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SAARI’S CONJECTURE IS TRUE
FOR GENERIC VECTOR FIELDS

TANYA SCHMAH AND CRISTINA STOICA

Abstract. The simplest non-collision solutions of the N-body problem are
the “relative equilibria”, in which each body follows a circular orbit around
the centre of mass and the shape formed by the N bodies is constant. It is
easy to see that the moment of inertia of such a solution is constant. In 1970,
D. Saari conjectured that the converse is also true for the planar Newtonian
N-body problem: relative equilibria are the only constant-inertia solutions. A
computer-assisted proof for the 3-body case was recently given by R. Moeckel,
Trans. Amer. Math. Soc. (2005). We present a different kind of answer: proofs
that several generalisations of Saari’s conjecture are generically true. Our
main tool is jet transversality, including a new version suitable for the study
of generic potential functions.

1. Introduction

The Newtonian N -body problem concerns the motion of N points under the
influence of a mutual gravitational force

miq̈i = − ∂V

∂qi
,

for a potential function

V (q1, . . . ,qN ) = −
∑

1≤i<j≤N

mimj

‖qi − qj‖

(where qi is position, mi is mass, and the gravitational constant is taken to be 1).
Without loss of generality, we will place the origin of the coordinate system at the
centre of mass of the system.

Saari’s conjecture concerns relative equilibria and the moment of inertia. A
relative equilibrium of the N -body problem is a solution in which the bodies move in
circular orbits around the centre of mass, with each body having the same constant
angular velocity, so that the shape formed by the N points is constant. For N ≥ 3,
relative equilibria are the only explicit known periodic solutions to the Newtonian
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N body problem. For N = 3 it is known that there are only two kinds of relative
equilibria: collinear (Eulerian) and equilateral triangle (Lagrangian).

The moment of inertia of the N -body system is

I =
N∑

i=1

mi ‖qi‖2

(a factor of 1
2 is often inserted). It is a natural measure of the size of the system.

Physically, moment of inertia is a rotational analogue of mass: note the similarity of

I to the kinetic energy
1
2

N∑
i=1

mi ‖q̇i‖2
. Moment of inertia also has some interesting

properties specific the Newtonian N -body problem, arising from the homogeneity
of V and I. In particular, if moment of inertia is conserved along any solution, then
the potential and kinetic energies are separately conserved along that solution. For
these reasons, moment of inertia is an interesting quantity to study in this problem.

Relative equilibria always have constant moment of inertia, since each ‖qi‖ re-
mains constant. In 1970 D. Saari conjectured that the converse is true:

Saari’s Conjecture: [Saa70] Every solution of the planar New-
tonian N -body problem along which moment of inertia is con-
served is a relative equilibrium.

Attempts to prove this, by Saari and later by J. Palmore (1981), were unsuccessful.
Recent interest in Saari’s conjecture is partly the indirect result of the discovery of
the “figure 8” periodic solution to the three body problem, numerically by C. Moore
(1993), and analytically by A. Chenciner and R. Montgomery [CM00]. Numerical
calculations by C. Simó indicated that this solution had nearly-constant (but not
constant) moment of inertia.

The conjecture has been proven for the planar 3-body problem with equal masses
by C. McCord [McC04] and J. Llibre and E. Piña [LlP02]. F. Diacu, E. Pérez-
Chavela, and M. Santoprete [DPS05] have proven the conjecture for the collinear
N -body problem. Recently R. Moeckel [Moe05a, Moe05b] has given a computer-
aided proof for the general 3-body conjecture in Rd. While this is very significant,
interest in a simpler “conceptual” proof remains high. An entry by A. Chenciner, on
a list of open problems compiled by K. C. Chen [Ch03], asks: “Is there a conceptual
proof for Saari’s conjecture? Why not fix the moment of inertia tensor and ask the
same question (maybe in higher dimensions)?” The general case remains open.
Several researchers have worked to generalise Saari’s conjecture appropriately, and
to find counter-examples to these generalisations, including G. Roberts [Rob06];
M. Santoprete [San04]; A. Hernández-Garduño, J. K. Lawson, and J. E. Marsden
[HLM05]; and J. K. Lawson and C. Stoica [LSt07].

We have taken a different approach to the conjecture, by asking whether the
truth of Saari’s conjecture is (for N = 3) or would be (for the general case) sur-
prising. This question can be interpreted in the context of differential topology
as: is some appropriately generalised conjecture generically true? We give posi-
tive answers to several such questions using transversality theory. Genericity and
transversality theory are reviewed in Section 2, which also contains a new version
of jet transversality suitable for the study of generic potential functions.

We generalise Saari’s conjecture as follows. Instead of the vector field given by
the Newtonian potential, we consider arbitrary smooth G-invariant vector fields X,
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for some Lie group G; and instead of moment of inertia we consider arbitrary smooth
G-invariant real-valued functions F. We generalise Saari’s conjecture to: “the only
solutions to X along which F is conserved are the relative equilibria”. We show
in Section 3 that, for any given X, the generalised conjecture is true for generic F
(Theorem 3.3). In Section 4 we reverse the perspective and show that, for any given
F without too many critical points, the generalised conjecture is true for generic
X (Theorem 4.3). We then prove analogous results for generic Hamiltonian vector
fields on symplectic manifolds (Theorem 4.5), and for Hamiltonian vector fields for
Hamiltonians of the form “kinetic plus potential” for a fixed kinetic energy and
generic potentials (Theorem 4.6). While Theorems 3.3 and 4.3 apply to general
symmetry groups G, our results for Hamiltonian vector fields assume that G is
trivial; the corresponding equivariant conjectures remain open.

The basic idea in our proofs for all of these results is the following: suppose γ(t)
is a solution to a vector field X, and F ◦ γ is constant. Then all derivatives of F ◦ γ
are zero. Equivalently, the Lie derivatives of F with respect to X, of all orders,
are zero. If X is fixed, this puts restrictions on the Taylor expansion of F, and we
will show that generic functions F do not satisfy these restrictions, at any point in
the phase space. On the other hand, if F is fixed, then the requirement that the
derivatives be zero puts restrictions on the Taylor expansion of X, and we will show
that generic vector fields X do not satisfy these restrictions, at any point in the
phase space. The restrictions on the derivatives of F , or X, define a submanifold
of an appropriate jet space, to which we then apply jet transversality.

2. Transversality

In this section, we summarise the tools from differential topology required to
prove the genericity results in the following sections. All of the theorems stated
here concern transversality. In order to state these results, we very briefly review
genericity and jets. The first part of this section is standard material, a good
reference being Hirsch [H76]. The main new result in the present section is Theorem
2.9, which is a variation on jet transversality. The proof uses Lemma 2.8, a new
globalisation lemma that we also use to give a short proof of jet transversality for
vector fields, Theorem 2.6.

We consider only C∞ paracompact, finite-dimensional manifolds without bound-
ary. Note that all such manifolds are second countable. Smooth will mean C∞. The
function spaces C∞ (M, N) will be given either the strong (“Whitney”) or the weak
(“compact-open C∞”) topology. The choice of topology will be indicated either
by subscripts “s” or “w”, or by the words “strongly” and “weakly”. Our main
interest is in the strong topology; the weak topology will only be used in the proofs
of Theorems 2.6 and 2.9 and in Lemma 2.8.

A subset is residual if it contains the intersection of a countable number of
open dense subsets. The spaces C∞ (M, N), with either the strong or the weak
topology, are Baire spaces, meaning that all residual subsets are dense. A property
is generic within a given class of vector fields or functions, if those with the given
property form a residual subset of the class. Loosely speaking, when a certain
generic property is understood, a “generic” object means one with that property.

