
Student Scheduling Assistant – Phase A – Specification and Design documents

CSC408H: Software Engineering – Fall 2005/2006

Student Scheduling Assistant
– Phase A – Specification and Design documents –

Team: c408h06

Roland Eck (g3eckrol) Part 1
Edmund Cheung (c3cheunm) Part 2.1, 2.2
Björn Schümann (c5schuem) Part 2.3, 3, 4

This contribution only refers to the initial version of the texts,
later every team member has reviewed and changed the other parts too.

Page 1/16

Student Scheduling Assistant – Phase A – Specification and Design documents

Table of Contents

Student Scheduling Assistant...1
1 Information Representation...3

1.1 Storage Specification:...3
1.2 Data Model..4
1.3 Schema..5

2 Software architecture...8
2.1 System's interaction with environment...8
2.2 Component Decomposition...9
2.3 Detailed design of the system...10

3 Errors and error handling...13
3.1 Critical errors ...13
3.2 Recoverable errors ...13
3.3 Warnings ..14

4 Testing plans..15
Stage 1: Unit testing of the individual classes..15
Stage 2: External testing of the system...15
Tools..15

Appendix..16
Regular expressions for the parsers..16

Table of figures

Abbildung 1 CourseDB entity-relationship diagram 4
Abbildung 2 StudentDB entity-relationship diagram 4
Abbildung 3 System's Interaction with its Environment 8
Abbildung 4 Package Diagram 9
Abbildung 5 Collaboration Diagram 11
Abbildung 6 Sequence Diagram 12

Page 2/16

Student Scheduling Assistant – Phase A – Specification and Design documents

1 Information Representation

1.1 Storage Specification:

The type of storage we chose to use is a DBMS primarily due to the type of data, and how its used. First
and foremost, the stored system information can be considered mostly as data-centric, as apposed to
document-centric. Also, it has a fairly regular structure, which makes it ideal for databases.
Furthermore, the queries performed end up being fairly simple for the system, (i.e. there is no need for
doing deep recursions and such tasks.) So, it is our belief that the relationships are most efficiently
managed and best represented with a DBMS.

Moreover, a DBMS requires a fairly regular implementation, there is no need for data structures that
iterates through elements, instead simple SQL queries perform such tasks. Simplicity in implementation
means less risk of errors, which means saving money in the long-run, assuming the DBMS is not filled
with bugs. The need for writing your own code to iterate through elements takes up more
implementation and testing time. Whereas a DBMS is off-the-shelf, so there is no need for such
implementation and testing work.

Database technology: We chose to use an embedded database engine because it best fits the purposes of
this project and the project phases. First and foremost, embeddable databases remove the overhead that
client-server applications carry. We do not need tons of features that we will not use and that will slow
down the environment.

Specifically, we will use an engine like SQLite (http://www.sqlite.org) an embeddable database engine
having the following features:

● Simple to setup and administer. There is actually no configuration needed at all.
● Simple to operate and embed into a larger program. The module are self-contained, meaning

there are no external dependencies. It is also lightweight, (i.e. does not use a lot of memory)
● Simple to maintain and customize
● Speed. Due to its simple framework, and the nature of the scheduling system, performance is

unbeatable with embeddable databases under the following conditions:
● databases are under several gigabytes of data,
● concurrency is relatively low
● databases not distributed on complex networks such as clusters, (i.e. relatively low-

volume access)

Embeddable databases are simple, reliable, and at the same time, it can handle the needs of the SSA
system. (i.e. supports databases up to 2 terabytes, most SQL92 features supported, etc...)

Page 3/16

Student Scheduling Assistant – Phase A – Specification and Design documents

1.2 Data Model

Page 4/16

Figure 2 StudentDB entity-relationship diagram

Figure 1 CourseDB entity-relationship diagram

Student Scheduling Assistant – Phase A – Specification and Design documents

1.3 Schema

/*

● Applies To: CKey
● Purpose: a Unique Course Key
● Size: Exactly 9 characters
● Format: DDDNNNLCW,

● D is any uppercase character [A-Z],
● N is any number [0-9],
● L is either H or Y,
● C is any number [1-9],
● W is either F, S, or Y.

