference, General Track. Vol. 194. 2005, pp. 196–215.

[143] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S.
Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. “IRON File
Systems”. In: Proceedings of the Twentieth ACM Symposium on Operating Systems Prin-
ciples (SOSP ’05). Brighton, United Kingdom, 2005, pp. 206–220. isbn: 1-59593-079-
5. doi: 10.1145/1095810.1095830.

[144] QLC NAND – What can we expect from the technology? https://www.architecting.

it/blog/qlc-nand/. 2022.

[145] QLC Support in FEMU. url: https://github.com/ucare-uchicago/FEMU/pull/
47/commits/429ed12f65185ab4b114a4bb13c91afee05e9e95.

[146] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang,
and Xiaoyun Zhu. “No "Power" Struggles: Coordinated Multi-Level Power Man-
agement for the Data Center”. In: Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating Systems. ASPLOS
XIII. Seattle, WA, USA: Association for Computing Machinery, 2008, 48–59. isbn:
9781595939586. doi: 10.1145/1346281.1346289. url: https://doi.org/10.1145/
1346281.1346289.

[147] K Venkata Ramanaiah and Cyril Prasanna Raj. “Asic implementation of neural
network based image compression”. In: International Journal of Computer Theory and
Engineering 3.4 (2011), p. 494.

[148] Parthasarathy Ranganathan, Phil Leech, David Irwin, and Jeffrey Chase. “Ensemble-
Level Power Management for Dense Blade Servers”. In: Proceedings of the 33rd An-
nual International Symposium on Computer Architecture. ISCA ’06. USA: IEEE Com-
puter Society, 2006, 66–77. isbn: 076952608X. doi: 10.1109/ISCA.2006.20. url:
https://doi.org/10.1109/ISCA.2006.20.

https://doi.org/10.1145/3373376.3378505
https://doi.org/10.1145/3373376.3378505
https://doi.org/10.1145/3373376.3378505
https://doi.org/10.1145/1095810.1095830
https://www.architecting.it/blog/qlc-nand/
https://www.architecting.it/blog/qlc-nand/
https://github.com/ucare-uchicago/FEMU/pull/47/commits/429ed12f65185ab4b114a4bb13c91afee05e9e95
https://github.com/ucare-uchicago/FEMU/pull/47/commits/429ed12f65185ab4b114a4bb13c91afee05e9e95
https://doi.org/10.1145/1346281.1346289
https://doi.org/10.1145/1346281.1346289
https://doi.org/10.1145/1346281.1346289
https://doi.org/10.1109/ISCA.2006.20
https://doi.org/10.1109/ISCA.2006.20


BIBLIOGRAPHY 133

[149] Ashish Ranjan, Swagath Venkataramani, Xuanyao Fong, Kaushik Roy, and Anand
Raghunathan. “Approximate storage for energy efficient spintronic memories”. In:
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). 2015, pp. 1–6.
doi: 10.1145/2744769.2744799.

[150] Anthony Rebello, Yuvraj Patel, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. “Can Applications Recover from fsync Failures?”
In: 2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX Associa-
tion, July 2020, pp. 753–767. isbn: 978-1-939133-14-4. url: https://www.usenix.
org/conference/atc20/presentation/rebello.

[151] Veronica Lagrange Moutinho dos Reis, Harry (Huan) Li, and Anahita Shayesteh.
“Modeling Analytics for Computational Storage”. In: Proceedings of the ACM/SPEC
International Conference on Performance Engineering. ICPE ’20. Edmonton AB, Canada:
Association for Computing Machinery, 2020, pp. 88–99. isbn: 9781450369916. doi:
10.1145/3358960.3375794. url: https://doi.org/10.1145/3358960.3375794.

[152] Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David Nagle. “Active Disks
for Large-Scale Data Processing”. In: Computer 34.6 (June 2001), pp. 68–74. issn:
0018-9162. doi: 10.1109/2.928624. url: https://doi.org/10.1109/2.928624.

[153] Ronald L Rivest and Adi Shamir. “How to reuse a “write-once memory”. In: Infor-
mation and control 55.1-3 (1982), pp. 1–19.