Definition 2.1. Let M and N be manifolds, and S a submanifold of N. A map
f : M → N is transverse to S, written f � S, if, for every x ∈ M such that
f(x) ∈ S, we have Tf (TxM) + Tf(x)S = Tf(x)N.
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Theorem 2.2 (Preimage). Let f : M → N be smooth and let S be a codimension-k
submanifold of N. If f is transverse to S, then f−1(S) is either empty or a smooth
codimension-k submanifold of M.

Theorem 2.3 (Elementary transversality). Let M and N be manifolds and let S
be a submanifold of N. Then the smooth functions f : M → N that are transverse
to S form a residual subset of C∞

s (M, N) . If S is closed, then this subset is open
dense in C∞

s (M, N).

In the special case where S has codimension larger than the dimension of M, the
previous two theorems combined imply that, for generic f , the preimage f−1(S) is
empty.

In our application, we will need transversality to a set of restrictions on the
Taylor series of a function or a vector field. For this, we will need jet transversality
(Theorems 2.5 and 2.6) and a new related result (Theorem 2.9). The proofs of both
of these use the following theorem, which concerns genericity within a class of maps
parametrised by a manifold A.

Theorem 2.4 (Parametric transversality). Let M, N and A be manifolds, and let
S be a submanifold of N . Let ρ : A → C∞

s (M, N) be a function (not necessarily
continuous). Writing ρα = ρ (α) , define the evaluation map evρ : A × M → N
by evρ (α, z) = ρα(z). Suppose that evρ is smooth and transverse to S. Then the
elements α of A such that ρα is transverse to S form a residual subset of A. If S
is closed and ρ is continuous, then the set of such α values is open dense.

We note that there is a version of this theorem due to R. Abraham [A63, AR67]
that applies to Banach manifolds.

We now briefly review jets. Let M and N be manifolds. Two functions from M
to N are equivalent at x ∈ M up to order k if they have the same kth order Taylor
expansion at x in some coordinate charts. (This definition is coordinate-free.) Such
an equivalence class is called a k-jet with source x. The set of all such k-jets is
written Jk

x (M, N). The set Jk(M, N) is the union of these sets, for all x. It is a
smooth vector bundle over M × N, called the k-jet bundle. The k-jet of f with
source x is written jkf(x). In local coordinates, jkf(x) “is” the kth order Taylor
expansion of f at z. The k-jet extension of f : M → N is the map

jkf : M −→ Jk(M, N) ; x �−→ jkf(x) .

If f is smooth, then jkf is as well, so there is a map

jk : C∞(M, N) −→ C∞ (
M, Jk(M, N)

)
,(1)

taking f to jkf . This map is continuous, with respect to the strong topologies on
domain and codomain [GG73].

Theorem 2.5 (Jet transversality). Let M and N be manifolds and let S be a
submanifold of Jk(M, N). Then the set of functions f : M → N such that jkf is
transverse to S is residual in C∞

s (M, N), and open dense if S is closed.

To apply jet transversality to vector fields, we need the modified version in
Theorem 2.6. This result is known, but we are unaware of a proof in the literature.
We will prove it from Theorem 2.5, using the globalisation technique in Lemma
2.8. We will re-use the same globalisation lemma in the proof of the new result in
Theorem 2.9.
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Let X∞(M) be the class of smooth vector fields on a manifold M . Since X∞(M)
is a subset of C∞(M, TM), it inherits a strong and a weak topology: the rel-
ative topology in each case. It is easily verified that X∞(M) is weakly closed in
C∞(M, TM). In fact, it is also weakly closed in C0(M, TM). It follows that X∞

s (M)
(with the strong topology) is a Baire space (see [H76]). Let Jk (X∞(M)) be the
subbundle of Jk (M, TM) consisting of all k-jets of vector fields. The map

jk : X
∞(M) −→ C∞ (

M, Jk(X∞(M))
)

taking X to jkX, is a restriction of the k-jet extension map in Equation (1), with
N = TM , and hence the map is continuous, with respect to the strong topologies
on domain and codomain.

Theorem 2.6 (Jet transversality for vector fields). Let M be a manifold and let S
be a submanifold of Jk (X∞(M)) . Then the set of vector fields X ∈ X∞(M) such
that jkX is transverse to S is residual in X∞

s (M), and open dense if S is closed.

If M is parallelisable, i.e. TM is trivial, then this result follows directly from
Theorem 2.5. For a general proof, we need a globalisation argument. We now state
such a result, Lemma 2.8, based on a similar one used by Hirsch in the proof of
jet transversality [H76]. Our result is for general vector bundles; the generality will
allow us to re-use the argument in the proof of Theorem 2.9.

For any smooth vector bundle π : E → M , let Γ∞(E) be the set of smooth
sections of M . Note that when E = TM , we have Γ∞(E) = X∞(M). Since Γ∞(E)
is a subset of C∞(M, E), it inherits a strong and a weak topology: the relative
topology in each case. For the same reasons given above for vector fields, Γ∞

s (E) is
a Baire space and jk is strongly continuous, for all k. If E is a trivial bundle, then
E is isomorphic to M × Rn, for some n, and there is a natural bijection between
Γ∞(M) and C∞(M,Rn). The latter bijection is a homeomorphism with respect to
either the strong topologies on both spaces or the weak topologies on both spaces.

Definition 2.7. Let π : E → M be a smooth vector bundle. A smooth class of
sections of E is a family X of subsets X (U) ⊆ Γ∞(π−1(U)), defined for all open
subsets U ⊆ M , satisfying the following “localisation axioms”:

(1) If σ ∈ X (M) and U ⊆ M is open, then σ|U ∈ X (U).
(2) If σ ∈ Γ∞ (E) and there exists an open cover {Ui} of M such that σ|Ui

∈
X (Ui), for all i, then σ is in X (M).

Lemma 2.8 (Globalisation lemma). Let X be a smooth class of sections of a vector
bundle π : E → M . If there exists an open cover U of M such that, for every open
subset U of an element of U , the set X (U) is strongly open in Γ∞(π−1(U)), then
X (M) is strongly open in Γ∞(E). If in addition, each X (U) is weakly dense in
Γ∞(π−1(U)), then X (M) is also strongly dense in Γ∞(E).

Proof. Cover M with a countable and locally finite family of open sets Ui such that
the closure of each, Ui, is contained in an element Wi of U (it suffices to let the
Ui be small enough coordinate discs, and then apply paracompactness and second
countability). For each i, let

Mi =
{
ω ∈ Γ∞(E) : ω|Ui

∈ X (Ui)
}

.

From the localisation axioms, X (M) =
⋂

i Mi. By assumption, X (Ui) is strongly
open in Γ∞ (

π−1 (Ui)
)
. This implies that each Mi is strongly open in Γ∞(E).
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Indeed, for any σ ∈ Mi, the restriction σ|Ui
has a strong basic neighbourhood N ′

i

in X (Ui), and the set

Ni =
{
ω ∈ Γ∞(E) : ω|Ui

∈ N ′
i

}

is a strong basic neighbourhood of σ in Mi. The neighbourhood Ni describes
restrictions on derivatives on some countable, locally finite, family of compact sub-
sets Lij ⊆ M , all contained in Ui. Since the cover {Ui} is countable and locally
finite, the family {Lij}, for all i and all j, is still countable and locally finite. So
N :=

⋂
i Ni is a strong basic neighbourhood of σ in X (M). Since σ was arbitrary,

this proves that X (M) is strongly open.
We now assume further that each X (Wi) is weakly dense and show that each

Mi is strongly dense. Let σ ∈ Γ∞(E). Let λi : M → R be a C∞ function that
equals 1 on Ui and has compact support Ki ⊆ Wi. For every τ ∈ X (Wi), define
F (τ ) ∈ Γ∞ (E) by

F (τ ) = λiτ + (1 − λi)σ

(this is well-defined since E is a vector bundle and λi = 0 outside of the domain of
τ ). For every τ ∈ X (Wi), the first localisation axiom implies that τ |Ui

∈ X (Ui),
and then since F (τ )|Ui

= τ |Ui
, we have F (τ ) ∈ Mi. Since λi has compact support,

all of its derivatives are bounded, so F is a weakly continuous map,

F :
(
X (Wi) ⊆ Γ∞

w

(
π−1(Wi)

))
−→ Mi ⊆ Γ∞

w (E) .

