
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Offloading file search operation for performance
improvement of smart phones

Ashutosh Jain
CSE Dept.
IIT, Delhi

New Delhi, 110016, India
mcs112566@cse.iitd.ac.in

Vigya Sharma
CSE Dept.
IIT, Delhi

New Delhi, 110016, India
mcs112564@cse.iitd.ac.in

Shehbaz Jaffer
CSE Dept.
IIT, Delhi

New Delhi, 110016, India
mcs112578@cse.iitd.ac.in

Kolin Paul
CSE Dept.
IIT, Delhi

New Delhi, 110016, India
kolin@cse.iitd.ac.in

Abstract—The file search operation has always been a very
time consuming and expensive operation in large secondary
memory devices. As the size of secondary memory in smart
phones is increasing this operation will take a lot of time and
consume a lot of battery of the device. In this paper we implement
offloaded file search operation in which the directory structure
of the file system or the hash index is offloaded to a server and
the server returns the result of the file search query of the user
thereby reducing search time and improving performance.

I. INTRODUCTION

Mobile devices such as cellphones and tablets come with a
large amount of secondary memory. 32 GB secondary memory
is very common in smart phones nowadays and this number
is expected to grow by a large amount in the near future. A
file search operation is a frequently used operation invoked by
users and system tasks. With increase in the size of secondary
memory and more number of files, time for searching a file
will increase. Searching becomes an expensive operation as
the file system size grows mainly for three reasons. First, as
smart phones do not have very powerful processors, it takes a
lot of time to search for a file in the file system. Second, the
primary memory consumption to store the whole file system
tree or a hash index in main memory is expensive as there is
a limitation on the size of main memory. Third, the execution
of computation intensive applications on processors or the use
of very large amount of memory consumes a lot of energy
and smart phones generally have very limited battery life.
Whereas the secondary memory in smart phones is increasing
rapidly, the amount of energy that can be stored in a battery is
growing at only 5% annually [4]. Employing bigger batteries
for increasing battery life is also not an attractive option for
smart phones. Also without active cooling the power budget
of small devices is limited to about three watts [5]. For
these reasons file searching is generally not provided in less
powerful phones.
With the growing number of cloud based smartphone appli-
cations, cloud computing can help improve the file search
operation. As the synchronization of contacts and calendar data
is widely used, users of smartphones are already adapted to
store some part of their phone’s data in the cloud. Therefore,
we propose to offload the file search operation to a powerful
server or to a cloud. Application of this type can easily be

provided by a phone manufacturer to improve the file search
performance of the phone.
Now, file searching is of two types: if the user searches
in a particular directory, or the user searches in the home
directory. For searching in a particular directory the whole
tree of that directory has to be searched. For searching in the
home directory a hash table can be maintained to improve the
search time. In this paper we offloaded both types of searches
i.e. the server can either maintain a tree or a hash table or
both for the directory structure of the phone. We also compared
the performances of both offloaded implementations with local
searching and also with each other both in terms of time and
energy.
The rest of the paper is organised as follows. Section 2
describes the related work done. Section 3 describes the
model of implementation for the real world devices. Section
4 describes our implementation to evaluate the performance
benefits of offloading the search operation. Section 5 describes
the experimental results and observations. Section 6 concludes
with the advantages and extensions of offloading the search
operation and finally Section 7 discusses the future work.

II. RELATED WORK

K Kumar et.al.[1] provide useful insights to when offloading
computation can actually be beneficial. There work considers
the power consumed by the device due to transmission of data
while offloading the computation. They state that offloading
can be beneficial if an application requires large amount of
computation with relatively less data transfer, similar to the
search operation application that we have offloaded. Issues
and concerns about privacy and security have also been
highlighted in their work. R Kemp et.al.[2] demonstrate Cukoo
- a framework for offloading computation of compute intensive
applications for the android platform. The framework decides
at runtime whether to switch to cloud or to perform the
computation locally. Their emphasis is to reduce the load on
the thin client and let the fat server (cloud) perform the major
compute intensive applications.

III. OFFLOADED FILE SEARCH

In our model of offloaded file search the first time when
the phone user wants to use the offloaded file search, the

IEEE CONECCT2013 1569685131

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

phone obtains data set containing full paths of each of the
files of the phone and it sends this data set to the server.
The server maintains meta-data for each of the phones and it
can distinguish between the phones either using their mobile
numbers or the IMEI numbers. The server upon receiving the
data set creates a tree and/or hash table corresponding to these
files for that particular phone. Since the number of files are less
when a phone is used for the first time, this will not involve
very heavy data transfer. After this setup is done, the user can
use the file search operation, the query string will be sent to
the server and server replies with the file paths by searching
in the tree or the hash table maintained for that particular
phone. Now the thing that need to be handled here is that
the user is free to 1)add, 2)delete, 3)move, or 4)rename files
during the lifetime of the phone which will make the meta-
data on the server obsolete. One way to solve this problem is
to send the listing of full paths again every time user does any
of the four above mentioned operations but that will involve
very heavy data transfer as these operations are very frequent.
Other is to send only the change that occured to the server
but that will involve very frequent data transfer and will not
work if the network is unavailable at that time. To efficiently
solve this problem our model maintains a change log in the
phone. The change log keeps a track of all changes done to the
file structure. There will be a synchronization manager whose
responsibility is to watch when any of the four operations are
done and make an entry in the change log. Now the change
log can contain four types of entries:

1) In case of addition or deletion of file the change log
contains the file’s path(the last name in the path will be
the file name).

