
/home/shehbaz/sosp_src19/poster/Slide5.jpg

Reclaiming Good Transactions from a Corrupt Journal

/home/shehbaz/sosp_src19/poster/Slide5.jpg

Persistent storage media is becoming larger and denser.

There is increased media corruption and hardware unreliability.

Storage systems need robust recovery techniques.

Current File System recovery techniques - replication and journaling.

Motivation

Reduce Write Amplification by optimizing bitmap and descriptor block logging.

Handle delete operations by tracking orphan inodes across sub-journals.

Application crash consistency - journal one application transactions in one sub-journal.

Verify sub-journaling and journaling equivalence.

Future Work

Results

SPANFS – Separates transactions into static domains based on Block Groups.

iJournaling – Fine Grained Journaling focusses on improving fsync() performance.

High Performance Transaction processing aims to improve multi core scalability.

Application Level Crash Consistency provides isolated streams for each application.

Related Work

Log atomic file system updates into different sub-journals.

Each sub-journal can be replayed independent of the other sub-journal.

File system remains consistent after any sub-journal replay.

Journaling

Solution: Sub-Journaling

Journal header or Journal commit corruption leads to data loss.

Journal metadata corruption leads to time consuming fsck run.

Problem

Categorize Transaction Updates

Number of Inodes updated

Map all metadata of one transaction to one sub-journal.

Map metadata of one inode to one sub-journal.

Remap parent inode to child inode's sub-journal for I_2 Tx and I_3 Tx.

0 inodes

(I_0 Tx)

1 inode

(I_1 Tx)

2 inodes

(I_2 Tx)

3 inodes

(I_3 Tx)

mount truncate create rename

access chmod rmdir

stat chown mkdir

chroot utimes link

chdir read symlink

open write unlink

Extent and Directory Block Group Descriptor and Bitmaps

SuperblockDeleted Inodes

Prune extents containing

lost directories.

Regenerate after restoring other

metadata from available sub-journals.

Record in each sub-journalre-allocation is delayed until checkpoint.

Orphan list is sent to each sub-journal.

Recovery after Crash

Implementation

jbd2_journal_dirty_metadata (inode_no)

Register Transaction category - I_0 Tx, I_1 Tx, I_2 Tx, I_3 Tx

In Memory Hash Maps

<Tx_Handle - Sub-Journal>

<Tx_Handle - Journal Blocks>

<Tx_handle - Inode>

On Disk Structures

Add to Transaction Descriptor Block

<Inode - Sub-Journal> Map

<Metadata block - Sub-Journal> Map

Inode Blocks

F
ile

 S
y
s
te

m
 o

p
e
ra

ti
o
n

Journaling removes time consuming fsck run on unclean shutdown.

It also writes metadata to a linear log which increases performance.

Sequential journal logging causes transaction dependency!

Inodes updated by same transaction have parent-child relationship

1 LOC

changed

700 LOC

added

Recoverable inodes for a 4 sub-journal file

system with varying lost sub-journals.

Sub-journaling technique incurs Write

Amplification with more sub-journals.

Write Amplification Data Structure

distribution for 4 sub-journal file system.

Recoverable Inodes after 1 sub-journal loss

with different sub-journal configurations.

Invariants Maintained