Now every neighbourhood of σ in Γ∞
s (E) (with the strong topology) contains a

strong basic neighbourhood of the form N =
⋂

j Nj , where each Nj restricts deriva-
tives on some set Lj ⊆ M , and the family {Lj} is a locally finite. By the local
finiteness, the compact set Ki has non-trivial intersection with only a finite num-
ber of the sets Lj . Let Nw be the intersection of the corresponding sets Nj , and
note that since the intersection is finite, Nw is open in the weak topology. For
every τ ∈ Γ∞ (

π−1(Wi)
)
, since F (τ ) − σ has compact support Ki, it follows that

F (τ ) ∈ N if and only if F (τ ) ∈ Nw. Thus, to prove that σ is in the strong closure
of Mi, it suffices to find local sections τ ∈ X (Wi) such that F (τ ) is arbitrarily
close to σ in the weak topology. Since F is weakly continuous, it suffices to find
τ ∈ X (Wi) arbitrarily close to σ|Wi

in the weak topology. But we have assumed
that X (Wi) is weakly dense in Γ∞ (

π−1 (Wi)
)
, which finishes the proof that σ is

in the strong closure of Mi. Hence Mi is strongly dense.
We have shown that each Mi is strongly open and strongly dense in Γ∞

s (E).
Recall that X (M) =

⋂
i Mi. Since this intersection is countable and Γ∞

s (E) is a
Baire space, it follows that X (M) is strongly dense. �

Proof of Theorem 2.6 (“Jet transversality for vector fields”). Let M be a manifold
and S a submanifold of Jk (X∞(M)). First, suppose that S is closed. For every
open U ⊆ M , note that Jk (X∞(U)) is an open subset of Jk (X∞(M)). Let � (U)
be the the set of all X ∈ X∞(U) such that jkX is transverse to S ∩ Jk (X∞(U)).
It is easily verified that the family of sets � (U), for all open U ⊆ M , is a smooth
class of sections of TM . If TU is a trivial bundle, then X∞

s (U) is homeomorphic
to C∞

s (U,Rn), where n is the dimension of M , and so it follows from Theorem 2.5
that � (U) is open dense in X∞

s (U). Since strongly dense implies weakly dense,
and all bundles are locally trivial, the class {� (U)} satisfies the conditions of the
globalisation lemma (Lemma 2.8), with U being the set of U ⊆ M such that TU is
trivial. Hence � (M) is strongly dense in X∞(M).
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The set � (M) is the preimage by jk of{
f ∈ C∞ (

M, Jk (X∞(M))
)

: f � S
}

,

which by Theorem 2.5 is strongly open. Since jk is strongly continuous, it follows
that � M is strongly open.

If S is not closed, express it as the countable union of closed coordinate disks
Si. For every i, let �i (M) be the set of all smooth vector fields such that jkX
is transverse to Si. Since � (M) =

⋂
i �i (M), and we have shown that each of

the sets �i (M) is open dense (in the strong topology), it follows that � (M) is
residual. �

The jet transversality results in Theorems 2.5 and 2.6 will be sufficient to prove
Theorems 3.1, 4.1 and 4.5. For Theorem 4.6, concerning generic potentials, a new
variation on jet transversality is required. We consider vector fields parametrised by
C∞(Q,R), for some manifold Q, and a map ρ from C∞(Q,R) to C∞(

P, Jk (X∞(P ))
)
,

where P is a vector bundle over Q. We have in mind P = T ∗Q and the elements of
C∞ (Q,R) being potential functions. We assume that ρ(f) depends only on the first
m derivatives of f , i.e. that (ρ(f)) (z) depends only on jmf (π(z)) and z. Since,
for any m, the set Jm (Q,R) is a bundle over Q × R, and hence over Q, we may
form the Whitney sum Jm (Q,R) ⊕ P, which is a bundle over Q.

Theorem 2.9 (“Jet transversality for potentials”). Let π : P → Q be a smooth
vector bundle, and let S be a submanifold of Jk(X∞(P )). Let ρ : C∞ (Q,R) →
C∞ (

P, Jk (X∞(P ))
)

be a function. Suppose that the map

Φ : Jm(Q,R) ⊕ P −→ Jk (X∞(P )) ,

(jmf (π(z)) , z) �−→ (ρ(f)) (z)

is well-defined, smooth and transverse to S. Then the set of f ∈ C∞ (Q,R) such
that ρ(f) is transverse to S is residual in C∞

s (Q,R), and open dense if S is closed.

Our proof is based on Hirsch’s proof of jet transversality [H76]. The main idea is:
starting with any potential f , consider the set of all polynomial perturbations of f ,
which is a finite-dimensional vector space, and apply parametric transversality to
show that the subset of transverse perturbations is dense. This idea suffices locally,
and the global result then follows from Lemma 2.8 (globalisation), applied to the
trivial bundle Q × R → Q (sections of which “are” elements of C∞(Q,R)).

Proof of Theorem 2.9 (“Jet transversality for potentials”). Let

� (Q) = {f ∈ C∞(Q,R) : ρ(f) � S} .

First, suppose that Q is an open subset of Rn, and P = Q × Rp−n (with p ≥ n),
and that S is closed. Let f ∈ C∞(Q,R). We will show that f is in the weak closure
of � (Q). Each element of Jm

0 (Q,R) can be expressed uniquely as jmg(0) for an
mth-order polynomial g on Q ⊆ Rn, so the following map is well defined:

α : Jm
0 (Q,R) −→ C∞(Q,R),

jmg(0) �−→ f + g ,

for every mth-order polynomial g. This map is weakly continuous, and α(0) = f , so
it suffices to show that 0 is in the weak closure of {x ∈ Jm

0 (Q,R) : ρ(α(x)) � S}.
We will accomplish this by applying parametric transversality (Theorem 2.4) to
the map F := ρ ◦ α, which will prove that the set {x ∈ Jm

0 (Q,R) : F (x) � S} is
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strongly dense, and hence weakly dense, in Jm
0 (Q,R). To do this, we must show

that evF , the evaluation map of F , is smooth and transverse to S.
Let Φ be as in the statement of the theorem. Then, for every z ∈ P ,

(F (jmg(0))) (z) = ρ(f + g)(z) = Φ (jm(f + g) (π(z)) , z) ,

so we can factor evF as follows (this defines G):

evF : Jm
0 (Q,R) × P

G−→ Jm(Q,R) ⊕ P
Φ−→ Jk (X∞(P )) ,

(jmg(0), z) �−→ (jm(g + f) (π(z)) , z) �−→ ρ(g + f)(z).

By assumption, Φ is smooth and transverse to S, so it suffices to show that G is a
smooth submersion.