2) In case of renaming the change log contains the file’s
path and file’s new name.

3) In case of movement of file the change log contains file’s
old path and file’s new path.

Each entry has an indicator field to indicate what operation
is done to the entry. Whenever the server receives the change
log it updates its tree and/or hash table by the doing all the
operations in the change log. This way the data structure on
the server is synchronized with the directory structure of the
phone. This sending of the change log to the server is the
synchronization phase. The advantage of using this change log
model is that the amount of data transfer used to synchronize
the server with the phone is decreased. A typical change log
with 100 changes sizes to only 10kB which will not take much
time to transfer and for a high end server to process it.
Once the server does the requested operations in the change
log the server sends an acknowledgement indicating that the
update process is completed. The phone on receiving this
acknowledgement resets its change log. Now this synchroniza-
tion phase can occur at different points of time:

1) Whenever the user calls the search operation, the phone
first sends the change log and after getting acknowledge-
ment from the server sends the query string. This is the
simplest approach but the disadvantage of this is that

if the change log becomes large then the sending of the
change log and updation at the server may take time and
user may get slow down.

2) Whenever the size of the change log exceeds a certain
limit. This will remove the disadvantage of change log
becoming very large but the network has to be available
at that time.

3) Whenever the network becomes available. This can be
combined with the previous strategy to efficiently do
synchronization.

Now because of the above strategies there can also be a
scenario when search is to be performed but the change log is
not empty, i.e. the file structure is not up to date. One of the
following options can then be employed:

• The server can perform a synchronization before com-
pleting the query.

• If a local copy of the directory structure tree is also
present, the search can be initiated locally, while the
synchronization is being performed.

• Alternatively, the system can look up the change log for
the queried file name. If it is not present in the change
log, the system can proceed with offloaded search. If the
change log indicates that a file of that name is added, it
can return the new path from the change log, and also
perform an offloaded search for other occurences of that
file name. If the change log indicates that a file has been
renamed to the query name, the query can be modified
to include both the old and the new names before it has
been sent to the server. In case the file has been deleted
or moved, the offloaded search can proceed as usual, and
the occurences for the deleted file can be removed from
the output once it is received.

IV. IMPLEMENTATION

There are two parts of the implementation: implementing
the search locally, and implementing the offloaded search. All
implementations are written in C programming language.
The server used here is an Intel Core 2 Duo Processor with
2 GB RAM and 1.83 GHz clock speed. The processor used
to simulate smart phone is Intel Atom processor with 512
MB RAM, 1 GHz processor, running Fedora 11 operating
system. We assume a bandwidth availability of ethernet, 100
Mbps. This is inline with the assumption that with increasing
availability of better networks in future, bandwidth will not be
a bottleneck in data communication.

A. Tree based search

For implementing the local search we first need to have
the full paths of all the files in the file system which we can
convert to a tree. This is done in linux using find command.
Then a program reads this file and converts this to a directory
tree structure. The program then reads a filename and a
directory name and searches for the file(s) in the directory and
returns all the paths where the file is found. In the offloaded
search program the file obtained using find command is sent
to server and the program at server reads this file and converts

2



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

it to directory tree structure. The server program then waits
for input from the client side. The client program inputs the
filename and the directory name and sends them to the server
and waits for the reply from the server. The server program
receives the filename and the directory name, searches for the
filename in the given directory and whenever a file is found
it sends the file path back and resumes searching. In this way
the client receives the file paths incrementally.

B. Hash based search

Hash based search is used when user searches in the root
directory i.e. irrespective of the location of directory. It is
also used in the desktop search in windows where as the user
types a filename it starts giving suggestions. So, our hash table
consists of 27 locations and collision resolution with chaining
is done. The hash function which we used is to put all the files
which have their name starting from ’a’ to the same location
and similarly for other alphabets. All filenames which dont
start from alphabet are put into 27th location. Local search
and offloaded search programs are same as in tree based search
except that searching is done in hash table instead of tree.

V. OBSERVATIONS AND RESULTS

For comparing the performances of different implementa-
tions we have done, we generated sample data by running
find command on different directories of our computers so
that results for different number of files are obtained. These
files are then input to the programs we have made and statistics
are obtained.