[154] Ohad Rodeh, Josef Bacik, and Chris Mason. “BTRFS: The Linux B-Tree Filesystem”.
In: ACM Transactions on Storage (TOS) 9.3 (Aug. 2013), pp. 1–32. issn: 1553-3077.
doi: 10.1145/2501620.2501623.

[155] Ohad Rodeh, Josef Bacik, and Chris Mason. “BTRFS: The Linux B-tree filesystem”.
In: ACM Transactions on Storage (TOS) 9.3 (2013), pp. 1–32.

[156] M. Rosenblum. “The Design and Implementation of a Log-structured File System”.
PhD thesis. University of California at Berkeley, 1992.

[157] Mendel Rosenblum and John K Ousterhout. “The design and implementation of a
log-structured file system”. In: ACM Transactions on Computer Systems (TOCS) 10.1
(1992), pp. 26–52.

[158] Zhenyuan Ruan, Tong He, and Jason Cong. “INSIDER: Designing In-Storage Com-
puting System for Emerging High-Performance Drive”. In: 2019 USENIX Annual
Technical Conference (USENIX ATC 19). Renton, WA: USENIX Association, July 2019,
pp. 379–394. isbn: 978-1-939133-03-8. url: https://www.usenix.org/conference/
atc19/presentation/ruan.

[159] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. “Approximate Stor-
age in Solid-State Memories”. In: ACM Trans. Comput. Syst. 32.3 (2014). issn: 0734-
2071. doi: 10.1145/2644808. url: https://doi.org/10.1145/2644808.

https://doi.org/10.1145/2744769.2744799
https://www.usenix.org/conference/atc20/presentation/rebello
https://www.usenix.org/conference/atc20/presentation/rebello
https://doi.org/10.1145/3358960.3375794
https://doi.org/10.1145/3358960.3375794
https://doi.org/10.1109/2.928624
https://doi.org/10.1109/2.928624
https://doi.org/10.1145/2501620.2501623
https://www.usenix.org/conference/atc19/presentation/ruan
https://www.usenix.org/conference/atc19/presentation/ruan
https://doi.org/10.1145/2644808
https://doi.org/10.1145/2644808


BIBLIOGRAPHY 134

[160] Samsung Smart SSDs. https://www.xilinx.com/applications/data-center/
computational - storage / smartssd . html. url: https : / / www . xilinx . com /

applications/data-center/computational-storage/smartssd.html.

[161] Marco AA Sanvido, Frank R Chu, Anand Kulkarni, and Robert Selinger. “NAND
flash memory and its role in storage architectures”. In: Proceedings of the IEEE 96.11
(2008), pp. 1864–1874.

[162] Subhadeep Sarkar, Tarikul Islam Papon, Dimitris Staratzis, and Manos Athanas-
soulis. “Lethe: A tunable delete-aware LSM engine”. In: Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2020, pp. 893–908.

[163] ScaleFlux Computational Storage. https://www.scaleflux.com/document/. url:
https://www.scaleflux.com/document/.

[164] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. “Flash Reliability in Pro-
duction: The Expected and the Unexpected”. In: Proceedings of the 14th USENIX
Conference on File and Storage Technologies (FAST ’16). Santa Clara, CA: USENIX As-
sociation, 2016, pp. 67–80.

[165] SCSI Error Handling (EH). https://www.kernel.org/doc/Documentation/scsi/
scsi_eh.txt. [Online; accessed 23-Oct-2019]. 2019.

[166] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker, Arup
De, Yanqin Jin, Yang Liu, and Steven Swanson. “Willow: A User-Programmable
SSD”. In: 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14). Broomfield, CO: USENIX Association, Oct. 2014, pp. 67–80. isbn: 978-
1-931971-16-4. url: https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/seshadri.

[167] Amir Shpilka. “Capacity-achieving multiwrite WOM codes”. In: IEEE Transactions
on Information Theory 60.3 (2013), pp. 1481–1487.

[168] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. “Accelerating
Pattern Matching Queries in Hybrid CPU-FPGA Architectures”. In: Proceedings of
the 2017 ACM International Conference on Management of Data. SIGMOD ’17. Chicago,
Illinois, USA: Association for Computing Machinery, 2017, pp. 403–415. isbn: 9781450341974.
doi: 10.1145/3035918.3035954. url: https://doi.org/10.1145/3035918.
3035954.