Since we are assuming Q is an open subset of Rn, there is a natural isomorphism

Jm(Q,R) −→ Jm
0 (Q,R) × Q,

jmf(q) �−→ (jm (f ◦ Σq) (0), q) ,

where Σq is the shift map defined by Σq(q′) = q′ + q. Since we are also assuming
P = Q × Rp−n, the above isomorphism induces one between the Whitney sum
Jm(Q,R)⊕ P and Jm

0 (Q,R)× P . Making this identification, G can be written as

G : Jm
0 (Q,R) × P −→ Jm

0 (Q,R) × P,

(jmg(0), z) �−→
(
jm

(
(g + f) ◦ Σπ(z)

)
(0), z

)
.

This is a smooth map, since f and g are smooth, for all polynomials g. For any
fixed z, the map

jmg(0) �−→ jm
(
(f + g) ◦ Σπ(z)

)
(0) = jm

(
f ◦ Σπ(z)

)
(0) + jm

(
g ◦ Σπ(z)

)
(0)

is an affine bijection on Jm(Q,R), since g ◦ Σπ(z) is a polynomial with coefficients
that are linear functions of the coefficients of g. It follows that G is a smooth
submersion. Thus evF is smooth and transverse to S. As explained above, this
implies that f is in the weak closure of � (Q). Since this argument holds for any
f ∈ C∞(Q,R), we have shown that � (Q) is weakly dense in C∞(Q,R).

Still assuming P = Q × Rp−n, let π2 : P → Rp−n be a projection onto the
second factor. Define

H : C∞
s (Q, Jm(Q,R)) −→ C∞

s

(
P, Jm(Q,R) × Rp−n

)
,

ϕ �−→ (ϕ ◦ π) × π2 ,

where the × operation is defined by ((ϕ ◦ π) × π2) (z) = (ϕ ◦ π(z), π2(z)). Using
well-known facts about the strong topology [GG73], it can be checked that H is
strongly continuous. Identifying Jm(Q,R)×Rp−n with Jm(Q,R)⊕P , the map H is
given by H(ϕ)(z) = (ϕ ◦ π(z), z) ∈ Jm(Q,R)⊕P . For every f ∈ C∞

s (Q, Jm(Q,R))
and every z ∈ P ,

(ρ(f)) (z) = Φ (jmf ◦ π(z), z) = Φ ◦ (H ◦ jm(f)) (z) .

Since jm is strongly continuous, as is composition with Φ, it follows that ρ is
strongly continuous. Since

� (Q) = ρ−1
{
ϕ ∈ C∞ (

P, Jk (X∞(P ))
)

: ϕ � S
}

,

Theorem 2.3 (elementary transversality) implies that � (Q) is strongly open.
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Now let π : P → Q be any smooth vector bundle. Again, we assume S is
closed. For every open U ⊆ Q, we define a “localisation” of ρ by ρU (h)(z) =
Φ (jmh (π(z)) , z),

ρU : C∞ (U,R) �−→ C∞ (
π−1(U), Jk

(
X

∞(π−1(U))
))

,

and define

� (U) =
{
h ∈ C∞(U,R) : ρU (h) �

(
S ∩ Jk

(
X

∞(π−1(U))
))}

.

It is easily verifed that the family {� (U)} is a smooth class of sections of the trivial
bundle Q × R → Q. If the restriction of π : P → Q to U is trivial, our earlier
arguments show that � (U) is strongly open and weakly dense in C∞ (U,R). Since
all bundles are locally trivial, Q can be covered by such open sets U . By Lemma
2.8 (globalisation), � (Q) is strongly open and strongly dense in C∞ (Q,R).

If S is not closed, express it as the countable union of closed coordinate disks Si.
For every i, let �i (Q) be the set of all f ∈ C∞(Q,R) such that jkf is transverse
to Si. Since � (Q) =

⋂
i �i (Q), and we have shown that each of the sets �i (Q) is

open dense (in the strong topology), it follows that � (Q) is residual. �
Remark 2.10 (Transversality to families of submanifolds). Since the countable in-
tersection of residual sets is residual, any of the above theorems may be applied
repeatedly to each of a finite or countable family of submanifolds, yielding a residual
subset of maps transverse to all of the submanifolds.

3. Generic quantities are never conserved by a given vector field

Consider a smooth vector field X on a manifold P, and a smooth real-valued
function F : P → R. We will begin by showing that, for a given function F,
generic vector fields X have no non-equilibrium solutions conserving F (Theorem
4.1). Theorem 4.3 is the “equivariant” version of this result: if F is G-invariant,
for some G acting freely, then generic G-invariant vector fields have no solutions
conserving F other than the relative equilibria.

Recall that a property is generic within a given space of functions if those func-
tions with the property form a residual subset of the space; in fact, in the following
theorem, the subset is open dense. The strong function space topologies will be
assumed in this section and the remainder of this article.

Theorem 3.1. Let P be a manifold and let X be a smooth vector field on P. Then,
for generic smooth functions F : P → R, the only solutions to X along which F is
conserved are the equilibria (i.e. fixed points).

Proof. Let n be the dimension of P, and consider a solution γ(t) of X. For any
smooth function F, the derivatives (F ◦ γ)(k) (0), for k = 1, . . . , n+1, are determined
by X and by jn+1F (γ(0)) . Hence we can define a map Ψ : Jn+1(P,R) → Rn+1 by

Ψ
(
jn+1F (z)

)
=

(
(F ◦ γ)′ (0), . . . , (F ◦ γ)(n+1) (0)

)
,

where γ is the solution of X with initial condition γ(0) = z. If F is constant along
γ, then all derivatives (F ◦ γ)(i) (t) must be zero, for all t, so γ(t) must remain in(
Ψ ◦ jn+1F

)−1 (0). We will show that, for generic F, this set is empty except for
the equilibrium points of X.

Let Se ⊆ Jn+1 (P,R) be the set of all jn+1F (z) for which X(z) = 0, i.e. z is an
equilibrium point of the flow of X. Let S1 be the complement of Se in Jn+1 (P,R) ,
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and note that S1 is open in Jn+1 (P,R) . We will show that, for generic F, the set(
Ψ|S1

)−1 (0) is either empty or a codimension-(n+1) submanifold of S1, and hence
of Jn+1 (P,R) as well. To do this it suffices to show that Ψ|S1

is a submersion.
We begin by computing Ψ

(
jn+1F (z)

)
in local coordinates for P. Using super-

scripts to denote components of X and subscripts to denote partial differentiation,
using the summation convention for repeated indices, and evaluating all derivatives
at the same point z = γ(0), we obtain:

(F ◦ γ)′ (0) = FjX
j ,

(F ◦ γ)′′ (0) = Fj1j2X
j1Xj2 + Fj1X

j1
j2

Xj2

...

(F ◦ γ)k (0) = Fj1j2···jk
Xj1Xj2 · · ·Xjk + (terms of lower order in F ).

We write the components of Ψ as Ψk, for k = 1, . . . , n + 1, so Ψk(jn+1F (z)) =
(F ◦ γ)(k) (0). We now fix a jn+1F (z) ∈ S1 and consider DΨ at this point. The
partial derivatives of F up to order n + 1 are coordinates for Jn+1(P,R), the
domain of Ψ. We will choose n + 1 of them and use them to show that the rank
of DΨ

(
jn+1F (z)

)
is n + 1. By definition of S1, we see that z is not a critical

point of X, so there exists a j ≤ n such that Xj(z) �= 0. It follows that, for every
k, the coefficient of Fjj···j in Gk is non-zero, where Fjj···j means the kth-order
partial derivative of F with respect to the jth component of z. This shows that the
partial derivative of Ψk with respect to Fjj···j(z) is non-zero. Since the kth order
derivative Fjj···j does not appear in Ψ1, . . . , Ψ(k−1), and this argument holds for all
k = 1, . . . , n + 1, this shows that the rank of DΨ

(
jn+1F (z)

)
is n + 1. Since the

argument holds for all jn+1F (z) ∈ S1, this shows that the restriction of Ψ to S1 is
a submersion.

