
A Statistical Learning Approach To Document Image Analysis

Kevin Laven
Dept of Computer Science
University of Toronto
klaven@cs.toronto.edu

Scott Leishman
Dept of Computer Science
University of Toronto

scott.leishman@utoronto.ca

Sam Roweis
Dept of Computer Science
University of Toronto
roweis@cs.toronto.edu

Abstract
In the field of computer analysis of document images, the

problems of physical and logical layout analysis have been
approached through a variety of heuristic, rule-based, and
grammar-based techniques. In this paper we investigate the
effectiveness of statistical pattern recognition algorithms
for solving these two problems, and report results suggest-
ing that these more complex and powerful techniques are
worth pursuing. First, we developed a new software envi-
ronment for manual page image segmentation and labeling,
and used it to create a dataset containing 932 page images
from academic journals. Next, a physical layout analysis al-
gorithm based on a logistic regression classifier was devel-
oped, and found to outperform existing algorithms of com-
parable complexity. Finally, three statistical classifiers were
applied to the logical layout analysis problem, also with en-
couraging results.

1. Background
Document image understanding is the process of auto-

matically extracting useful information from page images.
The problem can be broken down into a series of sub-
problems, with each working from the results of the pre-
vious. Two key steps in such a series are segmentation (or
page physical structure analysis), in which regions of ink
are identified, and labeling (or page logical structure analy-
sis), in which these regions are assigned meaningful labels.
Many existing algorithms for segmentation and labeling

involve heuristic or rule-based approaches[4], sometimes
enhanced by decision trees[1] or page grammars[2]. While
these approaches have met with some success, they do not
always generalize well to documents outside the develop-
ment set. In addition, the complexity of these techniques
makes them difficult to replicate, making quantitative per-
formance comparisons nearly impossible.
In response to these difficulties, Song Mao et al. have

called for an approach to these problems based on formal
models[4]. They note specific advantages including the abil-
ity to estimate parameter values for the model from training
data, and the possibility of selecting a model of appropriate

complexity for the class of documents being examined. This
paper describes approaches to both segmentation and label-
ing based on formal models for statistical pattern recogni-
tion.

2. Ground Truth Data
We have produced a data set of ground truth segmenta-

tions and labelings of scanned pages from academic jour-
nals. In our data, each region of ink is labeled with one
of 25 precise region labels, which can be aggregated into
a smaller set of 4 generalized labels.
Our segmentations followed the “Manhattan” style of

page layout, under which all regions are rectangular and
aligned with the edges of the page. Nested or cyclical re-
gions 1 are not permitted. This type of layout is common in
academic journals (especially in natural sciences and engi-
neering), which are the focus of our applications.
A new page tagging software package called JTAG has

been developed for the purpose of creating such ground
truth data by hand-labeling.

2.1. The JTAG Software Package
The JTAG (Journal TAGging) software system shown in

Figure 1 is a collection of TCL scripts which allow for the
creation of rectangular page-aligned regions, and for the as-
signment of logical labels to each region.
A new file format was developed for storing and ex-

changing the tagging information. Each .jtag file is a text
file corresponding to a single page image. The file contains
a record of each ink region in the file, including the four
boundaries of the region, the label assigned, and some ad-
ditional parameters used by the JTAG software. If any pre-
processing algorithms are applied to the page, their settings
can also be recorded in the file.
Automated segmentation and labeling algorithms are

trained on the hand labeled data, and can be applied to
segment and label future pages, including those destined

1 Cyclical regions are a group of regions arranged such that no line can
be drawn separating two of the regions that does not intersect another
region.



Figure 1. Screenshot of JTAG software.

for hand labeling. This “bootstrapping” reduces the amount
of manual work required to produce ground truth data, as
the automated algorithms can suggest a preliminary version
of the segmentation and labeling, which need only be cor-
rected by the human tagger. Tagging rates of about one page
per minute can be achieved with this system.

