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TORUS ACTIONS ON SYMPLECTIC ORBI-SPACES

TANYA SCHMAH

(Communicated by Ronald A. Fintushel)

Abstract. Which 2n-dimensional orbi-spaces have effective symplectic k-
torus actions? As shown by Lerman and Tolman (1997) and Watson (1997),
this question reduces to that of characterizing the finite subgroups of central-
izers of tori in the real symplectic group Sp(2n,R). We resolve this question,
and generalize our method to a calculation of the centralizers of all tori in
Sp(2n,R).

1. Introduction

This work is motivated by the study of torus actions on symplectic orbifolds by
Lerman and Tolman [LT], and is an extension of work by Watson [W] on circle
actions on 4-dimensional orbi-spaces. As discussed in [LT], orbifolds arise in geo-
metric mechanics as reduced phase spaces. The specific question we are concerned
with is: for a given k, which 2n-dimensional orbi-spaces have effective symplectic
T k (k-torus) actions? As shown in [LT] and [W], this question reduces to that
of characterizing the finite subgroups of centralizers of tori in the real symplectic
group Sp(2n,R) (see Lemma 2.1 below). In resolving this question, we were able
to generalize our method to a calculation of the centralizers of all tori in Sp(2n,R),
which may be of interest in its own right.

A symplectic orbi-space is R2n/Γ for some finite subgroup Γ of Sp(2n,R). The
group of symplectomorphisms of R2n/Γ, denoted Sp(R2n/Γ), is defined to be
N(Γ)/Γ. A symplectomorphism ϕ of R2n/Γ acts on R2n/Γ by ϕ(Γv) = Γϕ(v).
A symplectic action on R2n/Γ is a Γ-invariant symplectic action on R2n.

The main results are Theorems 4.7 and 5.1. It is hoped that the latter, resolving
the question of which orbi-spaces have symplectic T k actions, will be useful in a
future classification of all orbifolds that admit effective torus actions. Lerman and
Tolman have already classified 2n-dimensional orbifolds admitting an effective n-
torus action [LT]. The results here are a generalization of the work of Watson [W],
in which he proves Theorem 5.1 for n = 2 and k = 1. Both the present paper and
[W] make use of results in [LT].
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Throughout this article, all centralizers mentioned will be with respect to
Sp(2n,R).

2. The relationship of torus actions to centralizers of tori

The following lemma gives the relationship between torus actions on symplectic
orbi-spaces and centralizers of tori in Sp(2n,R). Most of the result is contained in
[LT, 3.1, 6.1]; since that version is only concerned with T n actions in R2n, and the
centralizer of T n in Sp(2n,R) is itself, centralizers are not mentioned. A version
applicable to all torus actions is given in [W]; it is only stated for n = 2, but the
proof generalizes easily. We present a collected and slightly modified proof here.

Lemma 2.1 ([LT], [W]). Let Γ be a finite subgroup of Sp(2n,R). Then R2n/Γ ad-
mits an effective symplectic T k action if and only if Γ is a subgroup of the centralizer
(in Sp(2n,R)) of some k-torus in Sp(2n,R).

Proof. (=⇒) Suppose R2n/Γ admits an effective symplectic T k action. Then there
is some k-torus T in N(Γ)/Γ. Let T̂ = π−1(T ) be the preimage of T by the quotient
map N(Γ) → N(Γ)/Γ, and let T̃ be the identity component of T̂ . We will show
that T̃ is a k-torus and T̂ ⊂ Z(T̃ ), which will complete this half of the proof, since
Γ ⊂ T̂ . Since T̃ is a connected component, it is closed, and so it must be a Lie
group. To show compactness of T̂ , and hence T̃ , let (qi) be a sequence in T̂ . Since
the original torus T is compact, (π(qi)) must have a cluster point, p. Since Γ is
finite, one of the preimages of p must be a cluster point of (qi). Next we show
that T̂ ⊂ Z(T̃ ). Let a ∈ T̂ . Define fa : T̂ → T̂ by fa(b) = aba−1b−1. Since π(T̂ )
is abelian, we must have π(fa(T̂ )) = {Γ}, so fa(T̂ ) ⊂ Γ. Now T̃ is connected by
definition, and fa is continuous, so fa(T̃ ) is connected. But the only connected
subgroup of the finite group Γ is the trivial one, so fa(T̃ ) = {I}. Since this holds
for every element a of T̂ , we have shown that T̂ ⊂ Z(T̃ ) . One useful consequence
of this is that T̃ is abelian; since we have already shown that it is a compact and
connected Lie group, it must be a torus. Since π is onto T and has a finite kernel,
T̃ must be k-dimensional. Thus T̃ is a k-torus and Γ ⊂ T̂ ⊂ Z(T̃ ), as required.