It follows that S2 :=
(
Ψ|S1

)−1 (0) is a smooth submanifold of S1, and hence of
Jn+1 (P,R) as well, and that S2 is either empty or of codimension (n + 1). Note
that Ψ−1(0) ⊆ Se ∪ S2. It follows that

(
Ψ ◦ jn+1F

)−1
(0) ⊆

(
jn+1F

)−1
(Se ∪ S2).

Let B be the set of all F ∈ C∞(P,R) such that jn+1F is transverse to S2. By jet
transversality (Theorem 2.5), B is a residual subset of C∞(P,R). For any F ∈ B,

since S2 is either empty or has codimension n+1, its preimage
(
jn+1F

)−1 (S2) ⊆ P
must be empty. As noted earlier, any non-trivial solution of X along which F

is constant must remain in
(
Ψ ◦ jn+1F

)−1 (0). Since we have just shown that(
jn+1F

)−1 (S2) is empty, the only possible solutions are those that remain in(
jn+1F

)−1 (Se). But this is the set of equilibrium points of X. Hence the only
solutions of X along which F is constant are equilibria. �

Since the N -body problem has no equilibrium solutions, we have the following:

Corollary 3.2. In the Newtonian N-body problem (planar or spatial), for generic
smooth real-valued functions F on phase space, there are no solutions along which
F is conserved.

The fact that relative equilibria conserve moment of inertia implies that moment
of inertia is not generic in the sense of the corollary. This non-genericity is obviously



SAARI’S CONJECTURE IS TRUE FOR GENERIC VECTOR FIELDS 4439

related to the symmetry of the problem: in the case of the planar problem in center-
of-mass coordinates, there is an SO(2) symmetry on the phase space T ∗Q ∼= R4N−4

that conserves the vector field and the moment of inertia. Thus when generalising
Saari’s conjecture, it is most natural to restrict our attention to SO(2)-symmetric
functions F, for which the conjecture states: “a solution of the planar N -body
problem conserves F if and only if the solution is a relative equilibrium”. We now
ask: is this generalisation of Saari’s conjecture true for generic SO(2)-invariant
functions F? For simplicity we consider only free symmetries. Of course, the
SO(2) symmetry in the planar N -body problem is not free, but it is free if we
remove the origin (the centre of mass) from the configuration space, which has no
effect on Saari’s conjecture since this configuration is an N -body collision, at which
point the potential is undefined.

If a Lie group G acts freely, properly and smoothly on a manifold P, then P/G
is a smooth manifold. The class XG(P ) of smooth G-invariant vector fields on P
is isomorphic to X∞(P/G). Similarly, the class CG(P,R) of smooth G-invariant
functions on P is isomorphic to C∞(P/G,R), with this isomorphism defining the
Whitney (strong) topology on CG(P,R). Given an X ∈ XG(P ), we apply Theorem
3.1 to the corresponding vector field X̄ ∈ X∞ (P/G) , concluding that for generic
F̄ ∈ C∞(P/G,R), there are no non-equilibrium solutions to X̄ that conserve F̄ .
The corresponding conclusion in the original phase space is:

Theorem 3.3. Let P be a manifold, let G be a Lie group acting smoothly, properly
and freely on P, and let X be a smooth G-invariant vector field on P. Then, for
generic smooth G-invariant functions F : P → R, the only solutions to X along
which F is conserved are the relative equilibria.

Corollary 3.4. In the planar Newtonian N-body problem, for generic smooth
SO(2)-invariant functions F : P → R, the only solutions along which F is con-
served are the relative equilibria.

In the next section, we reverse the point of view by fixing a function F and
considering generic vector fields.

4. Generic vector fields never conserve a given quantity

Consider a vector field X on a manifold P, and a smooth function F : P → R.
As earlier, we study the question of whether there is at least one solution to X
along which F is conserved, but this time we fix F and allow X to vary. Note that,
if F is constant, it is trivially true that all solutions conserve F . We will exclude
this case, and more generally, require that the critical points of F be contained in
some codimension-1 manifold.

We will begin by showing that, for a given function F, generic vector fields
have no non-equilibrium solutions conserving F (Theorem 4.1). We next prove
the equivariant version of this result: if F is G-invariant, for some G acting freely,
then generic G-invariant vector fields have no solutions conserving F other than the
relative equilibria (Theorem 4.3). Theorem 4.5 concerns Hamiltonian vector fields
on symplectic manifolds, and Theorem 4.6 concerns Hamiltonian vector fields for
Hamiltonians of the form of “kinetic plus potential” for a fixed kinetic energy.

Theorem 4.1. Let P be a manifold. Let F : P → R be smooth and suppose that its
critical points are contained in a codimension-1 submanifold of P. Then there exists
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a residual subset C of X∞(P ) such that no vector field in C has any non-equilibrium
solution along which F is constant, and the equilibrium solutions of any vector field
in C are isolated.

Remark 4.2. The following proof is very similar to that of Theorem 3.1. The main
differences are due to that fact that the terms in Ψk containing the highest-order
partial derivatives of X contain factors of Fi as well as Xi.

Proof. Let n be the dimension of P. Consider a vector field X ∈ X∞ (P ) and a
solution γ(t) of X. The derivatives (F ◦ γ)(i) (0), for i = 1, . . . , n+1, are determined
by F and jnX (γ(0)) . Hence we can define a map Ψ : Jn(X∞(P )) → Rn+1 by

Ψ (jnX(z)) =
(
(F ◦ γ)′ (0), . . . , (F ◦ γ)(n+1) (0)

)
,

where γ is the solution of X with initial condition γ(0) = z. If F is constant along
γ, then all derivatives (F ◦ γ)(k) (t) must be zero, for all t, so γ(t) must remain in
(Ψ ◦ jnX)−1 (0).

Let Se be the codimension-n submanifold of Jn (X∞(P )) consisting of all jnX(z)
for X such that X(z) = 0, i.e. z is an equilibrium point of the flow of X. By
assumption, the critical points of F are all contained in some single codimension-1
manifold Z. Let SF be the codimension-1 submanifold of Jn (X∞(P )) consisting of
all jnX(z) such that z ∈ Z. Let S1 be the complement of Se ∪ SF in Jn (X∞(P )) ,
and note that S1 is open dense in Jn (X∞(P )) . We will show that, for generic X,

the set
(
Ψ|S1

)−1 (0) is either empty or a codimension-(n + 1) submanifold of S1,

and hence of Jn (X∞(P )) as well. We begin by computing Ψ (jnX(z)) in local
coordinates for P. Using superscripts to denote components of X and subscripts to
denote partial differentiation, using the summation convention for repeated indices,
and evaluating all derivatives at the same point z = γ(0), we obtain:

(F ◦ γ)′ (0) = FiX
i,

(F ◦ γ)′′ (0) = FijX
iXj + FiX

i
jX

j

...

(F ◦ γ)k (0) = (terms of lower order in X) + FiX
i
j1j2···jk−1

Xj1Xj2 · · ·Xjk−1 .

