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The Basics

• Can we use the sounds a keyboard makes as the user types 
to infer the sequence of keys pressed?

• Obvious (nefarious) application: eavesdropping and password 
theft

• Asonov and Agrawal (IBM, 2004) used a similar approach, but 
they required labeled training data

• Other types of computer emanations previously explored: 

• CRT/LCD electromagnetic radiation (Cryptonomicon!)

• Acoustics from printers and even CPU’s! 
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Figure 2: Overview of the attack.

whether a user is typing English text, in practice we can record

continuously, try to apply the attack, and see if meaningful text is

recovered.

Figure 2 presents a high level overview of the attack.

The first phase (Figure 2(a)) trains the recognizer:

1. Feature extraction. We use cepstrum features, a technique

developed by researchers in voice recognition [13]. As we

discuss below in Section 4.1, cepstrum features give better

results than FFT.

2. Unsupervised key recognition using unlabeled training data.

We cluster each keystroke into one of K classes, using stan-

dard data clustering methods. K is chosen to be slightly

larger than the number of keys on the keyboard.

As discussed in Section 1, if these clustering classes corre-

spond exactly to different keys in a one-to-one mapping, we

can easily determine the mapping between keys and classes.

However, clustering algorithms are imprecise. Keystrokes of

the same key are sometimes placed in different classes and

conversely keystrokes of different keys can be in the same

class. We let the class be a random variable conditioned on

the actual key typed. A particular key will be in each class

with a certain probability. In well clustered data, probabili-

ties of one or a few classes will dominate for each key.

Once the conditional distributions of the classes are deter-

mined, we try to find the most likely sequence of keys given

a sequence of classes for each keystroke. Naively, one might

think picking the letter with highest probability for each key-

stroke yields the best estimation and we can declare our job

done. But we can do better. We use a Hidden Markov Mod-

els (HMM) [7]. HMMs predict a stochastic process with

state. They capture the correlation between keys typed in

sequence. For example, if the current key can be either “h”

or “j” (e.g. because they are physically close on the key-

board) and we know the previous key is “t”, then the current

key is more likely to be “h” because “th” is more common

than “tj”. Using these correlations, both the keys and the

key-to-class mapping distributions are efficiently estimated

using standard HMM algorithms. This step yields accuracy

rates of slightly over 60% for characters, which in turn yields

accuracy rates of over 20% for words.

3. Spelling and grammar checking. We use dictionary-based

spelling correction and a simple statistical model of English

grammar. These two approaches, spelling and grammar, are

combined in a single Hidden Markov Model. This increases

the character accuracy rate to over 70%, yielding a word ac-

curacy rate of about 50% or more. At this point, the text is

quite readable (see Section 4.3).

4. Feedback-based training. Feedback-based training produces

a keystroke classifier that does not require an English spelling

and grammar model, enabling random text recognition, in-

cluding password recognition. We use the previously ob-

tained corrected results as labeled training samples. Note

that even our corrected results are not 100% correct. We

use heuristics to select words that are more likely to be cor-

rect. For examples, a word that is not spell-corrected or one

that changes only slightly during correction in the last step is

more likely to be correct than those that had greater changes.

In our experiments, we pick out those words with fewer than

1/4 of characters corrected and use them as labeled samples

to train a classifier. The recognition phase (Figure 2(b), de-

scribed below) recognizes the training samples again.This

second recognition typically yields a higher keystroke accu-

racy rate. We use the number of corrections made in the

spelling and grammar correction step as a quality indicator.

Fewer corrections indicate better results. The same feedback

procedure is done repeatedly until no significant improve-

ment is seen. In our experiments, we perform three feedback

cycles. Our experiments indicate both linear classification

and Gaussian mixtures perform well as classification algo-

rithms [7], and both are better than neural networks as used

in [1]. In our experiments, character accuracy rates (with-

out a final spelling and grammar correction step) reach up to

92%.