(⇐=) Suppose Γ is a finite subgroup of Z(T̃ ) for some k-torus T̃ in Sp(2n,R).
Then T̃ ⊂ N(Γ), so by the “second isomorphism theorem for Lie groups” we have

T̃Γ/Γ ∼= T̃ /(Γ ∩ T̃ ).

From this isomorphism we see that T̃Γ/Γ is abelian, compact and connected, so it
must be a torus; in fact, it must be a k-torus, because Γ∩ T̃ is finite. Thus we have
constructed an effective symplectic T k action on R2n/Γ.

3. Centralizers of tori: Reduction to a special case

We will now show that we need only consider centralizers of certain very simple
tori. These results lead fairly easily to a proof of Theorem 5.1. Though the proof
of Theorem 5.1 does not require an explicit computation of the centralizers of all
tori in Sp(2n,R), we give the result of such a computation in Theorem 4.7.

As a first step, it follows from standard results (see for example [BtD]), that all
tori in Sp(2n,R) are conjugate to one contained in the following diagonal represen-
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tation of T n:

Tn :=




cos θ1 − sin θ1

sin θ1 cos θ1
0

. . .

0 cos θn − sin θn
sin θn cos θn

 : θ1, θ2, ..., θn ∈ R


.

Thus Lemma 2.1 implies the following.

Lemma 3.1. Let Γ be a finite subgroup of Sp(2n,R). Then R2n/Γ admits an
effective symplectic T k action if and only if Γ is conjugate to a subgroup of the
centralizer of some k-torus in Tn.

We now define some notation for tori in Tn. First, a few conventions. We will
consider the standard tori T n to be subgroups of Cn in the usual way,

T n = {(z1, ..., zn) ∈ Cn : |zi| = 1 for all i}.

We denote by exp the map from Rn to T n given by t 7−→e2πit (component-wise
exponentiation). Define the map diag : Cn →Mat(n,C) by

diag

 z1

...
zn

 =

 z1 0
. . .

0 zn

 .

We will identify Mat(n,C) with its representation in Mat(2n,R) induced by

a+ bi 7−→
(
a −b
b a

)
.

All homomorphisms from T k to T n are of the form exp(t) 7−→ exp(Mt) for some
n× k matrix M with integer entries. For all such matrices M , define

ϕM : T k → Tn

exp(t) 7−→ diag(exp(Mt))

and let ΦM = Im(ϕM ). All tori in Tn are of this form. Note that ΦM is a k-torus
if and only if M has rank k (though ϕM need not be faithful).

Lemma 3.2. If C ∈ Z(ΦM ), then either the ith row of M equals ±1 times the
jth row or (considering C as an element of Mat(2n,R)) the (i, j)th 2× 2 block of
C is zero. If the ith row equals the jth row, then the (i, j)th block is of the form(

a b
−b a

)
. If the ith row equals −1 times the jth row, then the (i, j)th block is of

the form
(
a b
b −a

)
.

Proof. We have CϕM (s) = ϕM (s)C for all s = (s1, ..., sn) ∈ T k. For every 1 ≤ ` ≤
k, we can differentiate this equation at the identity, giving

C(
∂ϕM
∂s`

∣∣∣
s=0

) = (
∂ϕM
∂s`

∣∣∣
s=0

)C.
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By direct computation we find that, if M = (mij) and the (i, j)th 2× 2 block of C

is
(
a b
c d

)
, we have

mj`

(
b −a
d −c

)
= mi`

(
−c −d
a b

)
,

from which it follows that

m2
i`

(
−c −d
a b

)
= mi` ·mj`

(
b −a
d −c

)
= m2

j`

(
−c −d
a b

)
.

Thus if any of a, b, c or d are nonzero, we see that mi` = ±mj`. Further, the ratio
mil
mjl

is independent of l. The result follows.

Lemma 3.3. If M1 and M2 are n×k matrices with integer entries and M2 = QM1,
where Q is a permutation matrix, then Z(ΦM2) = QZ(ΦM1)Q−1.

Proof. Consider first the case where Q is a transposition of two rows, say rows i
and j. Let t ∈ Rk. Since exp acts componentwise, exp(Qt) = Q exp t. By a simple
computation, we see that for any s ∈ Cn, we have diag(Qs) = Qdiag(s)Q−1. So

ΦM2 = {diag(exp(QM1t) : t ∈Rk}
= {Qdiag(exp(M1t))Q−1 : t ∈Rk}
= QΦM1Q

−1 .

