Bio-Plausible Reinforcement Learning Systems Learn
to Play Atari From Human

Sepehr Abbasi Zadeh
Department of Computer Science
University of Toronto
sepehr@cs.toronto.edu

Abstract

We explore a biologically plausible deep reinforcement learning system by feeding
it the human observations of the experiment world. The main hypothesis is that
the more similar our learning model with the actual human learning model is, the
better the performance should be. We examine this idea by using the AuGMEnT
deep neural network which is a bio-plausible reinforcement system with a focus
on attention and show that we can instruct our agent the general policies of the
environment with just a few episodes of human actions in that world. In addition,
we experiment one non-bio-plausible learning system and show that it cannot earn
the abilities that our bio-plausible method earns under the same settings.

1 Introduction

Recent developments in the deep learning have enabled reinforcement learning (RL) methods to
achieve human level expertise or even surpass their performance in many tasks. New successful
methods have combined deep learning with value function approximation, by using a deep convolu-
tional neural network to represent the action-value (Q) function [5]. Specifically, a new method for
training such deep Q-networks, known as DQN, has enabled RL to learn control policies in complex
environments with high dimensional images as inputs. Subsequent follow-ups such as DDQN method
also use the same logic [9]. In order to evaluate these methods, they usually use a package of Atari
2600 games which has established a unified and reasonable platform that feeds raw pixels to the
learning agents and rewards them for each action regarding the observed environment. This method
is exactly the same as what human agents use to play each game. It means that we can compare these
agents’ learning performance with human.

One of the main goals of these agents is to learn a generalized set of policies for acting in the same
environment, however, in some environments the starting point is deterministic. This determinism
dictates in a way to the agents to learn the sequences and perform well without generalization. To
cope with this issue, they use the human trajectories to sample starting points for feeding to the
agents. This method helps the agents to learn more generalized and robust policies in the deterministic
environments with the cost of loosing some accuracy.

Despite all of the recent achievements in RL, still there are many games that agents cannot beat
human. Figure[I] (based on [8]]) depicts one of these games that an agent cannot receive more than
200 score after 920 hours of training, while a human can achieve higher than 6000 in less than
15 minutes. One natural question that comes to mind is, how our agents perform if we train them
with human actions during their actual learning phase instead of just using them as a randomization
method? Another important question is, what happens if our agents use a bio-plausible learning
method? In this paper, we use a bio-plausible RL method to test the aforementioned questions and we
show that we can instruct our agent the general policies of the environment using few human actions
and choosing a right bio-plausible model. This experiment also suggests that we can compare the

Venture

- - -
i3]
] .
4]
w .
. . .]
L '../t’
P
B R - o i S
- o -e -
- - LR L L -
- T e et e M .
=+ ekttt .=

Game Experience (minutes)

Figure 1: Human learning curves for Venture Atari game. Black horizontal line: random play. Blue
horizontal line: ‘expert’ play. Red horizontal lines: DDQN after 10, 25, and 200 million frames of
game-play experience (46, 115, and 920 hours, respectively)

performance of different bio-plausible LR methods by feeding them human actions. This comparison
is in the sense that which one of them are more compatible with the actual human learning procedure.

2 Related Works

The use of the Atari 2600 emulator as a reinforcement learning platform was introduced by [[1]],
who applied standard reinforcement learning algorithms with linear function approximation and
generic visual features. Subsequently, results were improved by using a larger number of features and
deepened neural networks. There is a thorough survey on the usages of the deep neural networks and
recurrent neural networks in the reinforcement learning systems in [7]] and their different learning
strategies. Q-Learning has been one of the most successful and widely used methods in RL in the
past few years[3, |9, [7]. However, the literature on bio-plausible RL methods is not that vast which
has always been a critical issue from the neuroscientists point of view. In [2]] they define more
biologically-plausible versions of deep representation learning, but they fail to address the direct use
of RL in their method.

3 Bio-Plausible Reinforcement Learning Model

We have used the AuGMEnT (Attention-Gated MEmory Tagging) model suggested by [6] which
focuses on the role of attention on creating synaptic tags for the learning of working memories in
sequential tasks. Here we quote from their paper the benefits of the AuGMEnT model and how it is
bio-plausible:

This method explains the formation of working memories during trial-and-error
learning and that is inspired by the role of attention and neuromodulatory systems
in the gating of neuronal plasticity. AuGMEnT addresses two well-known problems
in learning theory: temporal and structural credit-assignment. The temporal credit-
assignment problem arises if an agent has to learn actions that are only rewarded
after a sequence of intervening actions, so that it is difficult to assign credit to the
appropriate ones. AuGMENT solves this problem like previous temporal-difference
reinforcement learning (RL) theories. It learns action-values (known as Q-values),
i.e. the amount of reward that is predicted for a particular action when executed in
a particular state of the world. If the outcome deviates from the reward-prediction,
a neuromodulatory signal that codes the global reward-prediction error (RPE) gates

synaptic plasticity in order to change the Q-value, in accordance with experimental
findings. The key new property of AuGMEnT is that it can also learn tasks that
require working memory, thus going beyond standard RL models.