We write the components of Ψ as Ψk, for k = 1, . . . , n + 1, so Ψk(jnX(z)) =
(F ◦ γ)(k) (0). We now fix a jn+1X (z) ∈ S1 and consider DΨ at this point. By
definition of S1, we see that z is neither a critical point of X nor of F. Since
X(z) �= 0, there exists a j ≤ n such that Xj(z) �= 0. Since DF (z) �= 0, there exists
an i ≤ n such that Fi(z) �= 0. It follows that, for every k, the coefficient of Xi

jj···j in
Ψk is non-zero, where Xi

jj···j means the (k−1)th-order partial derivative of Xi with
respect to the jth component of z. This shows that the partial derivative of Ψk with
respect to Xi

jj···j(z) is non-zero. Since Xi
jj···j does not appear in Ψ1, . . . , Ψ(k−1),

and this argument holds for all k = 1, . . . , n + 1 and all jnX(z) ∈ S1, this shows
that the restriction of Ψ to S1 is a submersion. It follows that S2 :=

(
Ψ|S1

)−1 (0)
is a smooth submanifold of S1, and hence of Jn (X∞(P )) as well, and that S2 is
either empty or of codimension (n+1). Note that Ψ−1(0) ⊆ Se∪SF ∪S2. It follows
that

(Ψ ◦ jnX)−1 (0) ⊆ (jnX)−1 (Se ∪ SF ∪ S2).
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Let B be the set of all X ∈ X∞ (P ) such that jnX is transverse to both Se and S2.
By jet transversality for vector fields (Theorem 2.6), applied twice, B is a residual
subset of X∞ (P ) . For any X ∈ B, since S2 is either empty or has codimension
n + 1, its preimage (jnX)−1 (S2) ⊆ P must be empty. Similarly, since Se has
codimension n, its preimage (jnX)−1 (Se) must be either empty or 0-dimensional;
in other words it consists of isolated points (if any). The set (jnX)−1 (SF ) consists
of all jnX(z) with z ∈ Z, where Z is a codimension-1 submanifold containing all of
the critical points of F. As noted earlier, any non-trivial solution of X along which
F is constant must remain in (Ψ ◦ jnX)−1 (0). Hence, the only such solutions (if
any) are either equilibria, which are isolated, or solutions remaining in Z.

The submanifold Z may be covered with a countable number of submanifold
charts, in each of which Z is a level set of some smooth function f i with no critical
points. This function f i may be smoothly extended to a function on P. Applying
the above argument, with f i in place of F, we conclude that there exists a residual
subset Bi of X∞ (P ) such that, for any X ∈ Bi, the only solutions (if any) of X
conserving f i are equilibria, and these are isolated. Define C = B∩

⋂
i Bi, and note

that C is residual in X∞ (P ) . For any X ∈ C, any solution of X that remains in Z
must conserve f i, for some i and some time interval, so it must be an equilibrium.
Hence the only solutions of X along which F is constant are equilibria, and these
are isolated. �

The previous theorem, with F equal to the moment of inertia, implies that, for
generic vector fields, there will be no non-equilibrium constant-inertia solutions,
not even relative equilibria. The existence of relative equilibria, for the Newtonian
potential as for many others, is of course related to the symmetry of the of the
vector field — an SO(2) symmetry in the case of the planar N -body problem.
Thus when generalising Saari’s conjecture to arbitrary vector fields X, it makes
most sense to restrict our attention to SO(2)-invariant vector fields, for which the
conjecture states: “a solution of X has constant moment of inertia if and only if
the solution is a relative equilibrium”.

As noted earlier, it suffices to consider only free symmetries. Let G act freely,
properly and smoothly on P, so that P/G is a smooth manifold. If F : P → R
is G-invariant, then it descends to a function F̄ : P/G → R, the critical points
of which are the projections of the critical points of F. If the critical points of F
are contained in some G-invariant codimension-1 submanifold Z, then it can be
shown that Z/G is a codimension-1 submanifold of P/G. Applying Theorem 4.1 to
P/G, we see that generic vector fields on P/G have no non-equilibrium solutions
that conserve F̄ , and the equilibrium solutions are isolated. The corresponding
conclusion in the original phase space is:

Theorem 4.3. Let P be a manifold and let G act freely and properly on P. Let
F : P → R be a smooth G-invariant function such that its critical points are con-
tained in a G-invariant codimension-1 submanifold of P. Then there exists a residual
subset C of XG(P ) such that, for any vector field X ∈ C, the only solutions of X
that conserve F are relative equilibria, and these are isolated (in the sense that they
project to isolated points in the reduced space).

The following corollary concerns the phase space R4N−4 of the N -body problem,
and the inertia function I defined in the Introduction. The corollary shows that a
very “direct” generalisation of Saari’s original conjecture is generically true.
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Corollary 4.4. A solution to a generic SO(2)-symmetric vector field X on R4N−4

has constant inertia if and only if the solution is a relative equilibrium.

We now pursue analogous genericity results in smaller classes of vector fields:
first Hamiltonian vector fields on symplectic manifolds, and then simple mechanical
systems. For any real valued function H on a symplectic phase space P , let XH

be the associated Hamiltonian vector field on P . The key ingredient in the next
theorem is the fact that the map dH(z) �→ XH(z), for any fixed z, is surjective,
due to the non-degeneracy of the symplectic form. We note that this is not true
for general Hamiltonian vector fields on Poisson manifolds.

Theorem 4.5. Let (P, ω) be a symplectic manifold and let F : P → R be a smooth
function such that the critical points of F are contained in a codimension-1 sub-
manifold of P. Then there exists a residual subset C of C∞(P,R) such that, for any
H ∈ C, the only solutions to the Hamiltonian vector field XH along which F is
constant are equilibria, and these (if any) are isolated.

Proof. Let 2n be the dimension of P. Define

Φ : J2n+1(P,R) −→ J2n (X∞(P )) ,

j2n+1H (z) �−→ j2nXH(z).

The vector field XH is defined by iXH
ω = dH. Since ω is smooth, it follows that

Φ is smooth.
Let Ψ, Se, SF , S1, S2 be defined as in the proof of Theorem 4.1, but with 2n in

place of n. Let Ue = Ψ−1(Se), UF = Ψ−1(SF ), U1 = Ψ−1(S1), U2 = Ψ−1(S2). It
is easily checked that Ue and UF are submanifolds of J2n+1(P,R), of codimensions
2n and 1, respectively, U1 is open in J2n+1(P,R), and U2 = (Ψ ◦ Φ|U1

)−1(0). Let
j2n+1H(z) ∈ U1, so z is neither a critical point of F nor of XH . We choose canonical
local coordinates (q1, . . . , qn, p1, . . . , pn) such that q1 ≡ F . The existence of such
coordinates is guaranteed by the proof of Darboux’ Theorem given in [Arn78]. In
these coordinates, X1

H = ∂H
∂p1

= Hn+1, and the only nonzero partial derivative of F

is F1 ≡ 1. For every 1 ≤ k < 2n + 1, let (Ψ ◦ Φ)k be the kth component of Ψ ◦ Φ.
It follows from the proof of Theorem 4.1 that

(Ψ ◦ Φ)k(j2n+1H(z)) = H(n+1)j1...jk−1(XH)j1 . . . (XH)jk−1

+ (terms of lower order in H),

where subscripts on the right-hand side indicate partial derivatives, the base point
z is suppressed, and there is implicit summation over the jl’s. Let j be such that
Xj

H(z) �= 0. Then the coefficient of H(n+1)j...j in the above expression is nonzero.
If j �= n+1, then the equality of mixed partial derivatives of H must be considered;
but since the first subscript of H is always (n+1) in all of the highest order terms, no
permutation of subscripts of H(n+1)j...j gives a derivative with a nonzero coefficient.
Since H(n+1)j...j (with (k−1) copies of j) doesn’t appear in (Ψ◦Φ)1, . . . , (Ψ◦Φ)k−1,
and the argument holds for all k, it follows that D(Ψ ◦Φ)(j2n+1H(z)) is surjective.
We have shown that Ψ ◦ Φ|U1

is a submersion. It follows that U2 is a submanifold
of J2n+1(P,R) that is either empty or of codimension 2n + 1.