2.2. Details of the Data Set

The data set consists of images of pages from articles
appearing in the Journal of Machine Learning Research
(JMLR)2 and the proceedings of the Neural Information
Processing Systems conference3 in 2001 and 2002. Each of
these two sources employs its own standard single-column
format, which authors generally adhere to, although some
articles deviate from the standards. The JMLR data set con-
sists of 15 articles, with 472 hand-labeled page images con-
taining 5,556 individual ink regions. The NIPS data set con-
sists of 58 articles, with 460 hand-labeled page images con-
taining 4,916 ink regions. The articles in each data set was
divided into training data (about 2/3 of the articles) and test
data (the remaining 1/3 of the articles).The logical region la-
bels are taken from the set of 25 precise categories, which
are aggregated into 4 generalized categories, as shown in
Table 1. The precise labels were those we anticipated would
be needed by applications such as targeted document image
retrieval, whereas the generalized labels were those likely
to be necessary for other applications, such as preprocess-
ing for optical character recognition.

2 http://jmlr.csail.mit.edu/
3 http://www.nips.cc/

Precise Category Generalized Category
text TEXT

header TEXT
section heading TEXT

subsection heading TEXT
figure label TEXT
figure caption TEXT
references TEXT
abstract TEXT
bullet item TEXT
page number TEXT
main title TEXT
footer TEXT

table label TEXT
table caption TEXT
editor list TEXT

equation number TEXT
author list TEXT
footnote TEXT
decoration OTHER
equation EQUATION
table FIGURE
image FIGURE
graph FIGURE
figure FIGURE

code block FIGURE

Table 1. The 25 precise labels used, and the
4 generalized labels into which they were ag-
gregated.

3. Segmentation
Most segmentation algorithms can be described as ei-

ther “top-down” or “bottom-up”. Top-down approaches be-
gin by considering the entire page as one region, succes-
sively dividing regions into smaller ones until a termination
criteria is met. Nagy’s xycut algorithm[6] provides the ba-
sis for many such systems. Bottom-up approaches start by
dividing the page into small components, such as individ-
ual marks of ink, and then merge these together to form re-
gions. The Area Voronoi diagram technique[3] is an exam-
ple of such a system.
Below, we propose a new Concurrent Learn-To-Cut al-

gorithm that can be applied to any Manhattan layout page.
We compare this new algorithm to the relatively simple but
general algorithms that underlie most existing complex seg-
mentation systems.

3.1. Benchmark Algorithms
We implemented three established segmentation algo-

rithms to act as performance benchmarks: Nagy’s xycut al-



gorithm, the Area Voronoi Diagram technique, and a simple
“smearing” algorithm. In smearing, ink is duplicated pix-
els across the page, and pixels up and down the page.
Connected components after smearing are identified, and
bounding boxes placed around them.
Each of these algorithms contains two free parameters

which were optimized for each particular dataset. Given that
these parameters are integers with a finite range of plausi-
ble values, it was possible to determine the best values for
a given data set, based on simple “matching” performance
metric (described below). This optimization was done for
each algorithm, on each set of training data, allowing us to
test the generalization of these parameters to a separate set
of test data.

3.2. Concurrent Learn-To-Cut
The Concurrent Learn-To-Cut (LTC) algorithm treats

page segmentation as a supervised learning problem, where
the system learns to segment pages following the patterns
laid out in a training set of hand-segmented pages. The LTC
algorithm is a top-down algorithm restricted to producing
Manhattan layouts. It employs a logistic regression classi-
fier to take advantage of large amounts of information when
deciding which cuts should be made.
Approaching page segmentation with a supervised learn-

ing algorithm presents two challenges. First, the segmenta-
tion problem must be reduced to a straightforward classi-
fication question. Second, some manner must be found of
creating representative training data from the ground truth
segmentations.
Top-down segmentation can be reduced to answering

the question “should this cut be made”, through the use of
an appropriate structural algorithm. The algorithm we se-
lected is based on the version of the xycut algorithm used
in [2]. The horizontal projection profile is used to find rows
of whitespace across the page, which are called cut candi-
dates. A vector of numerical values (called a feature vec-
tor) describing each cut candidate is extracted, based on the
dimensions and position of the cut, as well as the ink den-
sity in several predetermined rows and blocks of pixels near
the cut. This feature vector is passed to a logistic regres-
sion classifier, which labels each cut as either valid or in-
valid. All of the cuts labeled valid are then made. This pro-
cess is repeated on all of the new segments that result, al-
ternating between making vertical cuts and horizontal cuts.
The recursion continues on each new segment generated, al-
ternating cut directions, until no cuts are selected as valid in
a pass. One pass of the algorithm is illustrated by Figure 3.
Training data, in the form of correctly classified feature