The second phase, the recognition phase, uses the trained key-

stroke classifier to recognize new sound recordings. If the text con-

sists of random strings, such as passwords, the result is output di-

Overview of the Procedure
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Keystroke Feature Extraction
• Key push to release period: ~100 

ms, larger period between 
consecutive key presses

• Determine start time of key 
presses by thresholding signal 

• Data over 12KHz ignored

• Mel-Frequency Cepstral 
Coefficients of push peak part of 
signal determined (10ms sliding 
window)

• Only consider 30 keys: a-z, 
space, enter, comma, period
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Figure 3: The audio signal of a keystroke.
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Figure 5: The Hidden Markov Model for unsupervised key recognition.

Ideally, we want a set of values that maximize the likelihood, so we

are performing a type of Maximum Likelihood Estimation [11].

We use the EM algorithm [4] for parameter estimation. It goes

through a number of rounds, alternately improving qi and η. The
output of this step is the η matrix. After that, the Viterbi algorithm
[11] is used to infer qi, i.e. the best sequence of keys.

EM is a randomized algorithm. Good initial values make the

chance of getting satisfactory results better. We found initializing

the row in η corresponding to the Space key to an informed guess
makes the EM results more stable. This is probably because spaces

delimit words and strongly affect the distribution of keys before and

after the spaces. This task is performed manually. Space keys are

easy to distinguish by ear in the recording because of the key’s dis-

tinctive sound and frequency of use. We mark several dozen space

keys, look at the class that the clustering algorithm assigns to each

of them, calculate their estimated probabilities for class member-

ship, and put these into η. This approach yields good results for
most of the runs. However, it is not necessary. Even without space

keys guessing, running EMwith different random initial values will

eventually yield a good set of parameters. All other keys, including

punctuation keys are initialized to random values in η. We believe
that initialization of η can be completely automated, and hope to
explore this idea in the future work.

4.3 Error Correction with a Language Model
As we discussed in Section 3, error correction is a crucial step

in improving the results. It is used in unsupervised training, super-

vised training and also recognition of English text.

4.3.1 Simple Probabilistic Spell Correction

Using a spelling checker is one of the easiest ways to exploit

knowledge about the language. We ran spell checks using Aspell

[2] on recognized text and found some improvements. However

stock spell checkers are quite limited in the kinds of spelling errors

they can handle, e.g. at most two letters wrong in a word. They are

designed to cope well with the common errors that human typists

make, not the kinds of errors that acoustic emanation classifiers

make. It is not surprising that their utility here is quite limited.

Fortunately, there are patterns in the errors that the keystroke

classifier makes. For example, it may have difficulty with several

keys, often confusing one with another. Suppose we know the cor-

rect plaintext. (This is of course not true, but as we iterate the

algorithm, we will predict the correct plaintext with increasing ac-

curacy. Below, we address the case of unsupervised step, where we

know no plaintext at all.) Under this assumption, we have a simple

method to exploit these patterns. We run the keystroke classifier on

some training data and record all classification results, including

errors. With this, we calculate a matrix E (sometimes called the

confusion matrix in the machine learning literature),

Eij = p̂(y = i|x = j) =
Nx=j,y=i

Nx=j
(1)

where p̂(·) denotes estimated probability, x is the typed key and
y is the recognized key, Nx=j,y=i is the number of times x =
j, y = i is observed. Columns of E give the estimated conditional

probability distribution of y given x.
Assume that letters are independent of each other and the same

is true for words. (This is a false assumption because there is much

dependence in natural languages, but works well in practice for our

experiments.) We compute the conditional probability of the recog-

nized wordY (the corresponding string returned by the recognizer,

not necessarily a correct word) given each dictionary wordX.
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Ideally, we want a set of values that maximize the likelihood, so we

are performing a type of Maximum Likelihood Estimation [11].

We use the EM algorithm [4] for parameter estimation. It goes

through a number of rounds, alternately improving qi and η. The
output of this step is the η matrix. After that, the Viterbi algorithm
[11] is used to infer qi, i.e. the best sequence of keys.