This implies that Z(ΦM2) = QZ(ΦM1)Q−1. The result for general Q follows.

Definition 3.4. A matrix M is in PM-block form (the “PM” stands for “plus-or-
minus”) if it can be divided horizontally into blocks,

M =


Block 1
Block 2

...
Block r

 ,

satisfying the following conditions.

• Each block can be subdivided horizontally into two sub-blocks,
(
A
B

)
called

the top half and the bottom half, such that A is nonempty, all rows in A are
equal, and if B is nonempty, then all rows in B are equal and each row in B
equals −1 times each row in A.
• No row is equal to ±1 times a row from a different block.
• If there is a zero block, it is the bottom one (Block r).
Each block satisfying these conditions will be called a PM-block.

Definition 3.5. For any sets of matrices S1 ⊂ Mat(n1,C) and S2 ⊂ Mat(n2,C),
define

S1 ×ι S2 =
{(

A1 0
0 A2

)
: A1 ∈ S1 and A2 ∈ S2

}
.

Note that if M =

 M1

...
Mr

, then ΦM = ΦM1 ×ι ...×ι ΦMr .
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Proposition 3.6. If M has integer entries and is in PM-block form, with PM-
blocks M1, ...Mr, then Z(ΦM ) = Z(ΦM1)×ι ...×ι Z(ΦMr ).

Proof. Suppose C ∈ Z(ΦM ). For every i and j, if the ith and jth rows of M are in
different PM-blocks, then by Lemma 3.2, the (i, j)th 2× 2 block of C is zero. So C
is of the form

C =

 C1 0
. . .

0 Cr


for some 2ns×2ns matrices Cs, where n1, ..., nr are the sizes of the blocks M1, ...,Mr

respectively.
For matrices of this form, it is clear that C is symplectic if and only if C1, ..., Cr

are. Further, since ΦM = ΦM1 ×ι ...×ι ΦMr , we see that C ∈ Z(ΦM ) if and only if
each Cs ∈ Z(ΦMs).

Note that for every n×n matrix M , there exists some row-permutation matrix Q
such that QM is in PM-block form. Thus Lemma 3.3 and the preceding proposition
reduce our problem to one of finding the centralizers of tori ΦM for matrices M
consisting of only one PM-block.

In fact, the results in this section suffice in order to prove our main result,
Theorem 5.1, about torus actions on orbi-spaces. However, we are now in a position
to calculate the centralizers of all tori in Sp(2n,R).

4. Computation of the centralizers of tori

We now find the centralizers of all tori ΦM such that M consists of only one
PM-block. In general, matrices in the centralizer of ΦM won’t be in GL(n,C).
However, we will find conjugates that are. We need to define some new families of
matrices.

Definition 4.1. For any p ≤ n and q = n− p, let Fp,q ∈ GL(2n,R) be the matrix
in which the upper left hand block is the 2p× 2p identity matrix, the remainder of
the diagonal consists of alternating 1’s and −1’s, and the rest of the matrix is zero.

Note that Fp,q = FTp,q = F−1
p,q .

Lemma 4.2. Let M be the n×1 matrix (m, ...,m,−m, ...,−m)T for some non-zero
integer m, where there are p entries of m and q entries of −m. Then Fp,qZ(ΦM )F−1

p,q

⊂ GL(n,C).

Proof. Let C ∈ Z(ΦM ), and let 1 ≤ i, j ≤ n. If i and j are either both less than
or equal to p, or both greater than p, then Lemma 3.2 shows that the (i, j)th 2× 2

block of C is of the form
(

a b
−b a

)
. Direct calculation shows that the (i, j)th

2× 2 block of Fp,qCF−1
p,q is either(

a b
−b a

)
(if i, j ≤ p), or

(
a −b
b a

)
(if i, j > p).
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If i ≤ p < j or j ≤ p < i, then Lemma 3.2 shows that (i, j)th 2× 2 block of C is of

the form
(
a b
b −a

)
. So the (i, j)th 2× 2 block of Fp,qCF−1

p,q is either(
a b
−b a

)
(if i ≤ p and j > p), or

(
a −b
b a

)
(if j ≤ p and i > p).

Definition 4.3. For any p ≤ n and q = n−p, let Ip,q be the complex n×n matrix(
Ip 0
0 −Iq

)
,

where Ip is the p× p identity matrix.

Note that −iIn,0, when regarded as an element of GL(2n,R), is the matrix Jn
used to define the symplectic form.