vectors, can be created from hand-segmented pages. An al-
gorithm very similar to the one above is applied, except that
cut candidates are evaluated based on the ground-truth seg-
mentation. Every time a cut candidate is considered, its fea-

ture vector is labeled as valid or invalid by comparing it
to the correctly segmented page, as demonstrated in Fig-
ure 2. If a cut candidate intersects any region in the cor-
rectly labeled page, it is considered invalid; if it does not
intersect any region in the correctly labeled page, it is con-
sidered valid. The labeled feature vectors are added to the
set of training vectors. These assigned labels are also used
to determine which cuts should be made in each iteration of
the training data generation algorithm.

Figure 2. When producing training data, cut
candidates are considered valid if they do
not intersect any of the hand tagged regions
(such as in (A), where the text region can
be separated from the equation and equation
number above it), and invalid if they do inter-
sect a hand tagged region (such as in (B),
where there happens to be a one-pixel wide
column of whitespace between letters in the
text region).

The features used include the dimensions of the whites-
pace region created by the cut, the distances between the
two ink regions on either side of the cut, and pixel densi-
ties from various lines and rectangles sampled from prede-
termined locations near the cut. These are all computation-
ally inexpensive to calculate.

3.3. Segmentation Performance
Each of the two data sets was separated into training

data (about 2/3 of the total), and test data (the remaining
1/3). The algorithms were optimized or trained on training
data. Performance was evaluated based on the total num-
ber of unmatched segments both on the training and test
sets. Two segments match if each boundary (top, left, bot-
tom, right) is within 5 pixels of the corresponding bound-
ary of the other segment. An unmatched segment is a pre-
dicted or actual segment that does not match any segment
from the other set. Results are shown in Table 2.
The Learn-To-Cut algorithm significantly outperformed

all three of the benchmark algorithms. The fact that LTC



Figure 3. Stages of one iteration of the Con-
current Learn-To-Cut algorithm. It began by
using the projection profile of the page to find
valleys where the ink density is 0 (upper left).
Next, it used a logistic regression classifier to
decide which valleys to cut (upper right). The
algorithm is applied recursively to the result-
ing regions (bottom), this time searching for
vertical cuts.

outperformed xycut even on the training data, where the op-
timal values of all parameters for xycut were found, implies
that the additional information used by LTC is actually ben-
eficial.

An informal inspection of the unmatched segments in the
LTC results suggest two major sources of error. The first is
the unique layout of the first page of each document; cutting
rules that serve well in the body of the document may yield
poor performance on the first page, which generally em-
ploys a markedly different layout. The second noted source
of error is the algorithm segmenting adjacent regions of the
same type either more finely or coarsely than was done by
the human tagger. For example, each reference was given
its own region by the human tagger, but multiple references
were often grouped together by the algorithm. Likewise,
consecutive paragraphs were joined by the human tagger,
but were often separated by the algorithm.

Act. segs xycut Voronoi Smear LTC
NIPS Train 3445 2504 3701 2580 1414
NIPS Test 1473 1200 1535 1103 826
JMLR Train 3521 1228 3228 1439 772
JMLR Test 2085 657 1890 817 536

Table 2. Number of unmatched segments.
The first column indicates the number of ac-
tual segments in the data set. Note that an er-
ror by the algorithm may create multiple un-
matched actual and predicted segments.

4. Labeling
The labeling problem is a natural fit to the supervised

learning paradigm. Once ink regions have been identified, a
classifier can be used to assign the appropriate label, based
on a vector of numerical features. An example of a labeled
page is shown in Figure 4. The classifier can be trained with
examples from the labeled training set. Three algorithms
were selected for evaluation: K Nearest Neighbors (KNN),
logistic regression (LR), and maximum entropy Markov
models (MEMM)[5].
For each ink region, a vector of 59 features describing it

is created based on its position, ink density, ink marks con-
tained, and the page number on which it appears. All fea-
tures were normalized such that they ranged between zero
and one. For the MEMM, which requires features to be
presented in discrete sequences, the regions on each page
were ordered top-to-bottom, left-to-right, in an attempt to
approximate their reading order. Each page was treated as a
single sequence.