EM is a randomized algorithm. Good initial values make the

chance of getting satisfactory results better. We found initializing

the row in η corresponding to the Space key to an informed guess
makes the EM results more stable. This is probably because spaces

delimit words and strongly affect the distribution of keys before and

after the spaces. This task is performed manually. Space keys are

easy to distinguish by ear in the recording because of the key’s dis-

tinctive sound and frequency of use. We mark several dozen space

keys, look at the class that the clustering algorithm assigns to each

of them, calculate their estimated probabilities for class member-

ship, and put these into η. This approach yields good results for
most of the runs. However, it is not necessary. Even without space

keys guessing, running EMwith different random initial values will

eventually yield a good set of parameters. All other keys, including

punctuation keys are initialized to random values in η. We believe
that initialization of η can be completely automated, and hope to
explore this idea in the future work.

4.3 Error Correction with a Language Model
As we discussed in Section 3, error correction is a crucial step

in improving the results. It is used in unsupervised training, super-

vised training and also recognition of English text.

4.3.1 Simple Probabilistic Spell Correction

Using a spelling checker is one of the easiest ways to exploit

knowledge about the language. We ran spell checks using Aspell

[2] on recognized text and found some improvements. However

stock spell checkers are quite limited in the kinds of spelling errors

they can handle, e.g. at most two letters wrong in a word. They are

designed to cope well with the common errors that human typists

make, not the kinds of errors that acoustic emanation classifiers

make. It is not surprising that their utility here is quite limited.

Fortunately, there are patterns in the errors that the keystroke

classifier makes. For example, it may have difficulty with several

keys, often confusing one with another. Suppose we know the cor-

rect plaintext. (This is of course not true, but as we iterate the

algorithm, we will predict the correct plaintext with increasing ac-

curacy. Below, we address the case of unsupervised step, where we

know no plaintext at all.) Under this assumption, we have a simple

method to exploit these patterns. We run the keystroke classifier on

some training data and record all classification results, including

errors. With this, we calculate a matrix E (sometimes called the

confusion matrix in the machine learning literature),

Eij = p̂(y = i|x = j) =
Nx=j,y=i

Nx=j
(1)

where p̂(·) denotes estimated probability, x is the typed key and
y is the recognized key, Nx=j,y=i is the number of times x =
j, y = i is observed. Columns of E give the estimated conditional

probability distribution of y given x.
Assume that letters are independent of each other and the same

is true for words. (This is a false assumption because there is much

dependence in natural languages, but works well in practice for our

experiments.) We compute the conditional probability of the recog-

nized wordY (the corresponding string returned by the recognizer,

not necessarily a correct word) given each dictionary wordX.
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• Use soft K-Means to initially cluster MFCC’s over 50 classes

• Use a simple bigram HMM model where the key label 
transition matrix             is based on a corpus of english text

•                        is learned using EM 

• Viterbi decoding to infer sequence of key labels

qi = key label, yi = cluster class, Aqi−1,qi = bigram character matrix

ηqi,yi = p(yi|qi)

Aqi−1,qi

6



Error Correction Using a 
Language Model

• To improve performance, recognized key label sequence is split 
into words and refined using a trigram HMM model

• Emission probabilities are defined by the (regularized) 
confusion matrix:

... ... ... ...
v0 v1 v2 vT

wTw2w1w0

”for”

”fur” ”examplf”

”example” ”the”

”tbe”

Figure 6: Trigram language model with spell correction.

recording length number of words number of keys

Set 1 12m17s 409 2514

Set 2 26m56s 1000 5476

Set 3 21m49s 753 4188

Set 4 23m54s 732 4300

Table 1: Statistics of each test set.

In our second experiment, we recorded keystrokes from three

additional models of keyboards (see Section 5.1.2). The same key-

stroke recognition experiments are run on these recordings and re-

sults compared. We use identical texts in this experiments on all

these keyboards.