More generally, Fp,qJnF−1
p,q = −iIp,q.

Definition 4.4. Let U(p, q) = {A ∈ GL(n,C) | A∗Ip,qA = Ip,q}. The matrices in
these groups are called pseudounitary.

Note that U(n, 0) = U(0, n) = U(n), the unitary group.

Lemma 4.5. The pseudounitary group U(p, q) = GL(n,C) ∩ Fp,qSp(2n,R)F−1
p,q .

Note that this is a generalization of the standard result that U(n) = GL(n,C)∩
Sp(2n,R) [MS, 2.17].

Proof. Let A ∈ GL(n,C). In the second line of the following computation we use
the fact that A∗, when A is considered as an element of GL(n,C), corresponds to
AT when A is considered as an element of GL(2n,R). We have

A ∈ U(p, q) ⇐⇒ A∗Ip,qA = Ip,q

⇐⇒ AT Ip,qA = Ip,q

⇐⇒ AT (−iIp,q)A = (−iIp,q)
⇐⇒ ATFp,qJnF

−1
p,qA = Fp,qJnF

−1
p,q

⇐⇒ F−1
p,qA

TFp,qJnF
−1
p,qAFp,q = Jn

⇐⇒ (F−1
p,qAFp,q)

TJn(F−1
p,qAFp,q) = Jn

⇐⇒ F−1
p,qAFp,q ∈ Sp(2n,R)

⇐⇒ A ∈ Fp,qSp(2n,R)F−1
p,q .

Definition 4.6. For every p and q, let W (p, q) = F−1
p,qU(p, q)Fp,q.

Note that W (n, 0) = W (0, n) = U(n).
We are now able to state the main result of this section.

Theorem 4.7. Let M be an n× k matrix, with integer entries, in PM-block form.
Let r be the number of PM-blocks in M , and let ni be the number of rows in the
ith PM-block, pi the number of rows in the top half and qi = ni − pi the number of
rows in the bottom half. If all rows of M are nonzero, then

Z(ΦM ) = W (p1, q1)×ι · · · ×ιW (pr, qr)
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and if M does contain some zero rows, then

Z(ΦM ) = W (p1, q1)×ι · · · ×ιW (pr−1, qr−1)×ι Sp(2nr,R) .

The proof will follow easily from the following result.

Proposition 4.8. Suppose M is a nonzero n × k matrix, with integer entries,
consisting of only one PM-block, with p rows in the top half and q rows in the
bottom half. Then Z(ΦM ) = W (p, q). (This was proved for n = 2 and k = 1 in
[W].)

Proof. The rank of M is 1, so ΦM is also the image of a faithful homomorphism
from T 1 to Sp(2n,R). So without loss of generality, we will assume that M has only
one column, in other words, that M = (m, ...,m,−m, ...,−m)T for some nonzero
integer m. We can now easily prove that Z(ΦM ) ⊂W (p, q). Lemma 4.2 shows that
Fp,qZ(ΦM )F−1

p,q ⊂ GL(n,C). Hence, by Lemma 4.5, we have Fp,qZ(ΦM )F−1
p,q ⊂

U(p, q). So Z(ΦM ) ⊂ F−1
p,qU(p, q)Fp,q, which equals W (p, q) by definition.

In order to prove the other inclusion, W (p, q) ⊂ Z(ΦM ), note that for every
t ∈ R,

Fp,qϕM (exp(t))F−1
p,q = Fp,q

(
e2πimtIp 0

0 e−2πimtIq

)
F−1
p,q

= e2πimtIn,

which commutes with everything in GL(n,C). Let B ∈W (p, q). Then Fp,qBF−1
p,q ∈

GL(n,C) by definition. So Fp,qBF−1
p,q commutes with every element of Fp,qΦMF

−1
p,q ,

and hence B commutes with every element of ΦM . ThereforeW (p, q) ⊂ Z(ΦM ).

Proof of Theorem 4.7. Let the PM-blocks of M be M1, ...,Mr. By Proposition 3.6,

Z(ΦM ) = Z(ΦM1)×ι · · · ×ι Z(ΦMr ) .

For each nonzero Mi, Proposition 4.8 shows that Z(ΦMi) = W (pi, qi). If all of the
PM-blocks are nonzero, then

Z(ΦM ) = W (p1, q1)×ι · · · ×ιW (pr, qr).