AuGMENnT also solves the structural credit-assignment problem of networks with
multiple layers. Which synapses should change to improve performance? AuG-
MERNT solves this problem with an “attentional” feedback mechanism. The output
layer has feedback connections to units at earlier levels that provide feedback to
those units that were responsible for the action that was selected. We propose that
this feedback signal tags relevant synapses and that the persistence of tags (known
as eligibility traces) permits learning if time passes between the action and the
RPE. We will here demonstrate the neuroscientific plausibility of AuGMEnT. A
preliminary and more technical version of these results has been presented at a
conference.

Now we discuss the architecture of this network:

3.1 Input Layer
We show the sensory stimuli at time ¢ with z(¢) and represent each input with three different sensory
units as follows:
x(t) (regular input units)
27 (t) = ReLU (z(t) — x(t — 1)) (transient + input units)
2~ (t) = ReLU (z(t — 1) — x(¢t)) (transient - input units)

where ReLU is the Rectified Linear Unit. This encoding helps us to interpret the amount of change
in each stimuli than before.

3.2 Association Layer

This layer models the association cortex and contains regular units which are connected to the regular
input units as well as some memory units. Memory units are fully connected to the transient input
units and get activated using a sigmoidal activation function.

3.3 Q-value Layer

This layer receives input from the association layer through plastic connections. Its task is to compute
action-values (i.e. Q-values) for every possible action. Specifically, a Q-value unit aims to represent
the (discounted) expected reward for the remainder of a trial if the network selects an action a in the
current state.

3.4 Action Layer

This final layer represents the actions and it is activating using the winner-gets-all method.

3.5 Learning

Learning in the network is controlled by two factors that gate plasticity: a global neuromodulatory
signal and the attentional feedback signal. Once an action is selected, the unit that codes the winning
action feeds back to earlier processing levels to create synaptic tags, also known as eligibility traces
on the responsible synapses. Tagging of connections from the association layer to the motor layer
follows a form of Hebbian plasticity: the tag strength depends on presynaptic activity and postsynaptic
activity after action selection and tags thus only form at synapses onto the winning unit. For the exact
mathematical formulation of the learning method please refer to the original AuGMENT paper [6]].

4 Experiments

In this section we describe our experiment settings and results.

Figure 2: The environment of the Lunar Lander game.

120-
o 110~ b
o] J °
8 100 °

90 -

80- . 1 1 1

10.0 125 15.0
minute

Figure 3: Best score of each human player (and its corresponding time) in the Lunar Lander game.

4.1 Baselines

In order to test our ideas we used the AuGMENT system that has been introduced in section [3]as our
bio-plausible reinforcement learning system. Also we used one non-bio-plausible implementation,
CMA (Covariance Matrix Adaptation)[4] as our baseline. The CMA method uses a randomized
black box optimization method to optimize the parameters of a neural network using the rewards that
achieves for running each episode. The parameters of the networks of both architectures were chosen
carefully so that we had the same number of parameters in each network to be learned.

4.2 Environment

The task that we have used for evaluating our reinforcement learning systems is the Lunar Lander
game from the OpenAlI gym platform[3]] (see FigureZ). The goal of this game is to land a lander on a
segmented surface between two fixed flags. This lander has three engines consisting of a main engine
and two side engines. The side engines can move you right or left by their force and the main engine
can help you flight upward and this is the only engine that costs you. This means that you have four
possible actions in each time-step: to move right, left, upward, or to do nothing which causes the
gravity to move the lander downward.

4.3 Dataset

One of the crucial demands of our experiment was the actions of the real players who were learning
how to play Lunar Lander. We asked five people to play for at least 20 minutes and they were only
instructed the four possible actions of the game. They could see their total reward after each action in
the same window that they were playing. After playing a few episodes, they could learn the physics
of the lander movement and the rewarding strategy of the game. For example they understood that
they can get more rewards by keeping the lander balanced and also by staying in the landing area. In
addition, they understood that using the main engine reduces from their reward.

