
Reclaiming good transactions from a corrupt journal
Shehbaz Jaffer

University of Toronto

1 Introduction

Journaling file systems depend on their journal to ensure
a consistent on-disk image on the event of a system crash.
An application calls fsync() to ensure writes are durably
stored on the journal. On the event of a failure, the jour-
nal is sequentially replayed to restore lost meta data. We
observe that a corruption of an intermediate transaction in
the ext4 file system journal silently aborts journal replay
causing data loss of subsequent transactions. For a meta data
intensive workload that recursively creates 4000 directories,
we observe that a file system may silently loose upto 94%
of recoverable directories from the journal on a single bit
flip during an improper shutdown. We provide a solution to
the problem by creating independent replayable units called
sub-journals, that can be replayed independently during
recovery while keeping the file system image consistent.

2 Background

Journaling is a technique where the meta data operations
are first recorded at a staging area called the journal before
being written to the main file system. A transaction is an
atomic set of meta data blocks that can be made to the main
file system keeping the file system consistent. A transaction
is committed when all corresponding meta data blocks have
been successfully written to the journal. A transaction is
checkpointed when all corresponding meta data blocks have
been successfully persisted on the main file system or carry-
forwarded to a subsequent transaction. If a system crash
occurs between the time the transaction has been committed
to the journal and before it has been checkpointed to the
main file system, the contents of the journal are replayed in
strict sequential order to recover meta data updates of the
committed transaction. There are two types of journaling:

1. physical journaling - where the entire meta data is
written on the transaction log.

2. logical journaling - where only updated meta data
fields are recorded on the transaction log.

Logical journaling consumes more CPU time due to exces-
sive bookkeeping. Physical journaling consumes more disk
due to full metadata block writes. However, physical jour-
naling may be optimized to consume less on-disk space
by coalescing multiple transactions in a single compound
transaction[10]. ext4 is one file system that uses compound
transactions.

3 Motivation and Research Problem
A 60 second run of meta data intensive workloads generates a
large number of transactions that get committed on the jour-
nal. Figure 1 shows the average number of transactions that
remain uncheckpointed to the main file system. A corruption
in any transaction discards all subsequent transactions[1, 2]:

1. It is not possible to determine which subsequent com-
pound transactions can be executed while ensuring
the main file system remains consistent.

2. Each compound transaction coalesces multiple file and
directory updates in one meta transaction which can-
not be independently replayed.

Figure 1. Average number of transactions recorded on the
journal before checkpointing to the main file system

Avoiding journal replay prevents crash consistency prob-
lems [5] but causes severe data loss. For instance, In a re-
cursive mkdir workload that creates 4000 directories with
frequent sync() operations, we observe that corruption
of journal_block_header after an improper shutdown[4]
causes recovery of only 224 of 3708 recoverable directo-
ries, causing 94% directory loss. Further, journal checksums
do not detect this error as they are stored at the end in a
journal_commit_block that doesn’t get accessed[3] after
detecting a journal_block_header mismatch.

4 Approach
Ourmain contribution is a technique to separate transactions
into independent replayable sub-journals without losing the
benefits of a compound_transaction. If one or more sub-
journals get corrupted or lost, the remaining uncorrupted
sub-journals can still be replayed without compromising the
consistency of the file system. Our approach is as follows:
4.1 categorize transaction updates

Each file system transaction corresponds to a particular VFS
operation. VFS operations can be categorized based on the
number of inodes they update. A transaction may update
meta data corresponding to only one inode (eg. write), a
parent and child inode (eg. mkdir) or multiple inodes (eg.
rename) as shown in Table 1.

1

, , Shehbaz Jaffer

#Inodes VFS Operation
0 mount, access, stat, chroot, chdir, open
1 truncate, chmod, chown, utimes, read, write
2 creat, rmdir, mkdir, link, symlink, unlink
many sync, rename

Table 1. Different File System VFS operations grouped on the
basis of the number of inodes that get updated on each opera-
tion.