5.1 English Text Recognition

5.1.1 A Single Keyboard

In our experiments, we use linear classification to train the key-

stroke classifier. In Table 2, the result after each step is shown in

separate rows. First, the unsupervised learning step (Figure 2(a))

is run. In this unsupervised step, the HMM model shown in Fig-

ure 5 is trained using EM algorithm described above2. The output

from this step is the recovered text from HMM/Viterbi unsuper-

vised learning, and the text after language model correction. These

two are denoted as keystrokes and language respectively in the ta-

ble. Then the first round of feedback supervised training produces

a new classifier. The iterated corrected text from this classifier (and

corresponding text corrected by the language model) are shown

in the row marked “1st supervised feedback”. We perform three

rounds of feedback supervised learning. The bold numbers show

our final results. The bold numbers in the “language” row are the

final recognition rate we achieve for each test set. The bold num-

bers in the “keystroke” row are the recognition rates of the key-

stroke classifier, without using the language model. These are the

recognition rates for random or non-English text.

The results show that:

• The language model correction greatly improves the correct
recovery rate for words.

• The recover rates in quiet environment (sets 1 and 2) are
slightly better that those in noisy environment (sets 3 and

4). But the difference becomes smaller after several rounds

of feedback.

• Correctness of the keystroke position detection affects the
results. The recovery rate in set 3 is better than set 4 because

of the keystroke location mistakes included in set 4.

2Since EM algorithm is a randomized algorithm, it might get stuck
in local optima sometimes. To avoid this, in each of these experi-
ments, we run the same training process eight times and use results
from the run with the highest log-likelihood.
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Figure 7: Length of recording vs. recognition rate.

• When keystroke positions have been corrected after several
rounds of feedback, we achieve an average recovery rate of

87.6% for words and 95.7% for characters.

To understand how different classification methods in the super-

vised training step affect the results, we rerun the same experiment

on set 1, using different supervised classification methods. Table 3

shows our results. The best method is linear classification, then

Gaussian mixtures, and then neural networks. Experiments with

other data sets give similar results.

In the experiments above, we use recordings longer than 10 min-

utes. To discover the minimal amount of training data needed for

reasonable results, we take the first data set (i.e. “Set 1” above) and

use only the first 4, 5, 7 and 10 minutes of the 12-minute recording

for training and recognition. Figure 7 shows the recognition results

we get. This figure suggests that at least 5 minutes of recording

data are necessary to get good results for this particular recording.

5.1.2 Multiple Keyboards

To verify that our approach applies to different models of key-

boards, we perform the keystroke recognition experiment on differ-

ent keyboards, using linear classification in the supervised training

step. The models of the keyboards we use are:

7

p(vi|wi) =
|wi|

∏
j=1

Ev j ,w j

Ex,y =
Nx,y

Nx
, where x = typed key, y = recognized key

vi = recognized word, wi = corrected word, Awi−2,wi−1,wi = trigram word matrx
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Supervised Training and 
Recognition

• Language corrected results are used as labeled 
training samples to build a supervised classifier

• Only words with fewer than 1/4 of their 
characters “corrected” are used.

• 3 classifiers explored: 2-layer Neural Net, LDA 
classifier, Mixture of Gaussians

• Original (unlabeled) input features are fed back 
through the classifier, language corrected, then 
used as further labeled training data to improve 
the classifier

8
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Results
Set 1 Set 2 Set 3 Set 4

words chars words chars words chars words chars

unsupervised keystrokes 34.72 76.17 38.50 79.60 31.61 72.99 23.22 67.67

learning language 74.57 87.19 71.30 87.05 56.57 80.37 51.23 75.07

1st supervised keystrokes 58.19 89.02 58.20 89.86 51.53 87.37 37.84 82.02

feedback language 89.73 95.94 88.10 95.64 78.75 92.55 73.22 88.60

2nd supervised keystrokes 65.28 91.81 62.80 91.07 61.75 90.76 45.36 85.98

feedback language 90.95 96.46 88.70 95.93 82.74 94.48 78.42 91.49

3rd supervised keystrokes 66.01 92.04 62.70 91.20 63.35 91.21 48.22 86.58

feedback language 90.46 96.34 89.30 96.09 83.13 94.72 79.51 92.49

Table 2: Text recovery rate at each step. All numbers are percentages.