Let B be the set of all H ∈ C∞ (P,R) such that j2n+1H is transverse to both Ue

and U2. By jet transversality (Theorem 2.5), applied twice, B is a residual subset of
C∞ (P,R) . For any H ∈ B, since U2 is either empty or has codimension 2n + 1, its
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preimage
(
j2n+1H

)−1 (U2) ⊆ P must be empty. Similarly, since Ue has codimen-
sion n, its preimage

(
j2n+1H

)−1 (Ue) must be either empty or 0-dimensional; in
other words it consists of isolated points (if any). As noted earlier, any non-trivial
solution of XH along which F is constant must remain in

(
Ψ ◦ j2nXH

)−1 (0) =(
Ψ ◦ Φ ◦ j2n+1H

)−1 (0) ⊆
(
Φ ◦ j2n+1H

)−1 (Se ∪ SF ∪ S2) . If we assume that F

has no critical points, then this set is contained in
(
j2n+1H

)−1 (Ue ∪ U2) . Recall-
ing that

(
j2n+1H

)−1 (U2) is empty, we conclude that the only solutions along which
F is constant are equilibria, and these are isolated. It remains only to deal with
the critical points of F. This is done in the same manner as in Theorem 4.1 �

We would like to prove an equivariant version of this result, analogous to The-
orem 4.3. A natural approach is to use symplectic reduction (see [AM78]), and
apply Theorem 4.5 on each reduced space. There is a problem, however: for each
momentum value, we have a different reduced space and a different reduced Hamil-
tonian. One could show that, for every momentum value µ, there exists a residual
set Cµ of G-invariant Hamiltonians H such that XH has no constant-F solutions
of momentum µ. If we define C =

⋂
µ Cµ, then for any H in C, the vector field

XH has no constant-F solutions; but since µ is a continuous variable, C need not
be residual. For this reason it seems reasonable to use Poisson reduction rather
than symplectic reduction, which would require an extension of Theorem 4.5 to
general Hamiltonian systems on Poisson manifolds. Another possible approach is
to avoid reduction entirely, and instead use the theory of equivariant transversality
(see [F77]). This problem remains open.

The next theorem concerns genericity in the class of Hamiltonian vector fields
with a Hamiltonian of the form “kinetic plus potential”, for a fixed kinetic energy.
It is stated in the equivalent Lagrangian formulation. For the proof of this theo-
rem, standard jet transversality is insufficient, since the potential is a function of
configuration only. For this reason we use the related version of transversality given
in Theorem 2.9.

Theorem 4.6. Let Q be a Riemannian manifold and let F : Q → R be a smooth
function such that the critical points of F are contained in a codimension-1 sub-
manifold of Q. Let K : TQ → R be the kinetic energy function defined by the
given metric, namely K(q, q̇) = 1

2 ‖q̇‖
2
q . Then there exists a residual subset C of

C∞(Q,R) such that for any V ∈ C, the Euler-Lagrange equations for the Lagrangian
L = K − V have no non-equilibrium solution along which F is constant, and the
equilibrium solutions are isolated.

Proof. Let n be the dimension of Q and let π : T ∗Q → Q be the cotangent bundle
projection. We consider Hamiltonians of the form H = K + V. To be more precise,
for any function V ∈ C∞ (Q,R) , let FL : TQ → T ∗Q be the Legendre transform
of L = K − V (which in fact depends only on the metric), and define HV ∈
C∞ (T ∗Q,R) by HV = K ◦ (FL)−1 + V ◦ π. Note that the solutions of the Euler-
Lagrange equations for L = K − V are the projections by π of the solutions to the
Hamiltonian vector field XHV

on T ∗Q.
Let P = T ∗Q. Define Ψ :

(
J2n (X∞ (P ))

)
→ R2n+1 by Ψk

(
j2nX(z)

)
=

(F ◦ γ)(k) (0), for every X ∈ X∞(P ) and every solution γ of X such that γ(0) = z.

If F ◦γ is constant, then γ(t) remains in
(
Ψ ◦ j2nX

)−1 (0). Our strategy is to apply
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Theorem 2.9 with ρ(V ) = j2nXHV
. We thus define

Φ : J2n+1(Q,R) ⊕ P −→ J2n (X∞(P )) ,(
j2n+1V (q) , z

)
�−→ j2nXHV

(z).

As noted in the proof of the previous theorem, j2nXH(z) is a smooth function of
j2n+1H(z). Since the latter is a smooth function of j2n+1V (π(z)), it follows that
Φ is smooth.

Let Se = {j2nX(z) : X(z) = 0}, which is a codimension 2n-submanifold of
J2n(X∞(P )), and let We = {j2n+1V (q) : dV (q) = 0}, which is a codimension n-
submanifold of J2n+1(C∞(Q,R)). Let Ue = Φ−1(Se) = We ⊕ {0} (the zero section
in T ∗Q). Let Be be the set of all V ∈ C∞(Q,R) such that j2n+1V is transverse to
We. By jet transversality (Theorem 2.5), Be is residual.

By assumption, the critical points of F are contained in a codimension-1 subman-
ifold Z of P. Let SF be the codimension-1 submanifold of J2n (X∞(P )) consisting of
all j2nX(z) such that z ∈ Z. Let S1 be the complement of Se∪SF in J2n (X∞(P )) ,
and note that S1 is open dense. Recall the map Ψ :

(
J2n (X∞ (P ))

)
→ R2n+1

defined above. As in the proofs of the previous theorems, we can check that
Ψ is a submersion. Let S2 =

(
Ψ|S1

)−1 (0). Since Ψ is a submersion, S2 is ei-
ther empty or a codimension-(2n + 1) submanifold of J2n (X∞(P )) . Note that
(Ψ)−1 (0) ⊆ Se ∪ SF ∪ S2.

We will show that the restriction of Φ to U1 := Φ−1(S1) is transverse to S2. Since
Ψ is a submersion and S1 is open dense in Jn (X∞(P )) , this is equivalent to showing
that the restriction of Ψ ◦ Φ to U1 is a submersion. We do so using canonical local
coordinates (z1, . . . , z2n) =

(
q1, . . . , qn, p1, . . . , pn

)
on T ∗Q. In these coordinates,

H = 1
2pig

ijpj + V, where gij is the inverse of the metric tensor, and we use the
summation convention. The vector field XHV

is defined by
(
X1

HV
, . . . , X2n

HV

)
=(

q̇1, . . . , q̇n, ṗ1, . . . , ṗn

)
and

q̇i =
∂H

∂pi
= gijpj

ṗi = −∂H

∂qi
= −1

2
pkgkl

,i pl − V,i

where subscripts after a comma denote differentiation with respect to variables qi.
Given any path γ(t) in P, we can now compute

(F ◦ γ)′ (t) = F,i q̇i = F,i gij pj ,

(F ◦ γ)′′ (t) =
(
F,il gij + F,i gij

,l

)
q̇l pj + F,i gij ṗj

= (terms with no V,j) − F,i gij V,j

...

(F ◦ γ)(k+1) (t) = (terms of lower order in V )

− F,i gij1 V,j1j2...jk

(
gj2l2 pl2

)
. . .

(
gjklk plk

)
.

