Cryptography: The Science of Secrecy

Sergey Gorbunov University of Toronto

"The urge to discover secrets is deeply ingrained in human nature" -- John Chadwick

Communication in the "ideal world"

Communication in the "real world"

What is cryptography?

- From Greek:
- κρυπτός -- "hidden, secret"
- γράφειν (graphein) -- "writing"

German Lorenz cipher machine, used in World War II

Cryptography offers:

- Privacy hide messages from malicious users
- Authentication verify "identity" of the speaker
- Data Integrity validate that data hasn't been changed in transition
- Secure Computation
- Zero Knowledge

Why is cryptography important?

- Military
- Government
- Financial
- Education
- Health Care
- Personal Information

Real life threats

- "cyber attack could take down critical infrastructure and the power grid", (computerworld.com)
- "The International Atomic Energy Agency acknowledged Tuesday that one of its servers had been hacked", Nov 2012 (thestar.com)
- "PayPal, Symantec hacked as Anonymous begins November 5 hacking spree", (zdnet.com)

Privacy

• How can two people securely communicate over insecure communication media?

Privacy

• How can two people securely communicate over insecure communication media?

Privacy

• How can two people securely communicate over insecure communication media?

Cipher: is an algorithm used to scramble messages

- Dates back to the fifth century B.C.
- Greeks and Spartans used it to communicate during military campaigns

- Wooden stick around which a strip of leather is wrapped
- The sender writes the message along the length of the stick and unwinds the strip
- Known as a transposition cipher: letters are transposed in some order

- Easy to break: just find a stick with the same diameter
- In fact, we do not even need a stick to break it!
- Hypothesis: was also used an *authentication* mechanism

- Named after Julius Caesar (100 BC 44 BC)
- Used to send scrambled messages of military significance to his generals

- Each letter is replaced by a letter shifted by three positions in the alphabet
- Known as a substitution cipher

Encryption:

MessageATTACKATDAWNShift by +3CiphertextDWWDFNDWGDZQ

Decryption:

Encryption:

Shift by a random number in $\{1, 2, 3, \dots, 26\}$

Encryption:

MessageATTACKATDAWNShift by +3CiphertextDWWDFNDWGDZQ

Easy to break without even knowing the key!How?

Encryption:

- Substitute characters of the message with another character
- A key is the permutation table

Decryption:

• Reverse the substitutions

		1		1	1	1	1	1	1	1	I	
а	b	С	d	е	f	g	h	i	j	k		m
Μ	Ι	В	Α	U	Ρ	Е	G	Ζ	S	С	Y	W
1					1	1	1	I				1
n	ο	р	q	r	s	t	u	v	w	x	у	z
Q	F	D	R	Т	V	Х	Н	0	K	J	L	Ν
			-		-	-	-	-				

- How can we break this cipher without the key?
- Number of possible keys is

 $26 * 25 * 24 * \dots * 1 = 26! \approx$ 400 million million million million

- English language has certain "properties" that are preserved in the ciphertext
- Note, that each letter is substituted with the same letter each time!
- Hence, most frequent letter in English with also be the most frequent letter in the ciphertext

Polyalphabetic Ciphers

- "Multiple substitution ciphers"
- A key is a collection of substitution keys
- Originally presented by Giovan Battista Bellaso in his 1553 book
- Credit goes to 19th French Diplomat Blaise de Vigenère
- Does not fully hide the English Language Characteristics

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

A
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
A
B

C
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
Y
Z
A
B
C
D
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
Y
Z
A
B
C
D
E
F
G
H
I
J
K
L</td

Vigenère Cipher

Polyalphabetic Ciphers

Enigma, WW2 Broken in 1932

Lorenz, WW2 Broken in 1942

Colossus computer

Finally, a wise man said:

"A cryptosystem should be secure even if everything about the system, except the key, is public knowledge."

-- Auguste Kerckhoffs

Encryption System

Perfect "Symmetric" Encryption

"One-Time Pad is unbreakable" – Shannon 1949

Should you care about "perfect" privacy?

"One-Time Pad is unbreakable" – Shannon 1949

Should you care about "perfect" privacy? Maybe Not.

Should you care about "perfect" privacy? Maybe Not.

Break Encryption System

Solve Hard Problem

What are "hard" problems?

Multiplication

What are "hard" problems?

32319562946749991681

Should you care about "perfect" privacy? Maybe Not.

Shamir, Rivest and Adleman (1978)

Public-Key Encryption (RSA)

Zero-Knowledge: Where is Waldo?

I know where Waldo is!

Zero-Knowledge: Where is Waldo?

I know where Waldo is!

Do you know what a liar is?

Zero-Knowledge: Where is Waldo?

How can I prove that I know where Waldo is without revealing his location?

Today's Research

- Homomorphic Encryption
- Multi-Party Computation
- Digital Signatures
- Functional Encryption
- Hash Functions

Today's Tools

Elliptic Curves

Number/Group Theory