Neural Network Linear Classification Gaussian Mixtures

words chars words chars words chars

1st supervised keystrokes 59.17 87.07 58.19 89.02 59.66 87.03

feedback language 80.20 90.85 89.73 95.94 78.97 90.45

2nd supervised keystrokes 70.42 90.33 65.28 91.81 66.99 90.25

feedback language 81.17 91.21 90.95 96.46 80.20 90.73

3rd supervised keystrokes 71.39 90.81 66.01 92.04 69.68 91.57

feedback language 81.42 91.93 90.46 96.34 83.86 93.60

Table 3: Recognition rate of classification methods in supervised learning. All numbers are percentages.

• Keyboard 1: DellTM Quietkey R© PS/2 keyboard, manufac-

turer part number 2P121, in use for about 6 months.

• Keyboard 2: DellTM Quietkey R© PS/2 keyboard, manufac-

turer part number 035KKW, in use for more than 5 years.

• Keyboard 3: DellTM Wireless keyboard, manufacturer part
number W0147, new.

The same document (2273 characters) is typed on all three key-

boards and the sound of keystrokes is recorded. Each recording

lasts about 12 minutes. In these recordings, the background ma-

chine fan noise is noticeable. While recording from the third key-

board, we get several seconds of unexpected noise from a cellphone

nearby. The results are shown in Table 4. Results in the table show

that the first and the second keyboards achieve higher recognition

rate than the third one. But in general, all keyboards are vulnerable

to the attack we present in this paper.

5.2 Random Text Recognition and Password
Stealing

We used the keystroke classifier trained by set 1 to mount pass-

word stealing attacks. All password input recorded in our experi-

ment are randomly generated sequences, not user names or dictio-

nary words. The output of the keystroke classifier for each key-

stroke is a set of posterior probabilities:

p(this keystroke has label i|observed-sound), i = 1, 2, . . . , 30.

Given these conditional probabilities, one can calculate probabili-

ties for all sequences of keys being the real password. These se-

quences are sorted by their probabilities from the largest to the

smallest. This produces a candidate list and the attacker can try

one-by-one from the top to the bottom. To measure the efficacy

of the attack, we use the position of the real password in this list.

A user inputs 500 random passwords each of length 5, 8 and 10.

Figure 8 shows the cumulative distribution function of the posi-

tion of the real password. For example, with twenty trials, 90% of

5-character passwords, 77% of 8-character passwords and 69% of

10-character passwords are detected. As Figure 8 also shows, with

seventy-five trials, we can detect 80% of 10-character passwords.
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als required by the attacker.

6. DISCUSSION

6.1 Attack Improvements
The current attack does not take into account special keys such

as Shift, Control, Backspace and Capslock. There are two issues

here. One is whether keystrokes of special keys are separable from

other keystrokes at signal processing time. Our preliminary exper-

iments suggest this is possible; push peaks of keystrokes are easily

separable in the recordings we looked at. The other issue is how

modifier keys such as Shift fit into spelling correction scheme. We

believe ad hoc solutions such as replacing Shift or Capslock keys

with spaces will work. Backspace is also important. The ideal so-

lution would be to figure out what the final text is after applying

the backspaces. But that probably will complicate the error correc-

tion algorithms. So one could just recognize these keys and leave

the “word” before and after out of error-correction because they

are probably not full words. Here a bit of human aid could be use-
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with spaces will work. Backspace is also important. The ideal so-

lution would be to figure out what the final text is after applying

the backspaces. But that probably will complicate the error correc-

tion algorithms. So one could just recognize these keys and leave

the “word” before and after out of error-correction because they

are probably not full words. Here a bit of human aid could be use-
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Results Continued

• Results shown using set 1, LDA, 3 feedback 
iterations

• 90% of 5 character passwords (random text), can 
be guessed in < 20 attempts, 80% of 10 character 
passwords in < 75 attempts!