We recorded all the environment and the player responses so that we could simulate them again
while we were training our neural networks. We collected more than 36000 frames from each player.
Figure |3| shows the best score that each player achieved during his play.

200-

8 100~ Initialization

g 0- Random

o -100-

o 200 - === Human
-300- |

0 1000 2000
Episodes

Figure 4: Comparison between the random initialization of the AuGMEnT network and initializing it
with human actions.

4.4 Results

Now we are ready to study the performance of our bio-plausible agent under different assumptions.

4.4.1 Policy Learning

In this experiment we want to show that our AuGMEnT agent can learn the general policies of the
environment just by using the human data. One of the main policies was not to land with high speed.
To test this ability, we changed the gravity force of the environment and used the human data of only
one person for training to see whether the agent decides to use its main engine or not. We found
out that our agent uses its main engine to reduce its speed when it approaches the ground. However,
it collided with ground with a high speed as this task was not what it was trained for. We should
mention that the CMA method could not solve this task.

In another experiment, we changed the forces of the side engines to test the balance ability of our
agent. Our agent responded quickly to this change and used its side engines more carefully to keep
itself balanced.

One of the tasks that our agent could not handle was the landing area experiment. The aim of this task
was to test the agents’ consciousness of the environment. The agent was not sensitive to the landing
area and it lost the possible rewards that it could get by changing its position toward the landing area.

4.4.2 Solving the Game

Following the OpenAl gym platform, we consider Lunar Lander as solved when the agent obtains an
average reward of at least 200 over 100 consecutive episodes. Now we want to compare the solving
time of the AuGMENT when it uses its random initialization and when it uses human data. It worth
mentioning that none of our human observers could achieve this high standard of 200 score as it
needs high frequency responses when the lander approaches the ground, however, the our computer
agents can satisfy this need after a while of playing.

Figure [d]illustrates the difference between the random initialization of the neural network and human
initialization of it. The human initialization accuracy is high in its 200 starting episodes because
we have simulated the exact results of a single human player evaluations. Although the human
initialization method traps in a local minima for a while, it solves the problem faster. It should be
mentioned that this result was not consistent with initializing by other human players since they could
not solve as fast as this player. Also, this player was the one who ranked fourth among all the players.
It might be justified by the fact that he was a good observer of the environment (please see Figure 3]
again to see that he has achieved his high score in the last episodes of his playing).

The performance of the CMA method can be seen in Figure [5] which shows that it needs 58344
episodes to solve the game. This figure is the smoothed version of the real performance which means
it hides the fluctuations that happen even in the final episodes (as an example, we had some records
around -100 even in the final 1000 episodes). One thing that both CMA and AuGMEnT share when
they start with random initialization is the negative initial rewards. This is pretty normal as they
should observe the environment in order to learn how they can maximize their reward. Even though
our agent needs to observe when it uses the human data, we can see that the negative rewards are

200~
100-
0_

Rewards

-100-

0 20000 40000 6000(
Episodes

Figure 5: CMA solving progress.

much less than what we faced in random initialization which is justifiable by the performance of the
human learner.

5 Conclusion

In this paper we study the learning strategies of a biologically-plausible agent and show that we can
get acceptable results such as learning the general policies of the environment and faster solving of
the games by initializing our agents with human actual actions in similar situations. Although these
studies show a defensible method for training our bio-plausible networks, they cannot be used to
rule out the possibility that these methods can be beneficial for non-bio-plausible methods as we
have only tested them against one method (CMA). On the same side, we should test these studies
with more bio-plausible agents in various tasks with different demands which seems like a promising
direction for future studies.

References

[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 2012.

[2] Y. Bengio, D.-H. Lee, J. Bornschein, T. Mesnard, and Z. Lin. Towards biologically plausible
deep learning. arXiv preprint arXiv:1502.04156, 2015.

[3] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[4] N. Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[6] J. O. Rombouts, S. M. Bohte, and P. R. Roelfsema. How attention can create synaptic tags for the
learning of working memories in sequential tasks. PLoS Comput Biol, 11(3):e1004060, 2015.

[7] J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85-117,
2015.

[8] P. A. Tsividis, T. Pouncy, J. L. Xu, J. B. Tenenbaum, and S. J. Gershman. Human learning in
atari. 2017.

[9] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double g-learning. In
AAAI pages 2094-2100, 2016.

	Introduction
	Related Works
	Bio-Plausible Reinforcement Learning Model
	Input Layer
	Association Layer
	Q-value Layer
	Action Layer
	Learning

	Experiments
	Baselines
	Environment
	Dataset
	Results
	Policy Learning
	Solving the Game

	Conclusion