*/

/*

● Applies To: CName
● Purpose: a Course Name
● Size: Dynamic
● Format: "[\w]"

*/

/*

● Applies To: CPrereq
● Purpose: a Course Prerequisite Key
● Size: Exactly 7 characters
● Format: DDDNNNL,

● D is any uppercase character [A-Z],
● N is any number [0-9],
● L is either H or Y

*/

/*

● Applies To: CStartTime
● Purpose: a Day and Time at which a Course Starts
● Size: exactly 5 characters
● Format: [1-7][0-2][0-9][0-5][0-9],

● First digit represents the day of the week, M = 1, T = 2, ... ,Sunday = 7.
● Second and third digit represents the hour, and is at most 24.
● Fourth and fifth digit represents the min., and is at most 59.
● Last 3 digits represents the time, (Hour*100 + Min), and is at most 2459.

*/

Page 5/16

Student Scheduling Assistant – Phase A – Specification and Design documents

/*

● Applies To: CEndTime
● Purpose: a Day and Time at which a Course Ends
● Size: exactly 5 characters
● Format: [1-7][0-2][0-9][0-5][0-9],

● First digit represents the day of the week, M = 1, T = 2, ... ,Sunday = 7.
● Second and third digit represents the hour, and is at most 24.
● Fourth and fifth digit represents the min., and is at most 59.
● Last 3 digits represents the time, (Hour*100 + Min), and is at most 2459.

*/

/*

● Applies To: CType
● Purpose: Indicates either Lecture or Tutorial
● Size: exactly 1 character
● Format: [L|T]

*/

AdminDB Schema:

CREATE TABLE coursesdb.courseslist { CKey CHAR(7) NOT NULL,
CName VARCHAR(1000) NOT NULL, PRIMARY KEY(CKey)

}

CREATE TABLE coursesdb.coursesprereq { CKey CHAR(9) NOT NULL,
CPrereq CHAR(7) NOT NULL, PRIMARY KEY(CKey, CPrereq),
CONSTRAINT FK_courseprereq FOREIGN KEY FK_courseprereq(CKey)

REFERENCES courseslist(CKey) ON DELETE CASCADE

}

CREATE TABLE coursesdb.coursestimes { CKey CHAR(9) NOT NULL,
CStartTime INTEGER UNSIGNED NOT NULL DEFAULT 00000, CEndTime
INTEGER UNSIGNED NOT NULL DEFAULT 00000, CType CHAR(1) NOT
NULL DEFAULT 'L', PRIMARY KEY(CKey, CStartTime), CONSTRAINT
FK_coursestimes FOREIGN KEY FK_coursestimes(CKey)

REFERENCES courseslist(CKey) ON DELETE CASCADE

}

Page 6/16

Student Scheduling Assistant – Phase A – Specification and Design documents

StudentDB Schema:

CREATE TABLE mycoursesdb.mytakencourses { CKey CHAR(9) NOT
NULL, PRIMARY KEY(CKey)

}

CREATE TABLE mycoursesdb.mywantcourses { CKey CHAR(9) NOT
NULL, PRIMARY KEY(CKey)

}

Page 7/16

Student Scheduling Assistant – Phase A – Specification and Design documents

2 Software architecture
This part explains the structure of our software in terms of modules, functions, and all the necessary
building blocks.

2.1 System's interaction with environment

A description of how our software will interact with the underlying operating system.

● The users (student or administrator) interacts with the system via standard input (normally, the
keyboard).

● They get feedback from the system via the standard output and stderr for error messages
(normally, both will be through the monitor).

● The SSA program will get the input and access the database via a database management system
using SQL statements.

● To process these commands, the DBMS will access the databases on the file systems and return
the results back into the SSA.

● The SSA will then return the information requested by the user out to standard output.

Page 8/16

Figure 3 System's Interaction with its Environment

Student Scheduling Assistant – Phase A – Specification and Design documents

2.2 Component Decomposition

The SSA package includes the SSA_UI class, DBInterface class, AdminParser and StudentParser
classes, which are extensions of the CommandParser class. Also, the AdminHandler and
StudentHandler classes, which are extensions of the CommandHandler class. The SSA_UI class
handles the front-end duties. The Parser classes parse the inputs from the user, while the Handler
classes perform the logical operations associated with the requested command(s). Finally, the
DBInterface is for communicating with the database.

● Also the SSA system contains the Regular Expressions package and a DBWrapper package. The
Regular Expressions package will be used to parse strings for matching user commands. The
DBWrapper package acts as a bridge between the DBMS we will use and the language that SSA
will be implemented in, so that they can communicate between each other.