4.2 transaction handles and inode mapping

A transaction_handle uniquely identifies a transaction.
There are two invariants we maintain (a) All meta data
blocks updated by one transaction_handle are written
to the same sub-journal. (b) All meta data corresponding to
one inode is mapped to it’s sub-journal. The inode mapping
may change, but the handle mapping remains constant. For
transaction_handles that update one inode, all meta data
blocks written by the transaction_handle are written to
it’s sub-journal. For transaction_handles that update 2
inodes, we send all the meta data blocks to the child inode’s
sub-journal and remap the parent inode to child sub-journal.
Subsequent updates of parent inode are directed to its new
sub-journal. For rename, we map both source parent and
destination parent inode sub-journals to child inodes’ sub-
journal, whose mapping remains unchanged.

4.3 Recovery on crash

We consider a sub-journal as a unit of failure. When corrup-
tion or data loss occurs in one sub-journal, we discard all
subsequent transaction handles mapped in that sub-journal.
We sequentially replay transaction handles of all uncorrupt
sub-journals.
Inode Recovery: We restore all meta data blocks corre-
sponding to transaction_handles that update only one
inode. While recovering from transaction_handles that
update parent and child inodes, two cases arise:

1. If a sub-journal containing parent inode’s older map-
ping is lost, the sub-journal containing new child inode
mapping has the new parent inode. Since the lost sub-
journal may contain previous child inodes that are lost,
we perform directory pruning and remove older child
inodes by modifying the directory rec_len field.

2. If a sub-journal containing new parent inode mapping
is lost, the new child inode and new parent inode copy
is lost and we restore the older parent inode.

Extent and Directory block Recovery: For each recov-
erable inode, we traverse it’s extent tree and check if any
blocks updated by the recoverable transaction_handle lie
in the extent blocks range of that inode. All directory blocks
within this range in the recoverable transaction_handle
are restored to the main file system.
Bitmap Block and Group Descriptor Recovery: We re-
build the bitmap and group descriptor structures based on
the number of recoverable inodes and blocks.

Super Block Recovery: We write super block updates to
all sub-journals since super block maintains a list of deleted
files in an orphan list.
Deleted inodes: Any deleted inode is maintained in the or-
phan list that starts from the super block. A list of handle
and deleted inode is provided to each sub-journal. We refer
this list and remove any existing inodes that were mapped in
the list before replaying a recoverable transaction_handle
update containing the same inode number. We also use this
list to reset bitmap blocks.

5 Results and contribution

Recoverable sub-journals % Recoverable inodes
3 80.81
2 57.77
1 30.87

default journaling with corruption 6.04
Table 2. Average recoverable inodes after sub-journal corrup-
tions v/s single bit corruption of journal header and default
replay.

Implementation:We add 1 argument in an ext4 function
to transfer inode information from the VFS layer to jbd2 dur-
ing a dirty meta data write to the journal. We add 700 LOC
for tracking handles, blocks, inodes and their sub-journals
in jbd2. Our recovery code currently restores only inodes,
extent and directory blocks and relies on e2fsck which cor-
rectly recovers group descriptor and bitmap blocks as shown
in [6]. Handling delete operations is part of our future work.
Results: For a recursive mkdir workload that creates 4000 di-
rectories with 4 sub-journals, the average number of recover-
able inodes after replaying a specific number of sub-journals
is shown in Table 2. Since parent inodes and its relevant data
structures are copied to new child inodes’ sub-journal, we
observe 1.66X write amplification as compared to default
journaling, which we plan to reduce in future work.