Dataset KNN LR MEMM
NIPS: Training 85.3% 98.3% 99.5%
NIPS: Testing 80.7% 88.1% 87.6%
JMLR: Training 88.8% 97.7% 99.3%
JMLR: Testing 83.6% 90.6% 92.4%

Table 3. Success rates for finegrained classi-
fication among 25 precise labels.

The three algorithms were trained and tested using the
hand annotated region types as supervised class labels on
both the JMLR and NIPS data sets. Success rates in terms
of the 25 precise labels, as well as the 4 generalized labels,
are shown in Tables 3 and 4. All three algorithms showed
strong performance, especially among the 4 generalized cat-
egories. As expected, KNN had the weakest performance,
and MEMM had the strongest. As another point of com-
parison, Summers[7] used a complex rule-based system to
achieve an average “precise accuracy” of 85.5% among 16



Dataset KNN LR MEMM
NIPS: Training 97.3% 99.8% 99.9%
NIPS: Testing 95.6% 96.0% 96.0%
JMLR: Training 98.1% 99.9% 99.9%
JMLR: Testing 97.8% 99.0% 99.3%

Table 4. Success rates for coarse classifica-
tion among the 4 generalzed labels.

Figure 4. A page image with tagged regions.
Bounding boxes are shown, with logical la-
bels added near each region in light gray.

categories, and a “generalized accuracy” of 86.0% on an un-
specified (but smaller) number of categories.
Errors were most common for classes with few instances

in the training data, such as images, suggesting that not
enough examples were present for the algorithms to learn
to classify these effectively. The fact that the training error
is so much lower than the test error for both Logistic Re-
gression and MEMM also suggests that the use of larger
training data sets would improve results. Many of the er-
rors fell into two groups: confusing items of similar classes
(such as section heading and subsection heading), and clas-
sifying ambiguous items (such as small equations listed in

bullet-form, which could reasonably be classified as equa-
tion or bullet item) differently than the human tagger chose
to.

5. Conclusions
Our first attempts at applying established statistical pat-

tern recognition techniques to the problems of page seg-
mentation (physical layout analysis) and labeling (logical
layout analysis) have produced very encouraging results.
The Concurrent Learn-To-Cut segmentation algorithm out-
performed two existing algorithms of similar complexity.
All three rudimentary statistical classification algorithms
exhibited strong results for the labeling problem. Although
direct comparison with other techniques on the same data
set was not possible, classification results are comparable
or superior to those reported on other data using complex
rule-based systems. These results are especially encourag-
ing given that both the classifiers and feature vectors used
were relatively simple. Further work is underway involving
more powerful learning algorithms and richer feature sets.

References

[1] A. Dengel. Initial learning of document structure. In Proc.
of the Second International Conf. on Document Analysis and
Recognition, volume 20-22, pages 86–90, Oct. 1993.

[2] M. Krishnamoorthy, G. Nagy, S. Seth, and M. Viswanathan.
Syntactic segmentation and labelling of digitized pages from
technical journals. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(7):737–747, July 1993.

[3] S. Mao and T. Kanungo. Empirical performance evaluation of
page segmentation algorithms. In Proceedings of SPIE Con-
ference on Document Recognition, San Jose, California, 2000.

[4] S. Mao, A. Rosenfeld, and T. Kanungo. Document structure
analysis algorithms: a literature survey. In Proc. SPIE Elec-
tronic Imaging, volume 5010, pages 197–207, Jan. 2003.

[5] A. Mccallum, D. Freitag, and F. Pereira. Maximum entropy
markov models for information extractions and segmentation.
In Proc. 17th International Conf. on Machine Learning., 2000.

[6] G. Nagy and S. Seth. Hierarchical representation of optically
scanned documents. In Proceedings of International Confer-
ence on Pattern Recognition, volume 1, pages 347–349, July
1984.

[7] K. Summers. Near-wordless document structure classifica-
tion. In Proc. of the Third International Conf. on Document
Analysis and Recognition, pages 426–456, Montreal, Canada,
Aug. 1995.


