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So You Want To Do Formal Verification

Basic Idea: 

Use formal verification to prove that given a method's preconditions, the method satisfies its postconditions after executing its code (i.e. pre + code ( post)

Steps Involved:

1. Add assertions in important places in code (e.g. inv assertion in loops, term at end, etc.)

2. Label code fragments between major assertions (e.g. init, body, final, etc.)

3. Outline all possible transitions from assertion to assertion through fragments of code, starting from the preconditions and stopping at the postconditions (e.g. pre + init ( inv, 

invbefore + Enter + body ( invafter, etc.)

Also include a bounding function for all loops, to prove that the loops actually reach a stopping condition (integer, non-negative, decreasing -- see slide 89)

4. For each transition, use the assertions from the left side of the transition to prove that the assertion on the right side of the transition is correct in all cases.

Helpful Hints:

· When you are trying to figure out what assertions to write (or how the notes arrived at their assertions), take your cues from the pre- and postconditions. For example, your postconditions will likely some clue as to what your term assertions should be, and your term assertions should give some clue as to what conditions your inv assertions should maintain. Likewise, your preconditions will indicate what kind of initial values your inv assertion might have.

· If there's a statement you want to make in your proof but you're not sure you're allowed to, prove it on the side as a lemma, and refer to it when necessary (like a helper method).

· If the method you're verifying calls another method, assume that the called method works according to its pre- and postconditions, unless explicitly stated otherwise.

· Don’t worry if it doesn't work out on the first try, because it is expected that you will need to revise your proof occasionally in order to make it work.

Ready? Let's rock 'n' roll….

Verification Example #1: product

Want to prove:  pre + code ( post

Must prove:  
1.   pre + init ( inv

2. invbefore + Enter + body ( invafter
3. inv + Exit ( term

4. term + final ( post

5. Bounding Function

Proofs:

1. From pre:
multiplier ( 0

From init:
I=0, J=0

Show inv: 
- Since multiplier ( 0 and I=0, multiplier ( I ( 0 after init

- Since I=0 and J=0, J=0=I*this.intValue()
- Therefore, pre + init ( inv

2.
From inv:
0 ( Ibefore ( multiplier, Jbefore = Ibefore*this.intValue()


From Enter:
Ibefore != multiplier


From body:
Jafter = Jbefore + this.intValue(), Iafter = Ibefore + 1


Show inv: 
- Since 0 ( Ibefore ( multiplier and Ibefore != multiplier, 0 ( Ibefore < multiplier. 



Also, since Iafter = Ibefore + 1, we can conclude that 0 ( Iafter ( multiplier


- Since Jafter = Jbefore + this.intValue() and Jbefore = Ibefore*this.intValue(),



Jafter = Ibefore*this.intValue() + this.intValue()



Jafter = (Ibefore + 1)*this.intValue()



Jafter = Iafter*this.intValue()



- Therefore, invbefore + Enter + body ( invafter

3.
From inv:
0 ( I ( multiplier, J=I*this.intValue()


From Exit:
I=multiplier


Show term:
- Since I=multiplier from Exit, and J=I*this.intValue(), 



Therefore, inv + exit ( term

4.
From term:
I=multiplier, J=I*this.intValue()


Show post:
- 
Substituting I into J, we get J=multiplier*this.intValue()
· From final, multiplier*this.intValue() is returned

· Therefore, post is satisfied

5.
Bounding Function  (prove that while loop exits)

· Let f =multiplier-I  (integer operation)

· Since multiplier ( 0 and I=0 from init, then multiplier ( I 


and f ( 0 (non-negative)

· Since I increments on every iteration, f is steadily decreasing 


from multiplier to zero ( stopping condition

· Therefore, since there is a non-negative integer function f that 


decreases to a stopping condition at 0, the while loop will terminate

Therefore,  pre + code ( post

Formal Verification Example #2: locate

Want to prove:  pre + code ( post

Must prove:  
1.   pre + init ( inv

2. invbefore + Enter + body ( invafter
3. inv + Exit ( term

4. term + final ( post

5. Bounding Function

Proofs:


First, a lemma:
For two integers x and y such that x < y, 


x ( (x+y)/2 < y, when "/" implies integer division.