[169] SLC vs MLC vs TLC vs QLC. https://memkor.com/slc-vs-mlc-vs-tlc%2Fqlc.
2022.

[170] sLSM. A Skiplist based LSM Tree https://github.com/aronszanto/sLSM-Tree.
url: https://github.com/aronszanto/sLSM-Tree.

[171] SNIA IOTTA Trace Repository. YCSB RocksDB SSD Traces. http://iotta.snia.
org/traces/28568. Sept. 2020.

https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.scaleflux.com/document/
https://www.scaleflux.com/document/
https://www.kernel.org/doc/Documentation/scsi/scsi_eh.txt
https://www.kernel.org/doc/Documentation/scsi/scsi_eh.txt
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/seshadri
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/seshadri
https://doi.org/10.1145/3035918.3035954
https://doi.org/10.1145/3035918.3035954
https://doi.org/10.1145/3035918.3035954
https://memkor.com/slc-vs-mlc-vs-tlc%2Fqlc
https://github.com/aronszanto/sLSM-Tree
https://github.com/aronszanto/sLSM-Tree
http://iotta.snia.org/traces/28568
http://iotta.snia.org/traces/28568


BIBLIOGRAPHY 135

[172] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-Ki Kim, Young-Joon Choi,
Yong-Nam Koh, Sung-Soo Lee, Suk-Chon Kwon, Byung-Soon Choi, Jin-Sun Yum,
et al. “A 3.3 V 32 Mb NAND flash memory with incremental step pulse program-
ming scheme”. In: IEEE Journal of Solid-State Circuits 30.11 (1995), pp. 1149–1156.

[173] Amy Tai, Andrew Kryczka, Shobhit O Kanaujia, Kyle Jamieson, Michael J Freed-
man, and Asaf Cidon. “Who’s afraid of uncorrectable bit errors? online recovery
of flash errors with distributed redundancy”. In: 2019 USENIX Annual Technical
Conference (USENIX ATC 19). 2019, pp. 977–992.

[174] Vasily Tarasov, Erez Zadok, and Spencer Shepler. “Filebench: A flexible framework
for file system benchmarking”. In: USENIX; login 41.1 (2016), pp. 6–12.

[175] Thomas N Theis and H-S Philip Wong. “The end of moore’s law: A new beginning
for information technology”. In: Computing in Science & Engineering 19.2 (2017),
pp. 41–50.

[176] TLC vs QLC SSDs: The Ultimate Guide. https://storagereviews.net/tlc-vs-
qlc-ssds/. 2022.

[177] Hung-Wei Tseng, Laura Grupp, and Steven Swanson. “Understanding the Impact
of Power Loss on Flash Memory”. In: Proceedings of the 48th Design Automation
Conference (DAC ’11). San Diego, CA, 2011, pp. 35–40. isbn: 978-1-4503-0636-2. doi:
10.1145/2024724.2024733.

[178] Yongkun Wang, Kazuo Goda, Miyuki Nakano, and Masaru Kitsuregawa. “Early
experience and evaluation of file systems on SSD with database applications”.
In: 5th International Conference on Networking, Architecture, and Storage (NAS). IEEE.
2010, pp. 467–476.

[179] Debao Wei, Libao Deng, Peng Zhang, Liyan Qiao, and Xiyuan Peng. “NRC: A
nibble remapping coding strategy for NAND flash reliability extension”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 35.11 (2016),
pp. 1942–1946.

[180] Western Digital and Toshiba talk up penta-level cell flash. https://blocksandfiles.
com/2019/08/07/penta-level-cell-flash/. Accessed: 2020-03-24.

[181] WOM-v coder: LightNVM extension. Private Repo to be published with paper. url:
https://github.com/shehbazj/linux_wom.

[182] Xylinx Boards and Kits. https://www.xilinx.com/products/boards-and-kits.
html. Accessed: 2020-03-24.