Note that (Ψ ◦ Φ)k (j2n+1V (π(z)), z) = (F ◦ γ)(k) (0), where γ(0) = z.
We now fix a

(
j2n+1V (π(z)), z

)
∈ U1 and consider D (Ψ ◦ Φ) at this point. Since

Φ
(
j2n+1V (π(z)), z

)
is in S1, it is neither in SF nor in Se. Thus we can assume that
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∇F (z) and ∇V (π(z)) are both non-zero. Thus there exists an i and j such that
Fi(z) and Vj (π(z)) are both non-zero. Since the metric tensor is positive definite,
gii(z) and gjj(z) are non-zero. It follows that F,i gii V,ij...j

(
gjj pj

)k−1
, evaluated

at our chosen z, is non-zero, for any k ∈ N. But this is the partial derivative of
(Ψ ◦ Φ)k with respect to Vij...j (the subscript j is repeated k−1 times). Since Vij...j

doesn’t appear in Ψ1 . . .Ψk−1, and this argument holds at any point in U1, we have
shown that the restriction of Ψ ◦ Φ to U1 is a submersion. It follows that Φ|U1

is
transverse to S2. Since S2 ⊆ S1 = Φ (U1) , this implies that Φ is transverse to S2.
Let B2 be the set of all V ∈ C∞ (Q,R) such that j2nXHV

is transverse to S2. By
Theorem 2.9, with ρ(V ) = j2nXHV

, B2 is a residual subset of C∞ (Q,R) .
Let B = B2 ∪ Be, which is also residual. For any V ∈ B, j2nXHV

is transverse
to S2 and j2n+1V is transverse to We. Since j2nXHV

is transverse to S2, and S2

is either empty or has codimension 2n + 1, the preimage
(
j2nXHV

)−1 (S2) ⊆ T ∗Q

is empty. Since j2n+1V is transverse to We, which has codimension n, the set(
j2n+1V

)−1 (Se) ⊆ Q, if nonempty, has dimension 0, in other words consists of
isolated points. Recall that any solution to XHV

along which F is constant must
be entirely contained in

(
Ψ ◦ j2nXHV

)−1 (0), and (Ψ)−1 (0) ⊆ Se ∪ SF ∪ S2. We
have shown that

(
j2nXHV

)
(S2) is empty. If we assume F has no critical points,

then any constant-F solution must remain in
(
j2nXHV

)−1 (Se), which is contained
in π−1(We). Since the elements of We are isolated points of Q, and our vector field
is a second order equation on Q, this means that any constant-F solution is an
equilibrium.

It remains only to deal with the critical points of F. This is done in the same
manner as in the previous two theorems. �

Corollary 4.7. For generic N-body potentials, there are no non-equilibrium con-
stant-inertia trajectories.

We would like to prove an equivariant version of this theorem, analogous to The-
orem 4.3, a corollary of which would be the following generalisation of Saari’s con-
jecture: “a solution of the planar N -body problem, for a generic SO(2)-symmetric
potential, has constant inertia if and only if it is a relative equilibrium”. As noted
earlier, it suffices to consider free actions. Given a free action of G on Q, a G-
invariant Riemannian metric on Q (defining the kinetic energy), and a G-invariant
F : Q → R, we would like to show that generic G-invariant potentials have no
constant-inertia solutions other than the relative equilibria. A natural strategy is
to try to use cotangent bundle reduction. If we restrict our attention to abelian
groups G then the symplectic reduced spaces at different momentum values are
all isomorphic to T ∗ (Q/G) . The difficulty is that the reduced vector fields are
momentum-dependent (see [AM78]). We have attempted to deal with this, using
a generalisation of Theorem 2.9, but so far without success. Another (related) ap-
proach would be to use the symmetry-adapted coordinates given by the Cotangent
bundle slice theorem, leading to the versions of the “bundle equations” (“recon-
struction equations”) given in [RSS05].

There are smaller classes of potentials relevant to Saari’s conjecture that we
haven’t yet addressed. One such class is the Newtonian potential for arbitrary
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combinations of masses. Another is the class of potentials of the form

V (q1, . . . ,qN ) = −
∑

1≤i<j≤N

mimjf (‖qi − qj‖)

with
f(r) =

∑
1≤k≤2N−1

βkrαk ,

i.e. linear combinations of powers of mutual distance. (For example, this class
includes the Lennard-Jones potential.) While we see no theoretical obstacle to the
use of our methods to prove a genericity result in either of these classes, we attest
that the computational difficulty is considerable.

Remark 4.8. In the Newtonian N -body problem in R3, the relative equilibria are
planar central configurations. A well-known open problem asks: what combinations
of masses admit only a finite number of central configurations, where “finiteness”
is to be interpreted modulo rotation, translation and scaling (see, for example
[HM06]). While our work does not address the question of finiteness, we have
shown that, for generic symmetric vector fields, the relative equilibria are “isolated”
(as points in the reduced space) (Theorem 4.3). However, since the relationship
between relative equilibria and central configurations is specific to the Newtonian
potential, we will not be able to draw any conclusions about central configurations
unless and until a “genericity of Saari’s conjecture” result is proven in the class of
Newtonian potentials with arbitrary masses.

5. Conclusion

We have generalised Saari’s conjecture in various ways, and shown that these
generalised conjectures are generically true. In Theorem 3.3 we showed that, for
any given G-invariant vector field X (with G acting freely), and for generic G-
invariant functions F , the only solutions to X that conserve F are the relative
equilibria. In Section 4 we reversed the perspective, fixing F and allowing X to
vary. We have shown in Theorem 4.1 that, for any given G-invariant F without “too
many” critical points, and for generic G-invariant vector fields X, the only solutions
to X that conserve F are the relative equilibria. We then prove similar results for
generic Hamiltonian vector fields (Theorem 4.5); and generic Hamiltonian vector
fields for Hamiltonians of the form “kinetic plus potential” with a given kinetic
energy (Theorem 4.6). However the latter two results do not address symmetry
(equivalently, we assume G is trivial). The problem of finding equivariant versions
of Theorems 4.5 and 4.6 remains open. Our main tool in proving these results was
jet transversality, including our new version in Theorem 2.9.

Our genericity results seem “natural” and unsurprising from the point of view
of transversality theory. Roughly speaking, by requiring F ◦ γ to be constant, for
every solution γ of X, we are putting an infinite number of constraints on the
derivatives of F (if X is fixed) or on X (if F is fixed), and generic functions or
vector fields will not satisfy these constraints. The proofs of these theorems can be
intricate, but the central idea is consistent with a large body of “general position”
results. Nonetheless, the consequences for Saari’s conjecture are significant: the lack
of constant-inertia solutions (other than the relative equilibria) is not a property
specific to the Newtonian potential, or to the special relationship between moment
of inertia and kinetic energy. Instead, the non-conservation of a function is a generic
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property in several classes of problems containing the specific one for which Saari’s
original conjecture is formulated.

Of course, our result does not prove Saari’s original conjecture. Given the sig-
nificance of the N -body problem, this specific question is still of interest. However,
our work does change the nature of future approaches to this conjecture. In light of
our genericity results, we expect Saari’s conjecture to be true. If this is not the case
for some potentials or some masses, then it is because those potentials or masses
have a non-generic relationship to the moment of inertia (see for example [San04]).

Our work also leads us to question why one would expect an elegant conceptual
proof of Saari’s conjecture. In our experience, genericity is easiest to prove in the
most general classes of vector fields or functions. The more specific the class is,
the more interesting the result but the harder the proof: for example, Theorem 4.6
about generic potentials is more relevant to the N -body problem than Theorem
4.1 about generic vector fields, but it is harder to prove. We expect that genericity
within smaller classes, for example, the Newtonian potential with generic masses,
will be much harder, for computational rather than theoretical reasons. We spec-
ulate that any general proof of Saari’s original conjecture (for all masses, not just
generic ones) will be even more computationally difficult.
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