● The final package is for the DBMS. This will be responsible for managing the database that acts
as the data storage for both the Course database and the Student databases.

Page 9/16

Figure 4 Package Diagram

Student Scheduling Assistant – Phase A – Specification and Design documents

2.3 Detailed design of the system

Classes Diagram

SSA_UI contains the user interface of SSA. Its constructor is called from the main function with the
command line arguments and initiates the SSA system. The other methods are for processing the input
and assists in the output.

CommandParser is the superclass for every parser. A parser contains the patterns of the valid
commands and its parameters. The parse method gets the user's command and with its parameters it
calls the corresponding method in the handler. The parsing of the general commands which are offered
for every user are implemented here, while user specific commands are implemented in a subclass.

Page 10/16

Figure 5 Class Diagram

Student Scheduling Assistant – Phase A – Specification and Design documents

The StudentParser extends the CommandHandler with the pattern and the parsing of the specific
commands for the student mode.
The AdminParser extends the CommandHandler with the pattern and the parsing of the specific
commands for the admin mode.

The patterns in the parsers are compiled from Regular Expressions of the commands. (see Appendix)

CommandHandler is the superclass for every handler. A handler contains the logic for a user modes.
General commands which are offered for every user are implemented here, while user specific
commands are implemented in a subclass.

The AdminHandler extends the CommandParser with the logic of the specific commands for the admin
mode.
The StudentHandler extends the CommandParser with the logic of the specific commands for the
student mode.

DBInterface encapsulates the operations for accessing the wrapper for the database. Since the interface
of each wrapper differs, this class makes sure that switching to another database is as easy as possible.

Collaboration Diagram

To get a quick overview of the behavior of the objects, take a look at the collaboration diagram below.

1. The user's input is processed by processInput() of SSA_UI. It gets one whole line of the input
and calls the parse() method of the current handler.

2. parse() of the parser object tries to match the user's command against the patterns of the
commands.

3. The corresponding method of the handler object is then called (e.g. show).
4. The handler method runs the logic of the process using the exec method of the DBInterface to

execute SQL commands.
5. The results are processed and for the output the msg method of the SSA_UI is called.

Page 11/16

Figure 6 Collaboration Diagram

Student Scheduling Assistant – Phase A – Specification and Design documents

Sequence Diagram

For a more detailed view of initialization and the behaviour of the SSA system take a look at the
sequence diagram below.

1. The main function starts
by creating a new
SSA_UI object.

2. In the SSA_UI
constructor, the
command line arguments
are first parsed

3. The DBInterface objects
that are needed to be
created are created after
command line parsing.

4. During the construction,
the DBInterface
object(s) establishes
connections with the
database(s).

5. Then the SSA_UI
constructor initializes the
handler corresponding to
the mode the user asked
for.

6. With this handler, a new
parser can be
constructed.

7. Now the processing of
the input can begin. So
the main function calls
the processInput method
of the new SSA_UI object.

8. When the user issues a new command to standard input, the parser is called with the whole line.
9. First the parser tries to match the command against the common commands patterns.
10.And if this fails it tries its own pattern for the mode specific commands.
11.If a command pattern matches, the parameters are extracted and the corresponding method in

the handler object is called.
12.The logic associated with the command is processed, including SQL statements on the

DBinterface objects.
13.The result, error messages, and additional information is then presented to the user using the

msg method of the SSA_UI object.

Page 12/16

Figure7 Sequence Diagram

Student Scheduling Assistant – Phase A – Specification and Design documents

3 Errors and error handling
This document discusses errors that may arise during the use of the system and how our software will
handle such errors.

3.1 Critical errors

● If the initial loading of the database fails, the program immediately stops. The database is a
critical component of our system, and without it, there is nothing to be done.

● If a database fails to load, the system will attempt to fall back on the previously active database.
If there are no databases to fall back on, the program terminates. Again, the database is a critical
component that is required for any work to be done.

3.2 Recoverable errors

● If the program is started with illegal options, a usage notification will get printed out and the
program will immediately terminate.

● If parsing the current command fails because the command is unknown or the number of
parameters is incorrect, we will abort the processing of this command and print information
indicating which inputs were not expected. Then, the program will continue with the next
command. Any command that does not match with the expressions given on the regular
expressions specifications will result in error. Refer to the specifications for the complete list.

● If loading a new database fails, we will warn the user and try to reload the last active database.
● If saving the current state of a database fails, we will output an error message and give the user

options on how to proceed. The options will be whether to save to another file, cancel, or exit
the program.