[183] Eitan Yaakobi, Laura Grupp, Paul H Siegel, Steven Swanson, and Jack K Wolf.
“Characterization and error-correcting codes for TLC flash memories”. In: 2012
International Conference on Computing, Networking and Communications (ICNC). IEEE,
pp. 486–491.

https://storagereviews.net/tlc-vs-qlc-ssds/
https://storagereviews.net/tlc-vs-qlc-ssds/
https://doi.org/10.1145/2024724.2024733
https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/
https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/
https://github.com/shehbazj/linux_wom
https://www.xilinx.com/products/boards-and-kits.html
https://www.xilinx.com/products/boards-and-kits.html


BIBLIOGRAPHY 136

[184] Eitan Yaakobi, Jing Ma, Laura Grupp, Paul H Siegel, Steven Swanson, and Jack K
Wolf. “Error characterization and coding schemes for flash memories”. In: 2010
IEEE Globecom Workshops. IEEE. 2010, pp. 1856–1860.

[185] Eitan Yaakobi and Amir Shpilka. “High sum-rate three-write and nonbinary WOM
codes”. In: IEEE Transactions on Information Theory 60.11 (2014), pp. 7006–7015.

[186] Eitan Yaakobi, Gala Yadgar, Nachum Bundak, and Lior Gilon. “A case for biased
programming in flash”. In: 10th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 18). 2018.

[187] Eitan Yaakobi, Alexander Yucovich, Gal Maor, and Gala Yadgar. “When Do WOM
Codes Improve the Erasure Factor in Flash Memories?” In: Proceedings of the IEEE
International Symposium on Information Theory (ISIT). 2015.

[188] Gala Yadgar, MOSHE Gabel, Shehbaz Jaffer, and Bianca Schroeder. “SSD-Based
Workload Characteristics and Their Performance Implications”. In: ACM Trans.
Storage 17.1 (2021). issn: 1553-3077. doi: 10.1145/3423137. url: https://doi.
org/10.1145/3423137.

[189] Gala Yadgar and Roman Shor. “Experience from Two Years of Visualizing Flash
with SSDPlayer”. In: ACM Trans. Storage 13.4 (Nov. 2017). issn: 1553-3077. doi:
10.1145/3149356. url: https://doi.org/10.1145/3149356.

[190] Gala Yadgar, Eitan Yaakobi, Fabio Margaglia, Yue Li, Alexander Yucovich, Nachum
Bundak, Lior Gilon, Nir Yakovi, Assaf Schuster, and André Brinkmann. “An anal-
ysis of flash page reuse with WOM codes”. In: ACM Transactions on Storage (TOS)
14.1 (2018), pp. 1–39.

[191] Gala Yadgar, Eitan Yaakobi, and Assaf Schuster. “Write Once, Get 50% Free: Sav-
ing SSD Erase Costs Using WOM Codes”. In: 13th USENIX Conference on File and
Storage Technologies (FAST 15). 2015, pp. 257–271.

[192] Gala Yadgar, Alexander Yucovich, Hila Arobas, Eitan Yaakobi, Yue Li, Fabio Mar-
gaglia, André Brinkmann, and Assaf Schuster. Limitations on MLC flash page reuse
and its effects on durability. Tech. rep. Computer Science Department, Technion, 2016.

[193] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sun-
dararaman, Andrew A. Chien, and Haryadi S. Gunawi. “Tiny-Tail Flash: Near-
Perfect Elimination of Garbage Collection Tail Latencies in NAND SSDs”. In: 15th
USENIX Conference on File and Storage Technologies (FAST 17). Santa Clara, CA:
USENIX Association, Feb. 2017, pp. 15–28. isbn: 978-1-931971-36-2. url: https://
www.usenix.org/conference/fast17/technical-sessions/presentation/yan.

[194] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swan-
son. “An empirical guide to the behavior and use of scalable persistent memory”.
In: 18th {USENIX} Conference on File and Storage Technologies ({FAST} 20). 2020,
pp. 169–182.

https://doi.org/10.1145/3423137
https://doi.org/10.1145/3423137
https://doi.org/10.1145/3423137
https://doi.org/10.1145/3149356
https://doi.org/10.1145/3149356
https://www.usenix.org/conference/fast17/technical-sessions/presentation/yan
https://www.usenix.org/conference/fast17/technical-sessions/presentation/yan


BIBLIOGRAPHY 137

[195] Jinfeng Yang, Bingzhe Li, and David J. Lilja. “Exploring Performance Characteris-
tics of the Optane 3D Xpoint Storage Technology”. In: ACM Trans. Model. Perform.
Eval. Comput. Syst. 5.1 (Feb. 2020). issn: 2376-3639. doi: 10.1145/3372783. url:
https://doi.org/10.1145/3372783.