By the definition of PM-block form, the only block that can be zero is the last one,
Mr. Suppose that Mr is zero. Then ΦMr = {I2n}, so Z(ΦMr ) = Sp(2nr,R), and
hence

Z(ΦM ) = W (p1, q1)×ι · · · ×ιW (pr−1, qr−1) ×ι Sp(2nr,R).

5. Torus actions on symplectic orbi-spaces

In this section, we characterize all symplectic orbi-spaces that admit an effective
symplectic T k action. The main theorem is the following. It was proved in [W] for
n = 2 and k = 1, and in [LT] for k = n.

Theorem 5.1. A symplectic orbi-space R2n/Γ admits an effective symplectic T k

action if and only if Γ is conjugate to a subgroup of U(n1) ×ι ... ×ι U(nk), where
the ni’s are nonzero, the sum of the ni’s is n.
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Proof. (=⇒) Suppose R2n/Γ admits an effective symplectic action. Lemmas 3.1
and 3.3 show that Γ is conjugate to the centralizer of a k-torus ΦM in Tn for some
matrix M in PM-block form. Let r be the number of PM-blocks in M , and for each
i, let ni be the number of rows in the ith PM-block. The ni’s are nonzero (since
PM-blocks are nonempty), the sum of the ni’s is n, and since the rank of M is k,
it follows that r is at least k. By Theorem 4.7 (or Proposition 3.6), we have

Z(ΦM ) ⊂ Sp(2n1,R)×ι · · · ×ι Sp(2nr,R).

Since Γ is finite, it must be conjugate to a subgroup of U(n1)×ι · · ·×ιU(nr). By
combining factors if r > k, we see that Γ is conjugate to a subgroup of U(n1)×ι · ·
· ×ι U(nk + · · ·+ nr).

(⇐=) Suppose Γ is conjugate to a subgroup of U(n1)×ι · · · ×ι U(nk), where the
ni’s are nonzero and their sum is n. Let M be the n× k matrix in PM-block form

with k PM-blocks, the ith of which is

 ei
...
ei

, with ni rows, where ei is the ith

standard basis vector of the row space. By Theorem 4.7,

Z(ΦM ) = U(n1)×ι · · · ×ι U(nk).

Hence Γ is contained in some conjugate of Z(ΦM ). Since M has rank k, it follows
that ΦM is a k-torus. Therefore, by Lemma 3.1, we see that R2n/Γ admits an
effective T k-action.

Remark 5.2. This theorem can actually be proven almost as easily using only the
results from Section 3.

Remark 5.3. This result does not necessarily imply that if Γ ⊂ Sp(2n,R) is iso-
morphic to a finite subgroup of U(n1)×·· ·×U(nk), then R2n/Γ admits an effective
symplectic T k action; the T k action is only guaranteed for some representation of
Γ in Sp(2n,R). We believe that the question of whether such an action exists for
all representations of Γ is open.

Corollary 5.4. All symplectic orbi-spaces admit a circle action.

Proof. Let R2n/Γ be a symplectic orbi-space. Since Γ is a finite subgroup of
Sp(2n,R), and hence compact, it must be conjugate to a subgroup of U (n).

Corollary 5.5 ([LT]). R2n/Γ admits an effective symplectic T n action if and only
if Γ is conjugate to a subgroup of Tn (or equivalently, Γ is contained in some torus).

Proof. In the statement of Theorem 5.1, since k = n, we must have each ni = 1.
So Γ is conjugate to a subgroup of U(1)×ι · · · ×ι U(1), where there are n copies of
U(1), which equals Tn.

The preceding corollary allows us to easily find examples of orbi-spaces R2n/Γ
that don’t admit effective symplectic n-torus actions.

Example 5.6 ([STW]). Let Γ be a non-abelian subgroup of U(2), for example

the representation of D4 generated by
(

i 0
0 i

)
and

(
0 1
1 0

)
. Since Γ is not

abelian, it is not conjugate to a subgroup of T 2, so R4/Γ does not admit an effective
symplectic T 2 action.
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Corollary 5.7. If k > n
2 and R2n/Γ admits an effective symplectic T k action, then

Γ is conjugate to a subgroup of U(2n− 2k)×ι T2k−n.

(Note that we do not claim the converse.)

Proof. In the statement of Theorem 5.1, let a be the number of values of i such
that ni = 1. There must be (k−a) values of i such that ni ≥ 2, so the sum of all of
the ni’s, which must equal n, is at least 2(k− a) + a. So n ≥ 2k− a, which implies
a ≥ 2k − n. The product of 2k − n factors of U(1) is T2k−n. The product of the
remaining factors is a subgroup of U(n− (2k − n)) = U(2n− 2k).
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