A. Local tree based search vs offloaded tree based search

Figure 1 shows the times obtained for different number of
files for local search and offloaded search. As the results show

Fig. 1. Comparison of times taken for local tree search and offloaded tree
search

offloaded searching is definitely performing better than local
searching and as the number of files increase the benefit of
offloading increases. But the difference in search time is not
enough. For battery enabled devices we have to care of the
power as well. So we next measured the difference in the
energy required to perform local tree search and offloaded tree

search. Figure 2 shows the results. The results clearly show
that offloaded tree search consumes less energy than local tree
search because none of the calculations occurs on the phone’s
processor. The client process job is to just send the search
string and receive the search results. So the offloaded tree
search will improve the battery life of the phone as well.

Fig. 2. Comparison of energy consumed in local tree search and offloaded
tree search

B. Local hash based search vs offloaded hash based search

For using the local hash based search the processor of the
smart phone has to build the hash table each time the user
switches on his phone and also the hash table has to remain
in main memory till the phone is on. So we first show the time
to build the hash table and the memory requirements of hash
table for different number of files. Table I shows the results.
The results clearly show that hashing is not possible on smart

Number of files Build time(in
secs)

Memory usage(in
MB)

20000 0.30 37.6
40000 0.59 78.2
60000 0.88 117
80000 1.21 156
100000 1.54 199.3
120000 2.40 276.8
136000 Process killed Process killed

TABLE I
TIME REQUIRED TO BUILD THE HASH TABLE AND MEMORY USAGE

phones. The reasons are:
1) Hashing requires a lot memory and such large amount

of memory is not available on phones so the operating
system kills the process.

2) Even if memory is available sometimes its not resource
optimal to allocate such large amount of memory to one
process.

3) The time it takes to build the hash table becomes very
large. Users can’t wait for so long when the phone is
started.

3



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Because of these reasons to take advantage of hashing, hash
table has to be offloaded. Figure 3 shows the search time
comparison and Figure 4 shows the energy consumption of
offloaded hashing and offloaded tree based search.

Fig. 3. Comparison of times taken for offloaded hash based search and
offloaded tree based search

Fig. 4. Comparison of energy consumed in offloaded tree search and
offloaded hash search

From the results it is clear that hashing outperforms tree
based search not only in terms of time but also in terms of
energy because the process of searching completes in less
time. So if the user wants to perform a search on the root
directory then hashing is the best option. Also if the user
wants suggestions while searching as in desktop searching
then hashing has to done because then it is easy to report
all the items in the chain of the hash index if the user has
only typed one character instead of searching the whole tree
for the filenames starting with that character.

C. Is offloading always beneficial

We conducted a study to understand whether offloading
is always beneficial. It was found that for large directory
structures, offloading search was a viable option and yielded
significant speedup. But if the number of files is less, a local

search is found to provide speedup. Figure 5 indicates a
threshold, after which offloaded search yielded speedup. As
the number of files is less the current flow increases by a very
small amount from the normal and according to the equation
Energy = V oltage× Current× Time, the voltage is fixed
so this time threshold works as the energy threshold as well.
Using the threshold obtained, a local decision can be made. If

Fig. 5. Threshold after which offloading performs better than local search

the number of files is less than the threshold, a local search
can be done, otherwise an offloaded search can be performed.

VI. CONCLUSIONS AND EXTENSIONS

1) The study revealed that offloaded searching definitely
performs better than local searching after a threshold.

2) Hash based searching is not feasible for smart phones
because it takes a lot of memory.

3) If the user searches in the home directory then hashing
is performing better than tree based search and this can
be used in smart phones like the desktop search option.

4) Tree based searching is useful when user searches in
a particular directory because it is difficult to maintain
hash table for every directory.

5) Reducing the computation load from the smart phones
increases its battery life.

6) Searching can be made context aware so that the results
can be arranged based on context. e.g. if the user is in
office then the results from the office directory will be
displayed on the top. Changing of the context doesn’t
involve any change of directory structure in the phone.
The phone only has to send a signal to the server
whenever its context changes.

7) Users call and message records can also be offloaded
to the server so that large call record histories can be
maintained and the call records wont get lost when the
user changes his sim card.

VII. FUTURE WORK

We will implement this offloaded file search on android
platform. The file manager of the operating system need to
be modified to write to the change log whenever any of the

4



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

four operations mentioned in Section II are done. Also like
the desktop search option a client for android platform will be
developed which will give file name suggestions as the user
types the name and it will ease the user in opening files.

REFERENCES

[1] K. Kumar and Y. Lu, “Cloud Computing for Mobile Users: Can Offload-
ing Computation Save Energy?,” in IEEE Computer, vol. 43, no. 4, pp.
51-56, 2010.

[2] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a computation
offloading framework for smartphones,” in 3rd International Conference
on Mobile Computing, Applications, and Services (MobiCASE), Santa
Clara, CA, USA, 2010.

[3] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing, 2010.

[4] S. Robinson, “Cellphone Energy Gap: Desperately Seeking Solutions,”
Tech. rep., 2009. Strategy Analytics.

[5] Y. Neuvo, “Cellular phones as embedded systems,” in Digest of Technical
Papers, IEEE Solid-State Circuits Conference (ISSCC) vol. 1, pp. 3237,
2004.

5