[196] Runyu Zhang, Duo Liu, Xianzhang Chen, Xiongxiong She, Chaoshu Yang, Yujuan
Tan, Zhaoyan Shen, and Zili Shao. “LOFFS: A Low-Overhead File System for Large
Flash Memory on Embedded Devices”. In: Proceedings of the 57th ACM/EDAC/IEEE
Design Automation Conference. DAC ’20. Virtual Event, USA: IEEE Press, 2020. isbn:
9781450367257.

[197] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu, Nanlong Yu, Gui Huang,
Tieying Zhang, Dengcheng He, Feifei Li, Wei Cao, Zhongdong Huang, and Jian-
ling Sun. “FPGA-Accelerated Compactions for LSM-based Key-Value Store”. In:
18th USENIX Conference on File and Storage Technologies (FAST 20). Santa Clara, CA:
USENIX Association, Feb. 2020, pp. 225–237. isbn: 978-1-939133-12-0. url: https:
//www.usenix.org/conference/fast20/presentation/zhang-teng.

[198] Tong Zhang. What is a computational storage drive? Much needed help for CPUs. https:
//www.infoworld.com/article/3615497/what-is-a-computational-storage-

drive-much-needed-help-for-cpus.html. Info World, 2021. url: "https://www.
infoworld.com/article/3615497/what-is-a-computational-storage-drive-

much-needed-help-for-cpus.html".

[199] Kai Zhao, Wenzhe Zhao, Hongbin Sun, Xiaodong Zhang, Nanning Zheng, and
Tong Zhang. “LDPC-in-SSD: Making Advanced Error Correction Codes Work Ef-
fectively in Solid State Drives”. In: Presented as part of the 11th USENIX Conference
on File and Storage Technologies (FAST 13). San Jose, CA: USENIX, 2013, pp. 243–256.
isbn: 978-1-931971-99-7. url: https://www.usenix.org/conference/fast13/
technical-sessions/presentation/zhao.

[200] Yutong Zhao, Wei Tong, Jingning Liu, Dan Feng, and Hongwei Qin. “CeSR: A Cell
State Remapping Strategy to Reduce Raw Bit Error Rate of MLC NAND Flash”. In:
2019 35th Symposium on Mass Storage Systems and Technologies (MSST). IEEE. 2019,
pp. 161–171.

[201] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillibridge. “Understanding the Ro-
bustness of SSDs Under Power Fault”. In: Proceedings of the 11th USENIX Conference
on File and Storage Technologies (FAST ’13). San Jose, CA: USENIX Association, 2013,
pp. 271–284.

[202] Mai Zheng, Joseph Tucek, Feng Qin, Mark Lillibridge, Bill W. Zhao, and Elizabeth
S. Yang. “Reliability Analysis of SSDs Under Power Fault”. In: ACM Transactions on
Storage (TOS) 34.4 (Nov. 2016), pp. 1–28. issn: 0734-2071. doi: 10.1145/2992782.

https://doi.org/10.1145/3372783
https://doi.org/10.1145/3372783
https://www.usenix.org/conference/fast20/presentation/zhang-teng
https://www.usenix.org/conference/fast20/presentation/zhang-teng
https://www.infoworld.com/article/3615497/what-is-a-computational-storage-drive-much-needed-help-for-cpus.html
https://www.infoworld.com/article/3615497/what-is-a-computational-storage-drive-much-needed-help-for-cpus.html
https://www.infoworld.com/article/3615497/what-is-a-computational-storage-drive-much-needed-help-for-cpus.html
"https://www.infoworld.com/article/3615497/what-is-a-computational-storage-drive-much-needed-help-for-cpus.html"
"https://www.infoworld.com/article/3615497/what-is-a-computational-storage-drive-much-needed-help-for-cpus.html"
"https://www.infoworld.com/article/3615497/what-is-a-computational-storage-drive-much-needed-help-for-cpus.html"
https://www.usenix.org/conference/fast13/technical-sessions/presentation/zhao
https://www.usenix.org/conference/fast13/technical-sessions/presentation/zhao
https://doi.org/10.1145/2992782


BIBLIOGRAPHY 138

[203] Ning Zheng, Xubin Chen, Jiangpeng Li, Qi Wu, Yang Liu, Yong Peng, Fei Sun,
Hao Zhong, and Tong Zhang. “Re-think Data Management Software Design Upon
the Arrival of Storage Hardware with Built-in Transparent Compression”. In: 12th
USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 20). USENIX
Association, July 2020. url: https://www.usenix.org/conference/hotstorage20/
presentation/zheng.