6 Related Work
SpanFS [7] parallelizes journal across different domains,
where each domain maps to one or more groups. Our ap-
proach does not hard-code inodes of one group to one sub-
journal. Assignment of new inodes to sub-journals is uni-
formly distributed. Prior work[9] focuses on improvingmany
core scalability by reducing lock contention. Both [7, 9] fo-
cus on performance and do not replay the journal on in-
termediate transaction corruption. Our approach is able
to continue replaying subsequent transactions of uncor-
rupted sub-journals after an intermediate sub-journal is cor-
rupted or lost. In [8], authors develop fine grained check-
pointing to improve fsck() performance. Our technique
does not do file level writes to disk, but instead does inode
level tracking and selective replay by grouping multiple con-
sistent transaction_handles into independent replayable
sub-journals ensuring file system consistency.

2

Reclaiming good transactions from a corrupt journal , ,

References
[1] 2008. Responding to ext4 journal corruption. https://lwn.net/Articles/

284037/. [Online; accessed 14-Aug-2019].
[2] 2019. ext4 Data Loss. Retrieved Aug 14, 2019 from https://bugs.

launchpad.net/ubuntu/+source/linux/+bug/317781
[3] 2019. ext4 recovery pass exits on journal header mismatch. https://

github.com/torvalds/linux/blob/master/fs/jbd2/recovery.c#L495. [On-
line; accessed 14-Aug-2019].

[4] 2019. Forced Reboot using /sysrq/trigger. Retrieved Aug 14, 2019
from https://www.debian.org/doc/manuals/debian-reference/ch09

[5] Gregory R Ganger, Marshall Kirk McKusick, Craig AN Soules, and
Yale N Patt. 2000. Soft updates: a solution to the metadata update
problem in file systems. ACMTransactions on Computer Systems (TOCS)
18, 2 (2000), 127–153.

[6] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder.
2019. Evaluating File System Reliability on Solid State Drives. In 2019

USENIX Annual Technical Conference (USENIX ATC 19). USENIX Asso-
ciation, Renton, WA, 783–798. https://www.usenix.org/conference/
atc19/presentation/jaffer

[7] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu, Lian Du, Shuai
Ma, and Jinpeng Huai. 2015. SpanFS: A Scalable File System on Fast
Storage Devices. In 2015 USENIX Annual Technical Conference (USENIX
ATC 15). USENIX Association, Santa Clara, CA, 249–261. https://www.
usenix.org/conference/atc15/technical-session/presentation/kang

[8] Daejun Park and Dongkun Shin. 2017. iJournaling: Fine-grained jour-
naling for improving the latency of fsync system call. In 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17). 787–798.

[9] Yongseok Son, Sunggon Kim, Heon Y. Yeom, and Hyuck Han. 2018.
High-Performance Transaction Processing in Journaling File Systems.
In 16th USENIX Conference on File and Storage Technologies (FAST 18).
USENIX Association, Oakland, CA, 227–240. https://www.usenix.org/
conference/fast18/presentation/son

[10] Stephen C. Tweedie. 1998. Journaling the Linux ext2fs Filesystem. In
In LinuxExpoâĂŹ98: Proceedings of The 4th Annual Linux Expo.

3

https://lwn.net/Articles/284037/
https://lwn.net/Articles/284037/
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781
https://github.com/torvalds/linux/blob/master/fs/jbd2/recovery.c##L495
https://github.com/torvalds/linux/blob/master/fs/jbd2/recovery.c##L495
https://www.debian.org/doc/manuals/debian-reference/ch09
https://www.usenix.org/conference/atc19/presentation/jaffer
https://www.usenix.org/conference/atc19/presentation/jaffer
https://www.usenix.org/conference/atc15/technical-session/presentation/kang
https://www.usenix.org/conference/atc15/technical-session/presentation/kang
https://www.usenix.org/conference/fast18/presentation/son
https://www.usenix.org/conference/fast18/presentation/son

	1 Introduction
	2 Background
	3 Motivation and Research Problem
	4 Approach
	4.1 categorize transaction updates
	4.2 transaction handles and inode mapping
	4.3 Recovery on crash

	5 Results and contribution
	6 Related Work
	References