Set 1 Set 2 Set 3 Set 4

words chars words chars words chars words chars

unsupervised keystrokes 34.72 76.17 38.50 79.60 31.61 72.99 23.22 67.67

learning language 74.57 87.19 71.30 87.05 56.57 80.37 51.23 75.07

1st supervised keystrokes 58.19 89.02 58.20 89.86 51.53 87.37 37.84 82.02

feedback language 89.73 95.94 88.10 95.64 78.75 92.55 73.22 88.60

2nd supervised keystrokes 65.28 91.81 62.80 91.07 61.75 90.76 45.36 85.98

feedback language 90.95 96.46 88.70 95.93 82.74 94.48 78.42 91.49

3rd supervised keystrokes 66.01 92.04 62.70 91.20 63.35 91.21 48.22 86.58

feedback language 90.46 96.34 89.30 96.09 83.13 94.72 79.51 92.49

Table 2: Text recovery rate at each step. All numbers are percentages.

Neural Network Linear Classification Gaussian Mixtures

words chars words chars words chars

1st supervised keystrokes 59.17 87.07 58.19 89.02 59.66 87.03

feedback language 80.20 90.85 89.73 95.94 78.97 90.45

2nd supervised keystrokes 70.42 90.33 65.28 91.81 66.99 90.25

feedback language 81.17 91.21 90.95 96.46 80.20 90.73

3rd supervised keystrokes 71.39 90.81 66.01 92.04 69.68 91.57

feedback language 81.42 91.93 90.46 96.34 83.86 93.60

Table 3: Recognition rate of classification methods in supervised learning. All numbers are percentages.

• Keyboard 1: DellTM Quietkey R© PS/2 keyboard, manufac-

turer part number 2P121, in use for about 6 months.

• Keyboard 2: DellTM Quietkey R© PS/2 keyboard, manufac-

turer part number 035KKW, in use for more than 5 years.

• Keyboard 3: DellTM Wireless keyboard, manufacturer part
number W0147, new.

The same document (2273 characters) is typed on all three key-

boards and the sound of keystrokes is recorded. Each recording

lasts about 12 minutes. In these recordings, the background ma-

chine fan noise is noticeable. While recording from the third key-

board, we get several seconds of unexpected noise from a cellphone

nearby. The results are shown in Table 4. Results in the table show

that the first and the second keyboards achieve higher recognition

rate than the third one. But in general, all keyboards are vulnerable

to the attack we present in this paper.

5.2 Random Text Recognition and Password
Stealing

We used the keystroke classifier trained by set 1 to mount pass-

word stealing attacks. All password input recorded in our experi-

ment are randomly generated sequences, not user names or dictio-

nary words. The output of the keystroke classifier for each key-

stroke is a set of posterior probabilities:

p(this keystroke has label i|observed-sound), i = 1, 2, . . . , 30.

Given these conditional probabilities, one can calculate probabili-

ties for all sequences of keys being the real password. These se-

quences are sorted by their probabilities from the largest to the

smallest. This produces a candidate list and the attacker can try

one-by-one from the top to the bottom. To measure the efficacy

of the attack, we use the position of the real password in this list.

A user inputs 500 random passwords each of length 5, 8 and 10.

Figure 8 shows the cumulative distribution function of the posi-

tion of the real password. For example, with twenty trials, 90% of

5-character passwords, 77% of 8-character passwords and 69% of

10-character passwords are detected. As Figure 8 also shows, with

seventy-five trials, we can detect 80% of 10-character passwords.
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Figure 8: Password stealing: distribution of the number of tri-

als required by the attacker.