[204] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao, Evan Mester-
hazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan Stutsman, and Asaf Cidon.
“XRP: In-Kernel Storage Functions with eBPF”. In: 16th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 22). Carlsbad, CA: USENIX Asso-
ciation, July 2022, pp. 375–393. isbn: 978-1-939133-28-1. url: https://www.usenix.
org/conference/osdi22/presentation/zhong.

[205] Yuhong Zhong, Hongyi Wang, Yu Jian Wu, Asaf Cidon, Ryan Stutsman, Amy Tai,
and Junfeng Yang. “BPF for Storage: An Exokernel-Inspired Approach”. In: Pro-
ceedings of the Workshop on Hot Topics in Operating Systems. HotOS ’21. Ann Arbor,
Michigan: Association for Computing Machinery, 2021, 128–135. isbn: 9781450384384.
doi: 10.1145/3458336.3465290. url: https://doi.org/10.1145/3458336.
3465290.

https://www.usenix.org/conference/hotstorage20/presentation/zheng
https://www.usenix.org/conference/hotstorage20/presentation/zheng
https://www.usenix.org/conference/osdi22/presentation/zhong
https://www.usenix.org/conference/osdi22/presentation/zhong
https://doi.org/10.1145/3458336.3465290
https://doi.org/10.1145/3458336.3465290
https://doi.org/10.1145/3458336.3465290

	Introduction
	Thesis Outline
	File System Reliability on SSDs
	Improving Reliability of High Density SSDs using WOM Codes
	A framework for evaluating Near-Storage Computation

	Thesis Contributions
	Improving Reliability of the Storage Stack
	Improving Performance of the Storage Stack
	Research Artifacts


	Evaluating File System Reliability on SSDs
	Introduction
	Contributions
	Background
	Write Workflow
	Read Workflow
	File Systems
	Solid State Drives
	Reliability of File Systems

	File System Error Injection
	SSD Errors in the Field and their Manifestation
	Comparison with HDD faults
	Device Mapper Tool for Error Emulation
	Test Programs
	Targeted Error Injection
	Detection and Recovery Taxonomy
	I/O Latency Injection

	Results
	Btrfs
	ext4
	F2FS
	I/O Latency Results

	Implications
	Limitations and Future Work
	Impact

	Improving Reliability of High Density SSDs using WOM-v Codes
	Introduction
	Limitations of traditional WOM codes
	Modelling cells as group of bits
	Scalability

	Solution
	Voltage Based QLC WOM Code

	Theoretical Evaluation
	P/E Cycle versus Physical Space Tradeoff
	Reprogramming beyond GEN_MAX

	Limitations of a Theoretical Model
	System Implementation
	LightNVM Architecture
	WOM-v Implementation
	Baseline Implementation
	WOM-v Optimizations

	Evaluation
	Micro Benchmarks
	Real World Workload Traces
	Reduction in Erase Cycles
	Performance Optimizations
	Comparison with MLC Drives
	Theoretical Analysis
	Erasure Factor
	Generalizing the WOM-v Coding Scheme
	Flash Friendliness of WOM-v(k,N) codes
	Uniform Page Invalidation with LRW Garbage Collection
	Hot and Cold Data Model
	Evaluating the Analytical Models

	Related Work
	Summary and Implications
	Use cases and Impact
	Future Work

	A Framework to evaluate Near-Storage-Computation Applications
	Introduction
	Background
	Computational Storage Devices
	NVMe Protocol

	Prior Work
	Analytical Model
	Single Request Model
	Generalizing to Data Flows
	Case Studies
	Need for a Computational Simulator

	Architecture
	Near Storage Compute (NSC) Engine
	Interface
	Computation Types

	Evaluation
	Micro-Benchmarks
	Real World Workloads

	Power Aware Computational Storage Disks
	Related Work

	Conclusion and Future Work

	Summary and Future Work
	Bibliography