Proof of lemma:
If x < y then y(x+1, and (x+y)/2 ( (x+x+1)/2


But since (2x+1)/2 = x, (x+y)/2 ( x


If x < y then x ( y-1, and (x+y)/2 ( (y-1+y)/2


But since (2y-1)/2 < y, (x+y)/2 < y

1. From pre:
this is an ascending sequence

From init:
lo=0, hi=size(), mid=(lo + hi) / 2

Show inv: 
- Since this is not changed by init, this is still an ascending sequence at inv

- mid is set to (lo + hi) / 2 in the for loop initialization

- Since hi=size() ( 0=lo, this implies that 0 ( lo ( hi ( size()
- this[0…lo-1]<target and this[hi…size()-1](target are both vacuously true,

  since lo=0 and hi=size()

- Therefore, pre + init ( inv

2.
From inv:
this is an ascending sequence, midbefore=(lo + hi) / 2, 



0 ( lobefore ( hibefore ( size(), this[0…lobefore-1]<target, 



this[hibefore…size()](target


From Enter:
lobefore < hibefore

From body:
two cases:  
i) if statement is true  (this[midbefore]<target, loafter = midbefore+1)





ii) if statement is not true  (this[midbefore](target, hiafter = midbefore)


Show inv (i): 
- Since this has not been changed, this is still an ascending sequence.



- The last portion of for statement sets midafter=(loafter+hiafter)/2


- Since this[midbefore]<target and loafter = midbefore+1, this[loafter-1] <target



  Also, since this is in ascending order, then this[0…loafter-1]<target


- Since hiafter=hibefore, this[hiafter…size()](target is unchanged.



- Since midbefore=(lobefore+hibefore)/2 and lobefore<hibefore from Enter,



   loafter=midbefore+1(hibefore from lemma. 



   Since hibefore=hiafter, loafter>midbefore(0 and hiafter=hibefore ( size(), 



   we conclude that 0 ( loafter ( hiafter ( size()


- Therefore, invbefore + Enter + body ( invafter


Show inv (i): 
- Since this has not been changed, this is still an ascending sequence.



- The last portion of for statement sets midafter=(loafter+hiafter)/2


- Since this[midbefore](target and hiafter = midbefore, this[hiafter](target



  Also, since this is in ascending order, then this[hiafter…size()](target


- Since loafter=lobefore, this[0…loafter]<target is unchanged.



- Since midbefore=(lobefore+hibefore)/2 and lobefore<hibefore from Enter, 



   loafter=lobefore(midbefore=hiafter from lemma. 



   Since hiafter<hibefore(size() and loafter=lobefore ( 0, 



   we conclude that 0 ( loafter ( hiafter ( size()


- Therefore, invbefore + Enter + body ( invafter

3.
From inv:
0 ( lo ( hi ( size(), this[0…lo]<target, this[hi…size()](target


From Exit:
hi ( lo


Show term:
- Since lo ( hi and hi ( lo, hi=lo. Substituting into inv properties, we get 



0 ( lo ( size(), this[0…lo]<target, and this[lo…size()](target


Therefore, inv + exit ( term

4.
From term:
0 ( lo ( size(), this[0…lo]<target, and this[lo…size()](target


Show post:
-  From final, specified index is returned

· Therefore, post is satisfied

5.
Bounding Function  (prove that while loop exits)

· Let f =hi-lo  (integer operation)

· Since hi=size() and lo=0 after init, then f ( 0 at start of body  (non-negative)

· On every iteration of loop, either 

i) hiafter-loafter = hibefore-(midbefore+1) < hibefore - lobefore
ii) hiafter-loafter = midbefore-loafter < hibefore-lobefore
· Therefore, since there is a non-negative integer function f that 


decreases to a stopping condition at 0, the while loop will terminate

Therefore,  pre + code ( post
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