Reclaiming Good Transactions from a Corrupt Journal

Computer Science

%% UNIVERSITY OF TORONTO Shehbaz Jaffer, Bianca Schroeder
Motivation Solution: Sub-Journaling Implementation
Persistent storage media is becoming larger and denser. Log atomic file system updates into different sub-journals. _ _ _ _
| | | jbd2_journal dirty metadata (inode no)
There Is increased media corruption and hardware unreliability. Each sub-journal can be replayed independent of the other sub-journal. | |
| | | | Register Transactioncategory - | O Tx, | 1 Tx,1 2Tx,1 3Tx
Storage systems need robust recovery techniques. File system remains consistent after any sub-journal replay.
Current File System recovery techniques - replication and journaling| : : |
Categorize Transaction Updates . In Memory Hash Maps On Disk Structures
_ Number of Inodes Updated _ jbd2 <Tx_Handle - Sub-Journal> Add to Transaction Descriptor Block
. = O inodes 1 inode 2 Inodes 3 Inodes 700 LOC
Journaling =2 (| 0 Tx) (I 1Tx) (I 2 Tx) (I 3 Tx) ded <Tx_Handle - Journal Blocks> | |<Inode - Sub-Journal>Map
. . . O = = = = adde
Journaling removes time consuming fsck run on unclean shutdown. L mount truncate create rename <Tx_handle - Inode> <Metadata block - Sub-Journal> Map
It also writes metadata to a linear log which increases performance. g access chmod rmdir
) :
TRANSACTION o Stat chown mkdir
(c% | | Results
CHECKPOINT - chroot utimes link 5 100 5
Descriptor Commit E chdir read svmlink £ -
| y | § 75 ,% 4
REPLAY open write unlink o £ 3
COMMIT _ _ _ _ £ 50 2 ,
Inodes updated by same transaction have parent-child relationship = <)
R 25 2
| 1Tx | 2 Tx | 3 Tx > = 0
g O 4 8 12 16
MAIN FILE SYSTEM JOURNAL m i < default 3 2 L
J Number of Lost Subjournals Number of Sub Journals
bl Sl R ; Recoverable inodes for a 4 sub-journal file ~ Sub-journaling technique incurs Write
Problem A e) . . o2 .
system with varying lost sub-journals. Amplification with more sub-journals.
Journal header or Journal commit corruption leads to data loss. i
» 80
Journal metadata corruption leads to time consuming fsck run. Invariants Maintained % 50 4
= 5
XN TXN+1 TxN+2 TxN+3 Map all metadata of one transaction to one sub-journal. P 40 g 3
o s 2
Map metadata of one inode to one sub-journal. g 20 g ,
Q £
Remap parent inode to child inode's sub-journalfor| 2 Tx and | 3 Tx. o 0 = 0
X default 2 4 8 12 16 lnode Block Inode Group Directory,

Block Bitmap Bitmap Descriptor Extents
Block

Recovery after Crash

Number of sub-journals

Data Structure

Replay Ablorted . fﬁck Run- | Inode Blocks Recoverable Inodes after 1 sub-journal loss Write Amplification Data Structure
Data Loss! Time Consuming’ Sub Journal 2 Lost Sub Journal 1 Lost - Replay Tx B with different sub-journal configurations. distribution for 4 sub-journal file system.
Replay Tx A Prune DIR1 and DIR2 in Parent Inode

Sequential journal logging causes transaction dependency!

PARENT PARENT

|>_< = Permanently Lost E)ilgeézggctgrsaglgig?rcég{é?; ;noved to lost+found IN[e]p]= INODE Future Work
- 1000 @ 3750
g 500 S 3500 EXTENT EXTENT Reduce Write Amplification by optimizing bitmap and descriptor block logging.
) O
3 100 = 3250 EXTENT . . : :
S g I = 3000 \ Handle delete operations by tracking orphan inodes across sub-journals.
L :_
2] 3 2730 : : : : : : : : :
5 o waisever websener resener 5 2500 o PR REER B Tx A Tx B oiRa Application crash consistency - journal one application transactions in one sub-journal.
File System Workloads Journal Corruption Offset Sub Journal 1 Sub Journal 2 Verify sub-journaling and journaling equivalence.
Uncheckpointed Tx Length vs sync frequency Extent and Directory Block Group DCSCI’iptOI’ and Bitmaps
400 : VV
E 200 Prune extents containing Regenerate after restoring other Related Work
Q
§ o0 lost directories. metadata from available sub-journals. SPANFS — Separates transactions into static domains based on Block Groups.
S 100 IJournaling — Fine Grained Journaling focusses on improving fsync() performance.
5 Deleted Inodes Superblock | | - | | N
> . 5 10 20 50 re-allocation is delayed until checkpoint. Record in each sub-journal [High Performance Transaction processing aims to improve multi core scalability.

Application Level Crash Consistency provides isolated streams for each application.

operations per sync Orphan list is sent to each sub-journal.