● If processing a single command fails, we will output an error message and continue with the
next command. Examples of processing errors include the following:

● adding a course that already exists
● adding times where the start time is later than an end time
● adding times for a course that does not exist
● adding a prerequisite that does not exist
● adding a prerequisite for a course that does not exist
● deleting a course that does not exist
● wanting a course that does not exist
● unwanting a course that is not on the want list
● taking a course that does not exist
● untaking a course that is not on the taken list

Page 13/16

Student Scheduling Assistant – Phase A – Specification and Design documents

3.3 Warnings

● If an empty database is loaded, we will provide the user with a message that warns the user that
there are no records in the database. Then the program will continue to run.

● If the data the user wants to add seems to be unusual, we will provide a warning message and
explain that the user may be doing something they are not intending to do and how they can
undo the operation if they want. Then, we will continue with the operation. An example of this
may be if the user wanted to add a class with a very short time session.

● If the student wants to add a course to the take or want list, that already exists, we will provide a
warning.

● If an admin adds prerequisites for a course that includes the course itself, we will provide a
warning.

Note: The level of error messages output will of course depend on the verbose flag. When a
commands fail, the level of output will also depend on the debug level.

Page 14/16

Student Scheduling Assistant – Phase A – Specification and Design documents

4 Testing plans
To prevent and find errors as early as possible and to produce bugles code, we want to follow a two-
stage testing strategy.

Stage 1: Unit testing of the individual classes

Before any code of a class is written, a corresponding test class implementing a suite of test cases has to
be developed by someone else. This test class should check each individual method of the class and its
result.

After this is done, the class is passed on to someone else within the team who fixes the code until every
test cases completes successfully.

Stage 2: External testing of the system

After the implementation, each external functional requirement is tested again using the input and
output of the whole system. This can be done by developing another test suite for the whole system.
The test cases for this suite are developed by the third person within out group.

Tools

To make the best use of our time, we decided to use Eclipse together with a Unit Testing. (For example
JUnit, if Java is the language we use). This way, all test suites and their test cases can be effectively
managed. The external testing process will be semi-automated. Sample sets of expected results based
on a sequence of inputs will be saved in files. The inputs will be saved to files and will be redirected as
inputs for the program and the outputs will be redirected into output files. Finally, the sample expected
output files will be compared with the actual results using diff. This whole process will be scripted to
minimize the amount of manual operations performed during the external testing.

Page 15/16

Student Scheduling Assistant – Phase A – Specification and Design documents

Appendix

Regular expressions for the parsers

pws = [\t]

pmonday = M|MO|MON|MOND|MONDA|MONDAY
ptuesday = T|TU|TUE|TUES|TUESD|TUESDA|TUESDAY
pwednesday = W|WE|WED|WEDN|WEDNE|WEDNES|WEDNESD|WEDNESDA|WEDNESDAY
pthursday = R|TH|THU|THUR|THURS|THURSD|THURSDA|THURSDAY
pfriday = F|FR|FRI|FRID|FRIDA|FRIDAY
psaturday = SA|SAT|SATU|SATUR|SATURD|SATURDA|SATURDAY
psunday = SU|SUN|SUND|SUNDA|SUNDAY
pday = pmonday|ptuesday|pwednesday|pthuersday|pfriday|

 psaturday|psunday

phour = [0­1][0­9]|2[0­3]
pminute = [0­5][0­9]
ptime = (pday) pws (phour)(:(pminute))? pws* ­ pws* (phour)(:

 (pminute))?

pckey = [A­Z]{3}[0­9]{3}[HY][1­9][FSY]
pprereq = [A­Z]{3}[0­9]{3}
pcname = [\w]+
pdbname = [\w]+ (the only one, which is case sensitive)

psave = SAVE (pws+ (pdbname))?
pload = LOAD (pws+ (pdbname))?
pcourse = COURSE pckey
plist = LIST
pquit = QUIT

padd = ADD pckey pcname
paddlect = ADDLECT pckey ptime (, ptime)*
paddtut = ADDTUT pckey ptime (, ptime)*
paddpre = ADDPRE pckey pprereq (, pprereq)*
pdelete = DELETE pckey

pshow = SHOW
pwant = WANT pckey
punwant = UNWANT pckey
ptaken = TAKEN pckey
puntaken = UNTAKEN pckey

Page 16/16