6. DISCUSSION

6.1 Attack Improvements
The current attack does not take into account special keys such

as Shift, Control, Backspace and Capslock. There are two issues

here. One is whether keystrokes of special keys are separable from

other keystrokes at signal processing time. Our preliminary exper-

iments suggest this is possible; push peaks of keystrokes are easily

separable in the recordings we looked at. The other issue is how

modifier keys such as Shift fit into spelling correction scheme. We

believe ad hoc solutions such as replacing Shift or Capslock keys

with spaces will work. Backspace is also important. The ideal so-

lution would be to figure out what the final text is after applying

the backspaces. But that probably will complicate the error correc-

tion algorithms. So one could just recognize these keys and leave

the “word” before and after out of error-correction because they

are probably not full words. Here a bit of human aid could be use-

... ... ... ...
v0 v1 v2 vT

wTw2w1w0

”for”

”fur” ”examplf”

”example” ”the”

”tbe”

Figure 6: Trigram language model with spell correction.

recording length number of words number of keys

Set 1 12m17s 409 2514

Set 2 26m56s 1000 5476

Set 3 21m49s 753 4188

Set 4 23m54s 732 4300

Table 1: Statistics of each test set.

In our second experiment, we recorded keystrokes from three

additional models of keyboards (see Section 5.1.2). The same key-

stroke recognition experiments are run on these recordings and re-

sults compared. We use identical texts in this experiments on all

these keyboards.

5.1 English Text Recognition

5.1.1 A Single Keyboard

In our experiments, we use linear classification to train the key-

stroke classifier. In Table 2, the result after each step is shown in

separate rows. First, the unsupervised learning step (Figure 2(a))

is run. In this unsupervised step, the HMM model shown in Fig-

ure 5 is trained using EM algorithm described above2. The output

from this step is the recovered text from HMM/Viterbi unsuper-

vised learning, and the text after language model correction. These

two are denoted as keystrokes and language respectively in the ta-

ble. Then the first round of feedback supervised training produces

a new classifier. The iterated corrected text from this classifier (and

corresponding text corrected by the language model) are shown

in the row marked “1st supervised feedback”. We perform three

rounds of feedback supervised learning. The bold numbers show

our final results. The bold numbers in the “language” row are the

final recognition rate we achieve for each test set. The bold num-

bers in the “keystroke” row are the recognition rates of the key-

stroke classifier, without using the language model. These are the

recognition rates for random or non-English text.

The results show that:

• The language model correction greatly improves the correct
recovery rate for words.

• The recover rates in quiet environment (sets 1 and 2) are
slightly better that those in noisy environment (sets 3 and

4). But the difference becomes smaller after several rounds

of feedback.

• Correctness of the keystroke position detection affects the
results. The recovery rate in set 3 is better than set 4 because

of the keystroke location mistakes included in set 4.

2Since EM algorithm is a randomized algorithm, it might get stuck
in local optima sometimes. To avoid this, in each of these experi-
ments, we run the same training process eight times and use results
from the run with the highest log-likelihood.
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Figure 7: Length of recording vs. recognition rate.

• When keystroke positions have been corrected after several
rounds of feedback, we achieve an average recovery rate of

87.6% for words and 95.7% for characters.

To understand how different classification methods in the super-

vised training step affect the results, we rerun the same experiment

on set 1, using different supervised classification methods. Table 3

shows our results. The best method is linear classification, then

Gaussian mixtures, and then neural networks. Experiments with

other data sets give similar results.

In the experiments above, we use recordings longer than 10 min-

utes. To discover the minimal amount of training data needed for

reasonable results, we take the first data set (i.e. “Set 1” above) and

use only the first 4, 5, 7 and 10 minutes of the 12-minute recording

for training and recognition. Figure 7 shows the recognition results

we get. This figure suggests that at least 5 minutes of recording

data are necessary to get good results for this particular recording.

5.1.2 Multiple Keyboards

To verify that our approach applies to different models of key-

boards, we perform the keystroke recognition experiment on differ-

ent keyboards, using linear classification in the supervised training

step. The models of the keyboards we use are:
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Related Work
• OCR: cluster blobs of ink and combine the 

number of elements in the cluster with an 
english language character model to infer 
the character or symbol belonging to that 
blob

10 most frequent cluster averages, from a single page of a 
NIPS 2001 paper

11

11


